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Abstract: Due to the limitations of storage and transmission in remote sensing scenarios, lossy
compression techniques have been commonly considered for remote sensing images. Inspired by
the latest development in image coding techniques, we present in this paper a new compression
framework, which combines the directional adaptive lifting partitioned block transform (DAL-PBT)
with content-driven quadtree codec with optimized truncation (CQOT). First, the DAL-PBT model is
designed; it calculates the optimal prediction directions of each image block and performs the
weighted directional adaptive interpolation during the process of directional lifting. Secondly,
the CQOT method is proposed, which provides different scanning orders among and within blocks
based on image content, and encodes those blocks with a quadtree codec with optimized truncation.
The two phases are closely related: the former is devoted to image representation for preserving
more directional information of remote sensing images, and the latter leverages adaptive scanning on
the transformed image blocks to further improve coding efficiency. The proposed method supports
various progressive transmission modes. Experimental results show that the proposed method
outperforms not only the mainstream compression methods, such as JPEG2000 and CCSDS, but also,
in terms of some evaluation indexes, some state-of-the-art compression methods presented recently.
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1. Introduction

Along with the rapid development of remote sensing technology, it is becoming easier to
acquire high spatial resolution remote sensing images from various satellites and sensors, which is
undoubtedly beneficial to the application of remote sensing images [1,2]. On the other hand, massive
data has brought a great burden to the storage and transmission of remote sensing images. Therefore,
compression technology is indispensable in remote sensing image processing. In general, traditional
compression methods can be used for the compression of remote sensing images, such as Embedded
Zerotree Wavelet (EZW) [3], Set Partitioning in Hierarchical Tree (SPIHT) [4], Set Partitioned Embedded
Block Coder (SPECK) [5], and Joint Photographic Experts Group 2000 (JPEG2000) [6], or some improved
versions of them [7–10]. However, the remote sensing image has its own unique characteristics,
which usually include complicated spatial information, clear details, and well-defined geographical
objects, and even some small targets [11]. This means that some traditional methods that rarely
consider high-frequency information and mainly focus on retaining more low-frequency information
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are not very applicable. In order to efficiently compress the remote sensing image, its characteristics
must be taken into account in the compression process.

In this decade, some compression methods specifically designed for remote sensing images have
been proposed. The Consultative Committee for Space Data Systems (CCSDS) published an Image
Data Compression (-CCSDS 122.0-B-1) standard [12], which specifically targets space-borne equipment
and focuses more on the complexity of the algorithm and less on its flexibility. In [13], it makes
some improvement on the CCSDS 122.0-B-1 standards, which supports several ways of interactive
decoding. In [14], the CCSDS published the CCSDS 122.0-B-2, which adds some modifications to
support the recommended standard for spectral pre-processing transform for multispectral and
hyperspectral image compression. In [15] the authors extend the JPEG2000 for the compression
of remote sensing images. These compression methods are based on Discrete Wavelet Transform
(DWT). In recent years, DWT-based and embedded bit-plane coding techniques have been very
popular [16]. However, due to DWT’s property, the energy of images will be spread across subbands
if the edges and textures are not horizontal or vertical [16]. For remote sensing images, after DWT,
the energy of the high frequency subbands is usually very large for its characteristics related to
complicated terrain information. Therefore, a more effective image representation method is desirable
for the compression of remote sensing images. In the last few years, several specialized transform
methods that aim to improve the treatment of geometric image structures have been proposed, such
as curvelets [17], coutourlets [18], directionlets [19], and shearlets [20]. Instead of choosing an a
priori basis or frame to represent an image, some adaptive wavelet basis, such as [21,22], have been
proposed. In order to employ the direction transform methods for image compression, the authors
of [23,24] integrate the direction prediction methods into the wavelet lifting framework, and preserve
more directions of images. The authors of [25] present a compressive sensing method exploiting
the interscale and intrascale dependencies by directional lifting wavelet transform. The authors
of [26] provides an adaptive lifting wavelet transform, which adapts the lifting direction to local
image blocks and can preserve more edge information of images. The authors of [27] provide an
analysis of the characteristics of airborne LIDAR data and some efficient representation methods for
remote sensing images. In [28], a compression technique that considers the properties of predictive
coding and discrete wavelet coding is designed. The authors of [29] propose a compression method
for remote sensing images based on both saliency detection and directional wavelet for remote
sensing images. In recent years, there have also been many studies on multicomponent image
compression. In September 2017, CCSDS published a recommended standard (CCSDS 122.1-B-1) [30].
This recommended standard is an extension to CCSDS 122.0-B-2 [14], which defines a data compression
algorithm that can be applied to three-dimensional images, such as multispectral and hyperspectral
images. The authors of [31] propose a rate control method for the onboard predictive compression.
In [32], the authors propose a new compression method based on compressed sensing and universal
scalar quantization for the low-complexity compression of multispectral images. In [33], the authors
propose a sparse representation-based compression method for hyperspectral images, which tends to
represent hyperspectral data with a learned dictionary via sparse coding. In [34], the authors propose
a compression method for hyperspectral images, which constructs some superpixels to describe
hyperspectral data. Most of these image compression methods focus only on the representation
of image directional information, and combine it with existing coding methods. However, image
representation and coding are two closely related stages of compression. Considering the two stages
jointly will be advantageous for improving the compression performance of remote sensing images.

Embedded coding is one of the most popular coding techniques, which can truncate the bitstream
at any position and reconstruct the image [35]. Embedded block coding with optimized truncation
(EBCOT) is an effective coding method, which is the fundamental part of the JPEG2000 image
compression standard. It divides each transformed subband into many independent code-blocks,
encodes these code-blocks, and performs optimal truncation based on the specified bit rate, respectively.
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However, the EBCOT method only considers the correlation within a subband, and there are a lot of
truncated points that need to be stored during the process of running the algorithm [9,36].

Besides EBCOT, tree-based coding methods have been widely used. Some of the embedded coding
methods are based on zerotree, such as [3–5,37–39]. The zerotree-based method exploits the property of
self-similarity across scales in wavelet transformed images, which construct some zerotrees by spatial
similarity of the wavelet coefficients at different scales. As a result, a great deal of non-significant
coefficients can be represented by a root of the zero tree. Recently, some binary, tree-based coding
methods were proposed for the compression of remote sensing images. The authors of [40] present
a binary tree codec adaptively (BTCA) for on-board image compression. As a novel and robust
coding way, the BTCA method has proven to be very effective. In [41], a human vision-based adaptive
scanning (HAS) for the compression of remote sensing images was proposed, which combines the
human visual model with the BTCA, and can provide a good visual quality for remote sensing images.
Additionally, the quadtree-based coding methods are also presented for the compression of remote
sensing image coding. The authors of [24] propose a compression method that is based on quadtree
coding for Synthetic Aperture Radar (SAR) images and obtains a good coding performance.

In 2017, the state-of-the-art compression method based on quadtree set partitioning, known
as quadtree coding with adaptive scanning and optimized truncation (QCAO), was proposed [42].
The main concept of this method is that the entire wavelet image is divided into several blocks and
encoded individually. In the process of coding, the significant nodes and their neighbors are encoded
before other nodes, and then the optimized truncation is followed to improve the coding efficiency.
Although the QCAO is an effective coding method, similar to EBCOT, it mainly utilizes the clustering
characteristics within a subband, but seldom considers the relations among subbands.

