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Abstract: Near-surface atmospheric Vapor Pressure Deficit (VPD) is a key environmental
variable affecting vegetation water stress, evapotranspiration, and atmospheric moisture demand.
Although VPD is readily derived from in situ standard weather station measurements, more spatially
continuous global observations for regional monitoring of VPD are lacking. Here, we document
a new method to estimate daily (both a.m. and p.m.) global land surface VPD at a 25-km resolution
using a satellite passive microwave remotely sensed Land Parameter Data Record (LPDR) derived
from the Advanced Microwave Scanning Radiometer (AMSR) sensors. The AMSR-derived VPD
record shows strong correspondence (correlation coefficient ≥ 0.80, p-value < 0.001) and overall
good performance (0.48 kPa ≤ Root Mean Square Error ≤ 0.69 kPa) against independent VPD
observations from the Modern-Era Retrospective analysis for Research and Applications, Version
2 (MERRA-2) data. The estimated AMSR VPD retrieval uncertainties vary with land cover type,
satellite observation time, and underlying LPDR data quality. These results provide new satellite
capabilities for global mapping and monitoring of land surface VPD dynamics from ongoing AMSR2
operations. Overall good accuracy and similar observations from both AMSR2 and AMSR-E allow for
the development of climate data records documenting recent (from 2002) VPD trends and potential
impacts on vegetation, land surface evaporation, and energy budgets.

Keywords: vapor pressure deficit; humidity; AMSR-E/2; MERRA-2; passive microwave
remote sensing

1. Introduction

Vapor Pressure Deficit (VPD), defined as the difference between saturated and actual atmospheric
vapor pressures at a particular temperature [1], is an important environmental variable that quantifies
the atmospheric moisture demand influencing evapotranspiration, latent heat exchange, and the
surface energy budget [2,3]. VPD also influences vegetation water stress, canopy photosynthesis,
and global carbon and climate feedbacks through vegetation canopy stomatal regulation of both
water vapor and carbon dioxide (CO2) exchange with the atmosphere [2,4,5]. Near-surface VPD
defines the atmospheric moisture deficit in the foundational Penman-Monteith equation for estimating
latent energy exchange and evapotranspiration [6,7], and also provides a critical environmental
input for operational satellite-based methods for predicting global evapotranspiration and ecosystem
productivity [8–10]. Variations in VPD have been found to influence global crop yields [11]
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and vegetation phenology [12], whereas excessive VPD levels have been linked to drought stress
in forests and grasslands [13,14]. Knowledge of global VPD dynamics is therefore required to
characterize carbon-water coupling in ecosystems, analyze drought and climate variability and impacts,
and improve understanding of terrestrial water, carbon, energy budgets, and linkages.

Global VPD distribution can be obtained from operational atmospheric data assimilation systems
targeted at numerical weather prediction [15]. Multi-decadal records from such systems are readily
available from reanalysis data products, such as the Modern-Era Retrospective Analysis for Research
and Applications (MERRA) [16,17], the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim product [18], and the National Centers for Environmental Prediction-National
Center for Atmospheric Research (NCEP-NCAR) reanalysis [19–21].

Alternatively, direct measurements of near-surface air temperature and humidity from a variety
of space-borne sensors also enable independent global observation-based VPD retrievals [22–24].
Most remote sensing approaches rely on optical-infrared (optical-IR) sensors due to their sensitivity
to temperature and atmospheric water vapor. For example, simple linear models were used to
predict VPD from Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature
observations, with resulting VPD estimation uncertainties ranging from 0.32 to 0.38 kPa (Root Mean
Squared Error; RMSE) for VPD below 2.5 kPa [23]. In a separate study, both MODIS humidity
and temperature observations were used to estimate VPD over China, resulting in associated
RMSE uncertainties ranging from 0.32 to 0.37 kPa [24]. Similar VPD estimates derived using
the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR) resulted in RMSE levels ranging from 0.17 to 1.09 kPa, depending on the
region and temporal aggregation examined [22,25,26]. Global VPD products can be derived from
lower troposphere temperature and humidity estimates from the National Aeronautics and Space
Administration (NASA) Atmospheric Infrared Sounder (AIRS). The version 006 AIRS land product
provides a continuous global record of atmospheric temperature and humidity profiles extending
from 2002 to present (2018), and has been used for studying land-atmosphere feedbacks at the global
scale [27,28]. AIRS has a similar local sampling time as the Advanced Microwave Scanning Radiometer
(AMSR) sensors but has coarser (~50 km) spatial resolution retrievals [27].