In this paper, a new compression method for remote sensing images is proposed. In order to
improve the compression efficiency, the image representation phase and coding phase are jointly
considered. In addition, both the characteristics of subbands and the scanning order among subbands
and blocks are utilized in the process of coding. The overall framework of the proposed compression
method is shown in Figure 1.
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Figure 1. The overall framework of the proposed compression method.

The main contribution of the proposed method consists of two parts:
One part is the directional adaptive lifting partitioned block transform (DAL-PBT), which can

provide the optimal prediction direction for each image block and preserve more orientation properties
of remote sensing images by directional interpolation. It should be noted that the size of the image
block here is consistent with that of the following coding phase.

Another part is the content-driven quadtree codec with optimized truncation (CQOT),
which establishes the quadtree for each image block by analyzing the scanning order among blocks
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and the scanning method of each block based on the image content and the characteristics of subbands,
respectively. Then, the coding and optimized truncation is followed for each quadtree in order to
provide a good overall coding performance.

The remainder of the paper is organized as follows. In Section 2, the proposed DAL-PBT model
is described in detail. In Section 3, we first describe the content-driven adaptive scanning method,
before the CQOT method is introduced. Section 4 gives some quality evaluation indicators used in this
paper. In Section 5, some numerical experiments are performed and prove the high effectiveness of the
proposed compression method. Finally, the conclusions are provided in Section 6.

2. The Directional Adaptive Lifting Partitioned Block Transform (DAL-PBT)

The two-dimensional (2-D) DWT is the most important image representation technique of the last
decade [43]. Conventionally, the 2-D DWT is carried out as a separable transform by cascading two
1-D transforms in the vertical and horizontal directions, which only use the neighboring elements in
the horizontal or vertical direction. However, most remote sensing images contain a lot of directional
information, such as edges, contours of terrain, and complex texture of objects, which ensure that the
conventional 2-D DWT fails to provide a good representation for them. How to provide an efficient
image representation is one of the keys to improving the coding performance of remote sensing images.
In this paper, a new DAL-PBT model is proposed. It first divides an image into several blocks and
then calculates their optimal lifting directions. Then, a directional interpolation filter is utilized during
the lifting process to improve the orientation property of the interpolated remote sensing images.
The DAL-PBT model is described in detail as follows.

2.1. The Structure of Adaptive Directional Lifting Scheme

Without loss of generality, we present a general formulation of the 2-D DWT implemented with
lifting. The authors of [44] point out that the 2-D wavelet transforms can be realized by one pair of the
lifting steps, i.e., one prediction step followed by one update step. The typical lifting process consists of
four stages: split, prediction, update, and normalize [45]. The 1-D directional lifting wavelet transform
and inverse transform are shown in Figure 2a,b.
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We consider a 2-D image x(m, n)m,n∈Z. First, all samples of the image are split into two parts:
the even sample subset xe and the odd sample subset xo.{

xe[m, n] = x[2m, n]
xo[m, n] = x[2m + 1, n]

(1)
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In the predict stage, the odd elements are predicted by the neighboring even elements with a
prediction direction obtained via a discriminant criteria. Suppose the direction adaptive prediction
operator is DA_P; then, the predict process can be represented as

d[m, n] = xo[m, n] + DA_Pe[m, n] (2)

In the update stage, the even elements are updated by the neighboring prediction error with the
same direction of the predict stage. Suppose the direction adaptive update operator is DA_U, the
updated process can be described as

c[m, n] = xe[m, n] + DA_Ud[m, n] (3)

Here, the directional prediction operator DA_P is

DA_Pe[m, n] = ∑
i

pixe[m + sign(i− 1) tan θv, n + i] (4)

The directional update operator DA_U is

DA_Ud[m, n] = ∑
j

ujd[m + sign(j) tan θv, n + j] (5)

The pi and uj are the coefficients of high pass filter and low pass filter, respectively. θv represents
the direction of prediction and update.

Finally, the outputs of the lifting are weighted by the coefficients Ke and Ko, which normalize the
scaling and wavelet functions, respectively.

For a remote sensing image, if the directional lifting is carried out along the edge or texture
direction of the image, then the energy of the high frequency subbands will decrease, which is
advantageous for improving the coding performance. In this paper, the integer pixels and the fractional
pixels close to the predicted pixel are considered. Obviously, the more reference lifting directions,
the better representation of the image block. However, more side information is needed. On the
other hand, if there are very few reference lifting directions, the image cannot be well represented.
In this paper, 15 reference lifting directions are chosen for one-dimensional horizontal and vertical
transformations, which are shown in Figure 3a,b, respectively. Here, the directional filter can be
represented along the direction d =

(
dx, dy

)T , d ∈ R2. Therefore, the 15 reference directions
can be recorded as d−7 = (3,−1)T , d−6 = (2,−1)T , d−5 = (1,−1)T , d−4 = (3/4,−1)T , d−3 =

(1/2,−1)T , d−2 = (1,−3)T , d−1 = (1/4,−1)T , d0 = (0,−1)T , d1 = (−1/4,−1)T , d2 = (−1,−3)T ,
d3 = (−1/2,−1)T , d4 = (−3/4,−1)T , d5 = (−1,−1)T , d6 = (−2,−1)T , d7 = (−3,−1)T .

2.2. Image Segmentation and the Calculation of Optimal Prediction Direction

In order to ensure that the direction of the lifting is consistent with the local direction of the image,
image segmentation is carried out. In [46], a rate-distortion optimization segmentation method based
on quadtree is adopted, which divides a natural image recursively into blocks with different sizes by
quad-tree segmentation. However, the efficiency of this segmentation method is closely related to
the content of the image. For the remote sensing image, it usually reflects complex landforms rich in
details, but rarely large flat areas, so the adaptive segmentation method hardly shows its advantages.
The reason for this is that for images with complex content, the adaptive segmentation result most
likely shows all of the blocks with the smallest allowed size, which is nearly equivalent to equal
size segmentation but with a higher computational cost. In addition, for rate-distortion optimization
segmentation method based on quadtree, the “segmentation tree” at each bit rate is different, and all
of them should be transmitted to the receiver for correct decoding. The more complex the image
is, the more branches of the “segmentation tree” there are, which leads to more side information.
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Therefore, the rate-distortion optimization segmentation method based on quadtree is not very suitable
for remote sensing images.
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Based on the above analysis, the block segmentation method with the same size is directly adopted
for remote sensing images. In order to provide a better coding performance, the size of the partition
block here is the same as that of the following coding phase.

For the directional lifting-based wavelet transform, the prediction error is closely related to the
high frequency subbands. For an image block, the optimal prediction direction is the direction with
minimal residual information in high frequency subbands.

Suppose the reference direction set is θre f , which includes 15 directions, {−7, −6, −5, −4, −3, −2,
−1, 0, 1, 2, 3, 4, 5, 6, 7}, and the total number of blocks is Na. For each block Bl , l = 0, 1, . . . , Na − 1, the
optimal prediction direction θ∗opti can be calculated as follows:

θ∗opti,Bl
= argmin

i∈θre f

∑
m,n∈Bl

D
{

x(m, n)− DA_Pi(x(m, n))
}

(6)

Here, D(·) is the function of the image distortion, and x(m, n) represents the value at the position
(m, n) in the block Bl . In this paper, let D(·) =|·|. Equation (6) illustrates that the optimal prediction
direction of an image block Bl is the direction with a minimal prediction error.
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The process of calculating the optimal prediction direction of a block is shown in Figure 4. For an
original image, the directional wavelet transform is carried out along all the reference directions
θre f ,i(i = 1, 2, . . . , 15), respectively. Following this, for each image block Bl of these transformed
images, we are looking for the “tile” with a minimum prediction error, and its corresponding prediction
direction is the optimal prediction direction θ∗opti. We repeat this process, until all the optimal prediction
directions of all the image blocks are determined. For each block, with the optimal prediction direction
θ∗opti, the predicted process and the updated process of all its elements are carried out via Equations (4)
and (5), respectively.
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Compared with the adaptive segmentation method, the proposed direction lifting-based wavelet
transform does not need to transmit the “segmentation tree” at all bit rates, and it only needs to
transmit a small number of prediction directions as side information. Therefore, the side information
of the proposed method is low.

2.3. Directional Adaptive Interpolation

For the directional lifting-based wavelet transform, the lifting direction often needs the values
at fractional positions, i.e., the tangent of the lifting direction tan θ is not always an integer. In this
situation, it is necessary to interpolate those samples at fractional locations. The Sinc interpolation
is a very popular interpolation method. However, it only uses the coefficients in the horizontal or
vertical direction, which may blur the direction characteristics of the image. In this paper, a directional
interpolation method that interpolates the sub-pixels along the local texture directions by using the
adjacent integer pixels is adopted. As an example, for the horizontal transform, the process of direction
interpolation is shown in Figure 5.

In Figure 5, for different sub-pixel positions, some different integer pixels are used to
interpolate the sub-pixel, and the interpolation direction is adapted to the signal properties for
interpolation [47]. For example, in order to interpolate a quarter-position coefficient, not only the integer
coefficients {c−2, c−1, c0, c1} are used but also the coefficients {c−3, c2} along the predicted direction.
The directional interpolation filter should be constructed by these coefficients {c−3, c−2, c−1, c0, c1, c2}
on the integer position and make a prediction to the sub-pixel position. The final coefficients of the
directional interpolation filter are determined by three kinds of filters: bilinear filter, Telenor 4-tap filter,
and 2-tap filter. The directional interpolation process is shown in Figure 6. The coefficients of these
filters are listed in Table 1.
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Table 1. The applied filters of the directional interpolation process.

Filter Position The Weights of the Filter

Bilinear filter
1/4 3/4; 1/4
1/2 1/2; 1/2
3/4 1/4; 3/4

Telenor 4-tap
filter

1/4 −1/16; 13/16; 5/16; −1/16
1/2 −1/8; 5/8; 5/8; −1/8
3/4 −1/16; 5/16; 13/16; −1/16

2-tap filter N/A −1/4; 5/4

Figure 6 shows that {c−3, c2} are the inputs of the bilinear filter, {c−2, c−1, c0, c1} are the inputs of
the Telenor 4-tap filter, and both the outputs of the bilinear filter and the Telenor 4-tap filter are similar
to the inputs of the 2-tap filter. As a result, the outputs of the 2-tap filter are the weighted coefficients
of the directional interpolation filter.

2.4. Boundary Handing and Semidirection Displacement

The lifting operations of different image blocks are performed with their own optimal prediction
directions. However, the boundary effect is a problem. In this paper, for the lifting of block boundaries,
the adjacent pixels of other blocks are used, unless the boundary pixels are at the edge of the image.
As a result, the error can be restrained to some extent and can avoid the boundary effect.

The processing of the semi-direction is another problem that might need attention. Assuming that
a row transform is carried out firstly, the size of the image block is changed, which makes the block
direction no longer accurate. To solve this problem, some studies try to reduce the lifting direction of a
block by half, before performing another one-dimensional transform with the half angle, such as in [16].
However, the half-angle may not correspond exactly to the optimal prediction direction previously
calculated, which may lead to direction deviation. In addition, the deviation will be accumulated with
the increment of the wavelet decomposition levels. We adopt the directional interpolation method
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introduced in Section 2.3 for solving this problem. The rectangular block is interpolated into a square
block first, and then, another one-dimensional transform is performed using the previously calculated
optimal direction.

3. A Content-Driven Quadtree Coding Method for Remote Sensing Images

Tree-based coding methods have been widely used in recent years. In 2017, a state-of-the-art
coding method based on scanning for remote sensing images, known as quadtree coding with adaptive
scanning order and optimized truncation (QCAO), was proposed [42]. The main idea of QCAO is that
the transformed image is divided into several blocks, which are encoded by quadtree coding method,
respectively. Then, the optimized truncation is performed for each codestream of a block in order to
improve the coding performance.

Although the QCAO method is somehow related to the content of the image, it only considers the
scanning process within a block. However, the contents of different images are often very different,
especially for remote sensing images. In order to improve the coding performance, the scanning order
among subbands should be different according to the image content. In addition, for a given subband,
the scanning order and scanning methods among and within blocks should be determined while
taking the characteristics of the subband into account. Therefore, a content-driven quadtree codec with
optimized truncation (CQOT) is introduced, which provides an adaptive scanning method based on
the image content and the characteristics of subbands, and then encodes more significant coefficients as
much as possible at the same bit rate. The proposed CQOT algorithm is described in detail as follows.

3.1. Content-Driven Subband Scan and Block Scan

For a remote sensing image A with size M× N, after the transform based on the DAL-PBT model,
the transformed image can be recorded as B. The scanning process of B can be seen as a bijection f from
a closed interval [1, 2, . . . , M× N] to the set of ordered pairs {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}, in which
the second set represents the locations of the image. After scanning, the 1-D coefficient sequence can
be recorded as [B f (1), B f (2), . . . , B f (MN)]. Different scanning processes are actually bijective functions f
with different definitions. If the function f is defined, then the image compression process becomes a
process of compressing a 1-D coefficient sequence B̃ = [B f (1), B f (2), . . . , B f (MN)].

For the image compression at the same bit rate, different scanning orders can lead to different
coding efficiencies, which makes the scanning order very important. Generally, a 2-D transformed
image can be converted into a 1-D coefficient sequence using some traditional scanning strategies,
such as zigzag scan, morton scan, or raster scan. However, these scanning methods do not take the
image content and the characteristics of the wavelet subband into consideration, which will have an
impact on the coding performance. Moreover, remote sensing images usually contain some important
details, such as terrain contours, complex object textures, or even small targets, which also need to
be preserved as much as possible during the encoding process. Therefore, how to design an effective
adaptive scanning method is also an important issue for the compression of remote sensing images.

In this paper, an adaptive scanning method is presented. This scanning method can provide
different scanning orders among subbands based on the image content, and different scanning orders
and scanning methods among and within a block according to the characteristics of subbands. The
adaptive scanning process based on the image content and the characteristics of subbands (ASCC) is
shown in function ASCC (Algorithm 1).
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Algorithm 1. Function S = ASCC(X, J, b).

Input: The transformed image X with the DAL-PBT model, the decomposition level J, and the size of block b.

• Calculate the energy of each subband, and represent it as Eλ,θ .

l-scale (m = 1, 2, . . . , J), θ-direction (d = 1, 2, 3, 4). ‘1’ represents the low frequency subband, ‘2’ represents
the horizontal direction, ‘3’ represents the diagonal direction, and ‘4’ represents the vertical direction,
respectively.

El,θ =
1

RC

r,c

∑
i,j

X(l, θ)(i, j)2

r and c are the number of row and column of the current subband X(l, θ), respectively; X(l, θ)(i, j)
represents the value of the current subband at location (i, j).

• Determine the scanning order among subbands according to the descending order of El,θ .
• Determine the scanning order among blocks in a subband based on the characteristics of this subband.

- If these blocks are in the lowest frequency subband or horizontal subband, the “horizontal z-scan”
is adopted.

- If these blocks are in the vertical subband, the “vertical z-scan” is performed.
- If these blocks are in the diagonal subband, then the scanning order among blocks depends on the

energy of horizontal subband and vertical subband of this level.

1© If El,2 ≥ El,4, the “horizontal z-scan” is adopted.
2© If El,2 < El,4, the “vertical z-scan” is adopted.

• Determine the scanning method within a block according to the characteristics of this subband.

- For each block X_Block(i)
- If it is in the lowest frequency subband or a horizontal subband, the “horizontal z-scan”

is adopted.
- If it is in a vertical subband, the “vertical z-scan” is performed.
- If it is in a diagonal subband, then the scanning method depends on the horizontal subband and

vertical subband of this level.

1© If El,2 ≥ El,4, the “horizontal z-scan” is performed to this block.
2© If El,2 < El,4, the “vertical z-scan” is performed to this subband.

End

Output: The generated 1-D coefficient sequence S by scanning the 2-D transformed image X.

It has been demonstrated that from the ASCC algorithm, the adaptive scanning process is
determined by the image content and the characteristics of subbands together. To explain this algorithm
clearly, we give an example of the ASCC algorithm. The remote sensing image “Europa3” is chosen
as a test image. Suppose the decomposition level is 3, after the wavelet transform with DAL-PBT
model, the scanning order among the subbands is determined according to the descending order
of energy of these subbands, i.e., LL3, LH3, HH3, HL3, LH2, HH2, HL2, LH1, HL1, HH1. Following
this, the scanning order among blocks in each subband is determined based on the characteristics of
subbands. Take the subbands LH1, HL1, and HH1, for example: the scanning order among blocks in
LH1 is conducted with the “vertical z-scan” method, and that in HL1 follows the “horizontal z-scan”
method. Because the energy of LH1 is larger than that of HL1, the scanning order among blocks in HH1

follows the “vertical z-scan” method. Finally, for a given block, its scanning method depends on the
characteristics of the subband in which the block is located. The adaptive scanning process of the test
image is shown in Figure 7. In Figure 7, take a 4 × 4 block, for example: the scanning result and the
corresponding quadtree is provided. The numbers outside the circles represent the establishing order
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for the quadtree. The numbers in the circles are the coefficient values. Moreover, the green circles and
the brown circles refer to the significant coefficients at different scanning thresholds of the quadtree,
which will be discussed in detail in Section 3.2.
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3.2. Content-Driven Quadtree Codec with Optimized Truncation (CQOT)

The tree-based coding method has been widely used in recent years. Inspired by the most recent
development in the quadtree coding technique [42], we propose a CQOT method that combines the quadtree
codec with the content-based adaptive scanning method, introduced in the last section. In this framework,
for a transformed image with a DAL-PBT model, the ASCC method is adopted first to provide the whole
scanning order of the image. Secondly, for each block, a 1-D coefficient sequence is obtained after scanning,
and a quadtree is established based on the sequence by comparing the four adjacent coefficients in turn.
Then, each quadtree of a block is encoded individually, and the optimized truncation is performed by setting
the truncation points during the coding process. The CQOT algorithm is described as Algorithm 2.
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Algorithm 2. Function [code, P] = CQOT(X, J, b, Tk).

Input: The transformed image X with the DAL-PBT model, and the wavelet decomposition level J; the size of
each block b, Tk is the current threshold.

• For each quadtree Γ of a block, suppose that the total number of coefficients is L0, the height of the
quadtree is H = log(L0)/log 4, and the total number of nodes of the quadtree is L = ∑H

i−0 4i.
• S = ASCC(X, J, b).
• Establish the quadtree Γ for each block based on the 1-D coefficient sequence obtained by the scanning

order S, respectively.
• Initialization: code = {}.
• Encode each quadtree Γ.

d = H;
e = L;
b = e− 4d + 1;
P = {}

while (b > 1)
{

j = b;
while (j < e)
{

if max|Γ(j : j + 3)| ≥ 2Tk,then
if |Γ(j)| < 2Tk, then
code = code ∪QC{Γ, j, Tk};
end if
if |Γ(j + 1)| < 2Tk, then
code = code ∪QC{Γ, j + 1, Tk};
end if
if |Γ(j + 2)| < 2Tk, then
code = code ∪QC{Γ, j + 2, Tk};
end if
if |Γ(j + 3)| < 2Tk, then
code = code ∪QC{Γ, j + 3, Tk};
end if
end if
j = j + 4;

Calculate the series of optimized truncation points
{

Pjk

}
;

P = P ∪
{

Pjk

}
;

}
d = d− 1;
e = b− 1;
b = e− 4d + 1;

}
Output: The codestream code of the transformed image at the given threshold Tk, and the truncation points set
p.
}

For a transformed image, the neighbors of the significant coefficients are usually important,
because they often reflect some contour or edge information, which is very beneficial for preserving the
details of remote sensing images. The CQOT algorithm scans the neighbors of the previous significant
coefficients before other regions are scanned. A simple example is shown in Figure 8. In Figure 8,
the green nodes are the significant coefficients at the current threshold, and the brown nodes are the
previous significant coefficients. During the process of scanning, the neighbors of those brown nodes
are encoded in priority, and then the encoding of green nodes follows.
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To apply a rate-distortion optimization, the question of how to obtain the valid truncation points
is an important issue. Similar to EBCOT, a Post-Compression-Rate-Distortion (PCRD) algorithm is
adopted to select the candidate truncation points for each block so that the minimum distortion can be
obtained at a given bit rate.

For the jth candidate truncation point of a block, suppose the bit rate is Rj and corresponding
distortion is Dj, then

Pj =
Dj−1 − Dj

Rj − Rj−1
(7)

represents the distortion-rate of the block.
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If Pj+1 > Pj, the jth candidate truncation point is not selected; then, the distortion-rate of the
block is updated with

Pj+1 =
Dj−1 − Dj+1

Rj+1 − Rj−1
(8)

Following this, the Pj+1 is compared with Pj−1. If Pj+1 > Pj−1, the (j − 1)th truncation point
should also not be selected, and we update the distortion-rate of the block with

Pj+1 =
Dj−2 − Dj+1

Rj+1 − Rj−2
(9)

The process is carried out until Pj+1 < Pjk , then

Pj+1 =
Djk−1 − Dj+1

Rj+1 − Rjk−1
(10)

Finally, the strictly decreasing
{

Pjk
}

is selected as the series of valid truncation points.
The QC algorithm adopted in the CQOT algorithm is described as follows. Algorithm 3 uses a

stack to avoid a recursive function.

Algorithm 3. Function code = QC(Γ, j, Tk).

Input: Γ represents a quadtree, and j is the index of a node of the quadtree. Tk represents the threshold.

• code = {}
• Stack S; StackInit(S); Push(S, j);
• while (!Empty(S))

{

• j = pop(S);
• if |Γ(j)| ≥ 2Tk and 4j + 1 < L then

Push(S, 4j + 1);
Push(S, 4j);
Push(S, 4j− 1);
Push(S, 4j− 2);
else if j > 1 and jmod4 = 1 and |Γ(j− 1)| < Tk and |Γ(j− 2)| < Tk and |Γ(j− 3)| < Tk then
if 4j + 1 ≤ L then
Push(S, 4j + 1);
Push(S, 4j);
Push(S, 4j− 1);
Push(S, 4j− 2);
else
code = code ∪ sign(Γ(j))
end if
else if |Γ(j)| ≥ Tk then
code = code ∪ {1};
if 4j + 1 ≤ L then
Push(S, 4j + 1);
Push(S, 4j);
Push(S, 4j− 1);
Push(S, 4j− 2);
else
code = code ∪ sign(Γ(j))
end if
else
code = code ∪ {0};
end if
}

Output: The codestream code of the quadtree at the given threshold. Tk.
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3.3. The Overhead of Bits

For the proposed compression method, the bit overhead, including the optimal prediction
directions of those image blocks, the scanning order among the subbands and the scanning method of
those diagonal subbands are also encoded and sent to the decoder with the bitstream.

Suppose the size of the image is M× N and the block size is P×Q. Then, the number of blocks
is MN/PQ, which means that the number of optimum prediction directions that need to be saved is
MN/PQ. Since the number of reference prediction directions is 15, one byte can store two prediction
directions (record a direction with 4 bit). That is, MN/2PQ bytes are required to store those prediction
directions. Moreover, suppose the number of wavelet decomposition levels is J. Then, only 3J + 1
statuses are needed to represent the scanning order among the subbands. Additionally, J statuses are
needed to represent the scanning methods of J diagonal subbands. If the wavelet decomposition is
inferior or equal to five levels, the (3J + 1) + J status can be stored with no more than 11 bytes (record
each status with 4 bit). Usually, the maximum byte overhead of the side information that needs to be
sent to the decoder is MN/2PQ + 11.

We take the image in Figure 8 as an example. The size of ‘Europa3’ is 512 × 512. According
to [42], the proper size of the image block is 64 × 64. Then, it requires (512× 512)/(2× 64× 64) = 32
bytes to store those optimal prediction directions. In addition, we record the scanning order among
the subbands according to LLJ, HLi, HHi, and LHi (i = J, J − 1, . . . . . . , 1), and the scanning order of
those diagonal subbands according to HHi (i = J, J − 1, . . . . . . , 1). Based on the algorithm ASCC, the
scanning order among the subbands is 1, 4, 2, 3, 7, 5, 6, 9, 8, and 10, and the scanning methods of
the diagonal subbands are 11, 11, and 11. (The 11 represents the “vertical z-scan” method, and 12
represents the “horizontal z-scan” method). Therefore, they can be stored with 7 bytes. The bit rate of
side information is (32 + 7)× 8/512× 512 = 0.00119 bpp. It is worth mentioning that, if the size of
the image is larger or the bit depth of the image is greater than 8 bit, the proportion of overhead bits is
smaller. Moreover, if entropy encoding is used for these overhead bits, the overhead cost would be
further reduced. Based on the analysis above, the overhead bits of the proposed compression method
are extremely small, which makes it have almost no impact on the coding performance.

4. Quality Evaluation Index

In order to evaluate the performance of the proposed compression method comprehensively, in
this paper, PSNR (peak signal-to-noise ratio, dB), MS-SSIM (multi-scale structural similarity method),
and VIF (visual information fidelity) are chosen as the evaluation indexes, respectively.

4.1. PSNR

Suppose X is the original image, its size is M× N and its possible maximum value is L. Suppose
Y is the reconstructed image, then the PSNR can be represented as

PSNR = 10 log10
L2

MSE
(11)

MSE =
∑M

i=1 ∑N
j=1 (xij − yij)

2

M× N
(12)

4.2. MS-SSIM

The MS-SSIM incorporates the variations of viewing conditions and is more flexible than SSIM [43].
Thus, we adopt the MS-SSIM as an evaluation index in this paper.

MS_SSIM(x, y) = [lM(x, y)]αM ·
M

∏
j=1

[
cj(x, y)β j sj(x, y)γj

]
(13)
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Here, lM(x, y) represents the luminance comparison at scale M, and cj(x, y) and sj(x, y) represent
the contrast and structure comparison at scale j, respectively. The exponents αM, β j, and γj are used to
adjust the relative importance of different components.

4.3. VIF

Based on the theory in [48], the model of VIF can be represented as

Y(i, j) = β(i, j)X(i, j) + V(i, j) + W(i, j) (14)

χ(i, j) = X(i, j) + W(i, j) (15)

Here, X(i, j) is the original image, Y(i, j) is the reconstructed image, χ(i, j) is the image captured
by humans, and W(i, j) is the noise image of the human vision system (HVS). X(i, j) is decomposed
into several subbands (X1(i, j), X2(i, j), . . . , XM(i, j)) by wavelet transformation. β(i, j) is the value
of the window used in the distortion channel estimation. V(i, j) is a stationary additive, zero-mean
Gaussian noise. If the variance of W(i, j) is σW , c = 0.01, and

Z(i, j)2 =
1
M

M

∑
k=1

Xk(i, j)2 (16)

Then

VIF =
log2(

β(i,j)2Z(i,j)2+σw+c
σw+c )

log2(
Z(i,j)2+c

c )
(17)

5. Experiments and Discussion

In this section, some experiments are carried out to evaluate the performance of the proposed
compression method. The proposed compression method is compared with other five scan-based
methods, which are the mainstream or the state-of-the-art compression methods, in terms of different
evaluation indexes at different bit rates.

5.1. Space-Borne Images from Different Sensors

To fully verify the performance of the proposed compression method, the test space-borne images
come from different sensors. Some test images are from a CCSDS test image set [49], which includes a
variety of space imaging instrument data, such as planetary, solar, stellar, earth observations, and radar.
In this paper, “lunar”, “ocean_2kb1”, and “pleiades_portdebouc_pan” are chosen. Moreover, the test
image “Miramar NAS” is derived from the USCSIPI Image Database [50]. In addition, two other remote
sensing images are chosen. “Pavia” is derived from an image acquired by the Quickbird sensor over
Pavia, Italy, which has a resolution of 0.6 m. “Houston” is derived from an image acquired by the World
View-2 sensor over Houston, USA in 2013, which has a resolution of 0.5 m. We crop the left upper part
of these images with a size of 512 × 512 for comparison under the same condition. The test image set is
shown in Figure 8. The data source and bit depth of the test image set are listed in Table 2.

Table 2. List of the test image set.

Image Bit Depth (bpp) Source—Copyright

lunar 8 Galileo Image—NASA
Miramar NAS 8 USC-SIPI

ocean_2kb1 10 NOAA Polar Orbiter (AVHRR)—NOAA
Pavia 11 QuickBird (0.6 m)

Houston 11 WorldView-2 Sensor(0.5 m)
pleiades_portdebouc_pan 12 Simulated PLEIADES—CNES
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5.2. Performance Comparison of the Proposed Compression Method with Other Scan-Based Methods

In the experiments, the 9/7-tap biorthogonal wavelet filter frame is used for the directional
adaptive lifting. The size of the image block is set to 64 × 64. All the test remote sensing images are
compressed by the proposed compression methods and the other five scan-based methods, respectively.
The methods used for comparison are the mainstream or the state-of-the-art compression methods,
including CCSDS 122.0-B-1, JPEG2000, BTCA, HAS, and QCAO. The compared results, in terms of
PSNR, MS-SSIM, and VIF, are tabulated in Tables 3–5. The results are evaluated at eight bit rates,
namely, 0.0313 bpp, 0.0625 bpp, 0.125 bpp, 0.25 bpp, 0.5 bpp, 1 bpp, 2 bpp, and 3 bpp.

Table 3. PSNRs (dB) of the proposed compression method and other scan-based compression methods.

Image Algorithm
Bit Rate (bpp)

0.0313 0.0625 0.125 0.25 0.5 1 2 3

lunar

CCSDS 9.86 18.92 24.45 27.64 30.68 35.07 35.07 41.10
JPEG2000 22.73 24.11 26.04 28.25 31.35 35.61 41.53 46.21

BTCA 23.28 24.64 26.49 28.74 31.71 36.13 42.47 48.45
HAS 23.32 24.70 26.51 28.77 31.76 36.08 42.41 48.40

QCAO 23.32 24.93 26.50 28.87 31.79 36.15 42.46 48.51
Proposed 23.40 25.26 26.63 29.42 31.83 36.29 42.60 48.62

Miramar NAS

CCSDS 12.30 16.83 21.62 24.21 26.71 29.81 34.74 39.41
JPEG2000 19.67 20.81 22.54 24.50 26.80 29.97 35.14 40.03

BTCA 20.17 21.28 22.87 24.78 27.12 30.33 35.31 40.53
HAS 20.15 21.35 22.85 24.79 27.19 30.29 35.15 40.24

QCAO 20.37 21.57 22.90 25.05 27.32 30.33 35.30 40.56
Proposed 20.61 21.76 23.00 25.27 27.44 30.54 35.37 40.66

ocean_2kb1

CCSDS 14.33 17.63 29.69 33.72 36.90 40.86 47.01 52.41
JPEG2000 28.08 29.91 32.17 34.51 37.54 41.84 48.40 53.80

BTCA 28.81 30.55 32.72 35.00 37.97 42.19 48.59 54.53
HAS 28.79 30.59 32.60 34.98 37.99 42.13 48.51 54.49

QCAO 28.85 30.53 32.78 34.96 37.90 42.26 48.64 54.57
Proposed 28.97 30.84 32.95 35.15 38.11 42.35 48.69 54.59

Pavia

CCSDS 19.30 25.14 34.26 37.10 39.39 42.13 46.79 51.77
JPEG2000 32.51 34.05 35.75 37.64 39.79 42.65 47.74 52.97

BTCA 32.96 34.21 35.94 37.78 39.93 42.71 47.49 52.61
HAS 32.90 34.33 35.95 37.73 39.94 42.71 47.34 52.38

QCAO 33.41 34.65 36.29 37.85 39.86 42.62 47.40 52.58
Proposed 33.65 34.80 36.44 38.09 40.02 42.83 47.57 52.70

Houston

CCSDS 15.95 21.73 31.69 35.45 38.35 41.75 46.63 51.37
JPEG2000 29.94 31.73 33.52 35.92 38.65 42.17 47.28 52.28

BTCA 30.34 31.99 33.89 36.07 38.69 42.23 47.08 52.04
HAS 30.33 31.92 33.87 36.04 38.69 42.24 46.99 51.90

QCAO 31.02 32.51 34.03 36.17 38.75 42.33 46.89 51.90
Proposed 31.20 32.65 34.15 36.24 38.79 42.39 46.82 51.79

pleiades_portdebouc

CCSDS 13.20 17.93 29.24 34.21 38.20 42.87 48.99 54.05
JPEG2000 27.61 29.77 31.87 34.89 38.28 42.64 48.99 54.12

BTCA 28.47 30.40 32.88 35.57 39.23 43.52 49.31 54.42
HAS 28.44 30.41 32.71 35.55 39.18 43.48 49.24 54.32

QCAO 28.61 30.45 33.35 35.73 39.22 43.52 49.35 54.48
Proposed 28.73 30.59 33.49 35.92 39.39 43.65 49.67 54.76
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Table 4. MS-SSIMs (dB) of the proposed compression method and other scan-based
compression methods.

Image Algorithm
Bit Rate (bpp)

0.0313 0.0625 0.125 0.25 0.5 1 2 3

lunar

CCSDS 0.1630 0.6538 0.8215 0.9220 0.9672 0.9895 0.9895 0.9971
JPEG2000 0.6702 0.7849 0.8716 0.9310 0.9649 0.9882 0.9968 0.9988

BTCA 0.7211 0.8035 0.8779 0.9413 0.9720 0.9906 0.9979 0.9989
HAS 0.7296 0.8082 0.8871 0.9474 0.9751 0.9919 0.9980 0.9991

QCAO 0.7239 0.8241 0.8843 0.9445 0.9721 0.9908 0.9979 0.9994
Proposed 0.7374 0.8456 0.8902 0.9500 0.9789 0.9946 0.9985 0.9996

Miramar NAS

CCSDS 0.2877 0.5683 0.8008 0.9148 0.9627 0.9848 0.9950 0.9980
JPEG2000 0.6242 0.7395 0.8506 0.9222 0.9638 0.9850 0.9945 0.9980

BTCA 0.6679 0.7726 0.8680 0.9250 0.9634 0.9857 0.9956 0.9982
HAS 0.6761 0.7793 0.8601 0.9292 0.9679 0.9867 0.9959 0.9986

QCAO 0.6945 0.7908 0.8721 0.9335 0.9682 0.9855 0.9956 0.9985
Proposed 0.6963 0.7917 0.8756 0.9379 0.9681 0.9871 0.9956 0.9986

ocean_2kb1

CCSDS 0.1640 0.4233 0.8351 0.9319 0.9645 0.9849 0.9962 0.9986
JPEG2000 0.7014 0.8015 0.8789 0.9265 0.9624 0.9833 0.9959 0.9986

BTCA 0.7396 0.8121 0.8820 0.9355 0.9660 0.9863 0.9967 0.9987
HAS 0.7267 0.8256 0.8869 0.9322 0.9647 0.9857 0.9966 0.9990

QCAO 0.7425 0.8237 0.8917 0.9347 0.9659 0.9863 0.9964 0.9988
Proposed 0.7477 0.8337 0.8936 0.9361 0.9676 0.9878 0.9968 0.9991

Pavia

CCSDS 0.1222 0.4259 0.7703 0.8912 0.9432 0.9731 0.9905 0.9969
JPEG2000 0.5410 0.7008 0.8089 0.8899 0.9448 0.9742 0.9911 0.9970

BTCA 0.5836 0.7046 0.8240 0.8939 0.9419 0.9731 0.9907 0.9970
HAS 0.6080 0.7250 0.8185 0.8962 0.9484 0.9759 0.9913 0.9971

QCAO 0.6427 0.7506 0.8440 0.9029 0.9456 0.9734 0.9903 0.9970
Proposed 0.6865 0.7625 0.8518 0.9057 0.9488 0.9742 0.9906 0.9971

Houston

CCSDS 0.0993 0.4287 0.7617 0.8965 0.9506 0.9785 0.9925 0.9974
JPEG2000 0.5608 0.7013 0.8173 0.8935 0.9489 0.9779 0.9922 0.9972

BTCA 0.5937 0.7106 0.8054 0.8901 0.9497 0.9777 0.9924 0.9974
HAS 0.5791 0.7021 0.8255 0.8957 0.9512 0.9788 0.9928 0.9976

QCAO 0.6529 0.7608 0.8264 0.8953 0.9503 0.9774 0.9920 0.9973
Proposed 0.6626 0.7681 0.8271 0.8960 0.9507 0.9769 0.9919 0.9973

pleiades_portdebouc

CCSDS 0.1084 0.2578 0.7476 0.9204 0.9726 0.9911 0.9972 0.9989
JPEG2000 0.5768 0.7473 0.8572 0.9322 0.9725 0.9906 0.9970 0.9988

BTCA 0.6469 0.7745 0.8755 0.9405 0.9765 0.9911 0.9973 0.9989
HAS 0.6350 0.7889 0.8820 0.9413 0.9751 0.9918 0.9974 0.9990

QCAO 0.6657 0.7891 0.8937 0.9419 0.9765 0.9912 0.9974 0.9990
Proposed 0.6737 0.7990 0.8946 0.9433 0.9775 0.9917 0.9977 0.9991

Table 5. VIFS (dB) of the proposed compression method and other scan-based compression methods.

Image Algorithm
Bit Rate (bpp)

0.0313 0.0625 0.125 0.25 0.5 1 2 3

lunar

CCSDS 0.0221 0.0552 0.1136 0.2553 0.4288 0.6622 0.6622 0.8668
JPEG2000 0.0446 0.0892 0.1686 0.2830 0.4336 0.6777 0.8841 0.9552

BTCA 0.0585 0.1026 0.1797 0.3074 0.4733 0.7149 0.9106 0.9749
HAS 0.0550 0.1086 0.1856 0.3083 0.4794 0.7235 0.9297 0.9817

QCAO 0.0571 0.1253 0.1836 0.3142 0.4703 0.7181 0.9101 0.9746
Proposed 0.0599 0.1521 0.1928 0.3405 0.4792 0.7217 0.9086 0.9738

Miramar NAS

CCSDS 0.0206 0.0464 0.0977 0.2174 0.3610 0.5373 0.7494 0.8699
JPEG2000 0.0355 0.0671 0.1326 0.2331 0.3696 0.5551 0.7426 0.8828

BTCA 0.0452 0.0844 0.1468 0.2409 0.3669 0.5587 0.7808 0.9138
HAS 0.0481 0.0834 0.1427 0.2474 0.3950 0.5639 0.8098 0.9265

QCAO 0.0508 0.0893 0.1487 0.2511 0.3958 0.5573 0.7829 0.9146
Proposed 0.0527 0.0900 0.1527 0.2563 0.3976 0.5583 0.7781 0.9125

ocean_2kb1

CCSDS 0.0205 0.0387 0.0887 0.2117 0.3473 0.5351 0.7693 0.8931
JPEG2000 0.0403 0.0745 0.1339 0.2199 0.3387 0.5259 0.7960 0.9180

BTCA 0.0506 0.0853 0.1465 0.2384 0.3654 0.5633 0.8011 0.9297
HAS 0.0497 0.0904 0.1472 0.2348 0.3678 0.5714 0.8293 0.9468

QCAO 0.0514 0.0860 0.1469 0.2387 0.3641 0.5623 0.7998 0.9281
Proposed 0.0525 0.1013 0.1488 0.2430 0.3694 0.5576 0.7992 0.9294
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Table 5. Cont.

Image Algorithm
Bit Rate (bpp)

0.0313 0.0625 0.125 0.25 0.5 1 2 3

Pavia

CCSDS 0.0164 0.0355 0.0716 0.1622 0.2629 0.3957 0.5876 0.7606
JPEG2000 0.0258 0.0514 0.0938 0.1667 0.2706 0.4106 0.6141 0.7771

BTCA 0.0311 0.0559 0.1029 0.1708 0.2675 0.3985 0.5987 0.7849
HAS 0.0340 0.0576 0.1010 0.1726 0.2848 0.4363 0.6445 0.8081

QCAO 0.0489 0.0741 0.1259 0.1760 0.2769 0.4145 0.5949 0.7823
Proposed 0.0596 0.0805 0.1267 0.1777 0.2760 0.4136 0.5921 0.7829

Houston

CCSDS 0.0152 0.0307 0.0633 0.1595 0.2707 0.4196 0.6161 0.7768
JPEG2000 0.0272 0.0541 0.0949 0.1620 0.2763 0.4322 0.6218 0.7607

BTCA 0.0326 0.0561 0.0960 0.1643 0.2749 0.4263 0.6305 0.7984
HAS 0.0300 0.0568 0.1028 0.1693 0.2847 0.4498 0.6638 0.8262

QCAO 0.0652 0.0774 0.1027 0.1685 0.2773 0.4208 0.6259 0.7946
Proposed 0.0697 0.0791 0.1039 0.1696 0.2726 0.4176 0.6186 0.7906

pleiades_portdebouc

CCSDS 0.0103 0.0180 0.0462 0.1215 0.2176 0.3599 0.5682 0.7232
JPEG2000 0.0220 0.0448 0.0764 0.1330 0.2242 0.3607 0.5467 0.7204

BTCA 0.0301 0.0524 0.0899 0.1468 0.2384 0.3632 0.5496 0.7268
HAS 0.0297 0.0552 0.0909 0.1475 0.2405 0.3839 0.5824 0.7529

QCAO 0.0317 0.0534 0.1074 0.1479 0.2375 0.3652 0.5936 0.7105
Proposed 0.0361 0.0567 0.1092 0.1519 0.2437 0.3776 0.6072 0.7299

PSNR is a quality index that evaluates an algorithm under the sense of a means squared error
(MSE). In Table 3, the compared results are listed from the perspective of MSE. It can be seen that
the coding performance of CCSDS is the worst. The reason for this is that the CCSDS is designed
for onboard compression, which considers the complexity of the algorithm more than the coding
performance. As a result, the low complexity of the algorithm is at the cost of the coding performance.
The PSNR results of JPEG2000 are good, because some complicated models of JPEG2000, such as
the context model and rate-distortion optimization, can help to provide a good coding performance.
Compared with JPEG2000, BTCA can encode the neighbors of those significant coefficients in priority,
which makes it more advantageous for the compression of remote sensing images, because more
details can be preserved. Therefore, the PSNR results of BTCA are better than those of JPEG2000 when
bit rate is not very high. The HAS algorithm is an improved version of BTCA that takes human vision
into consideration, aiming to improve the visual quality of the reconstructed remote sensing images.
It can be seen that from Table 3, the PSNR results of HAS are similar to those of BTCA. The QCAO
method is the state-of-the-art compression method, which is an efficient image compression method
based on quadtree, and it can provide quality, resolution, and position scalability. The PSNR results
of QCAO are higher than those of the previously mentioned methods. The proposed compression
method can provide the best coding performance in most cases. The reason is that the designed
DAL-PBT model can provide a more efficient representation for remote sensing images, and the CQOT
method can provide a reasonable scanning method among and within blocks based on image content,
before establishing some quadtrees based on the scanning results. The effective image representation
and appreciate scanning mode are all beneficial to the improvement of the coding performance. When
the bit rate is very high, sometimes the JPEG2000 can provide a higher PSNR.

Table 4 compares the results in terms of the MS-SSIM. The MS-SSIM can provide a whole
approximation to the perceived image quality from the view of structural similarity. From Table 4,
we can see that the proposed compression method is still better than the other five compression
methods in most cases, especially at low bit rates. The reason is that the DAL-PBT model can
provide a good representation of the high frequency information of remote sensing images, and the
CQOT method encodes the brothers of significant coefficients in priority during the coding process,
which ensures that more important outlines and details of remote sensing images are preserved.
Therefore, the structural similarity between the original image and the reconstructed image is
improved. As the bit rate increases, some other compression methods, such as the HAS-based
method, can sometimes provide a better result. Take the “Houston”, for example; Table 4 shows
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that the MS-SSIM results of the HAS-based method are 0.9512, 0.9788, 0.9928, and 0.9976 at 0.5 bpp,
1 bpp, 2 bpp, and 3 bpp, respectively. In comparison, the MS-SSIM results of the proposed method
are 0.9507, 0.9769, 0.9919, and 0.9973, respectively. The slight performance improvements of the
HAS-based method are caused by the visual weighing mask. Nevertheless, for most of the test images,
the proposed compression method can still provide the best results at high bit rates.

Table 5 lists the comparison of the compression results in terms of VIF. The VIF is derived from a
quantification of two mutual information quantities: the mutual information between the input and
the output of the HVS channel for the reference image, and the mutual information between the input
of the distortion channel and the output of the HVS channel for the reconstructed image. Therefore,
VIF is a quality index that evaluates an algorithm from the perspective of human visual perception.
Table 5 shows that the proposed compression method is superior to the other five compression
methods in most cases. At a few high bit rates, the HAS method can provide a better visual quality for
reconstructed images. The reason is that the HAS method is specially designed for image visualization
applications. The retina-based visual weighting mask of the HAS aims to preserve more visually
sensitive information of the image.

Table 6 shows the encoding times(s) of these compression methods. The results are the average
encoding time for six test images at three bit rates. These programs are evaluated on a PC with Intel
Core i7-3770 CPU @ 3.40 GHz and 32 GB memory.

Table 6. The encoding times(s) of different compression methods.

Algorithm 1 bpp 0.5 bpp 0.25 bpp

CCSDS 1.78 0.93 0.41
JPEG2000 2.12 1.19 0.53

BTCA 0.30 0.27 0.25
HAS 0.37 0.33 0.31

QCAO 0.28 0.25 0.23
Proposed 1.29 1.16 0.98

In Table 6, we can see that BTCA is faster than CCSDS with entropy coding. The encoding
time of QCAO is slightly shorter than that of BTCA. The reason is that, compared with binary tree,
the establishment and scanning of quadtree need fewer comparison times. For HAS, it takes some time
to calculate the retina-based visual weighting mask, so its encoding time is longer than that of BTCA.
The proposed method is an improved version of QCAO. Compared with QCAO, the proposed method
takes a lot of time to calculate the optimum prediction directions of those blocks and directional
interpolation. Therefore, the encoding time of the proposed method is longer than that of QCAO,
and sometimes even longer than that of JPEG2000. Thus, the proposed method is not applicable to
onboard compression, and it can be used for occasions with low real-time requirements and high
compression efficiency.

In order to compare the visual quality of reconstructed images obtained by the different
compression methods, some experiments are carried out. Here, we provide the visual quality of
reconstructed images obtained by the proposed compression method and the mainstream JPEG2000.
The comparison results of the image “Lunar” at 0.0625 bpp are shown in Figure 9. It can be seen that
the reconstructed image with the proposed method is clearer than that with JPEG2000 in the red box.
Figure 10 gets a similar result with the image “Ocean” at 0.125 bpp.

Based on the analysis above, we can conclude that, compared with other scan-based methods,
the proposed compression method can provide a better coding performance. One reason is that the
designed DAL-PBT model can provide a more efficient representation for remote sensing images.
Another reason is that the CQOT method provides a reasonable scanning method among and within
subbands/blocks based on image content, which ensures that the important information of the image
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can be scanned in priority. The effective image representation and the adaptive scanning-based coding
method are all beneficial to the improvement of the coding performance.
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6. Conclusions

In this paper, we present a new compression framework for remote sensing images. It combines
the directional adaptive lifting partitioned block transform with content-driven quadtree codec with
optimized truncation. The image representation phase and coding phase are closely related; the former
aims to provide a good representation for more directional information of remote sensing images,
and the latter focuses on the adaptive scanning mode of the transformed image blocks for further
improving the coding efficiency. The experiments are carried out with the images from different
sensors (Galileo Image, NOAA Polar Orbiter, QuickBird, WorldView-2, and Simulated PLEIADES)
and covering different scenes (lunar, ocean, city, and suburbs). Experimental results show that the
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proposed method outperforms the mainstream JPEG2000 up to 2.41 dB in PSNR. Compared with the
latest QCAO method, up to 0.55 dB improvement in PSNR is reported. Moreover, some improvements
in subjective quality are also observed. The proposed method also supports various progressive
transmission modes, such as the quality progressive mode, resolution progressive mode, and position
progressive mode. Since the block coding is independent, the proposed method can also support the
region of interest (ROI)-based progressive transmission mode.

Multicomponent images, such as multispectral and hyperspectral images, are also very popular
in remote sensing applications. Therefore, a natural idea is to apply the proposed method to the
compression of multicomponent images. The proposed method employs block coding, which can be
combined with parallel computing to improve compression efficiency. Actually, we are now doing this
work for the compression of hyperspectral images. In addition, for the compression of hyperspectral
images, another issue that should be considered is the bit allocation strategy among those transformed
components. In our next work, we will research this.
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