Compared with global reanalysis data, which have a relatively coarse spatial resolution typically
of about 50 km, much finer-scale VPD estimates can be derived from satellite optical-IR remote sensing
including MODIS 1-km resolution retrievals [24]. However, global VPD mapping at high temporal
resolutions is challenging for space-borne optical-IR sensors, which are constrained by non-optimal
atmospheric conditions such as persistent cloud cover and atmospheric aerosols.

Complementary to global reanalysis and optical-IR remote sensing, satellite passive microwave
radiometers are sensitive to air temperature and atmospheric water vapor, enabling global estimation
of VPD with one- to three-day fidelity and approximately 25 km spatial resolution [29–31]. In particular,
multi-frequency brightness temperature (Tb) retrievals from the JAXA Advanced Microwave Scanning
Radiometer 2 (AMSR2) and NASA Advanced Microwave Scanning Radiometer for EOS (AMSR-E)
sensors have been used for estimating near-surface (two-meter height) air temperature and total
column atmospheric water vapor, while mitigating potential contaminating effects from surface water
inundation, vegetation biomass, and soil moisture [30,32]. VPD was estimated over the pan-Arctic
domain using AMSR-E-derived surface air temperatures [9,29]; the results showed favorable accuracy
(0.3–0.4 kPa RMSE) in relation to VPD measurements from regional tower sites [9].

A major assumption of these studies is that the dew-point temperature (Td) can be approximated
by daily minimum air temperature, which is generally valid at high latitudes but can lead to large errors
in warmer, drier climate conditions [9,29,33]. A more rigorous estimate of dew-point temperature
or surface air humidity is needed for deriving VPD globally. In this study, we developed a new
satellite remote sensing approach to estimate the near-surface (~2 m height) VPD using an available
Land Parameter Data Record (LPDR) derived from calibrated AMSR-E and AMSR2 Tb observations.
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The datasets, methods, and results from this study are described in Sections 2–4, and a discussion of
algorithm performance and the study conclusions are presented in Sections 5 and 6, respectively.

2. Datasets

Three major datasets were used for generating and validating the satellite remote sensing
derived global VPD records, including: (1) the Version 2.0 UMT Land Parameter Data Record (LPDR)
produced from calibrated AMSR-E and AMSR2 (hereafter denoted as AMSR) Tb observations [32];
(2) Integrated Surface Global Hourly (ISH) meteorological data provided by the NOAA National
Climatic Data Center (NCDC; https://catalog.data.gov/dataset/integrated-surface-global-hourly-
data-f6180); and (3) MERRA, Version 2 (MERRA-2) 2-dimensional atmospheric single-level diagnostics
Version 5.12.4 (tavg1_2d_slv_Nx) global reanalysis [34] (https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/). The 2010 and 2013 annual records, representing respective AMSR-E and AMSR2
observation periods, were extracted from the three datasets for quantitative analysis of the
AMSR-derived VPD retrievals in this study. In addition, the National Snow and Ice Data Center
(NSIDC) 25-km EASE-Grid elevation dataset [35] re-sampled from a native 1-km resolution global
digital elevation map (http://www.ngdc.noaa.gov/mgg/topo/globe.html) was used to account for
terrain effects on the AMSR-based VPD estimates.

2.1. AMSR LPDR

The space-borne radiometers AMSR-E (operational from June 2002 to October 2011) and AMSR2
(operational from May 2012 to present) provide twice daily (1:30 p.m. and 1:30 a.m. local time) Tb
observations at multiple frequencies (C- to W-band) worldwide since 2002 [36,37]. The AMSR LPDR
algorithms were developed for global mapping of multiple synergistic land parameters, including daily
maximum and minimum surface air temperature at approximate 2-m screen height (Tmx and Tmn),
total column atmospheric precipitable water vapor (PWV), vegetation optical depth (VOD), surface
fractional open water cover (fw), and volumetric soil moisture (vsm). The satellite sensor footprint
and sensitivity of the Tb observations to land surface conditions vary with microwave frequency and
polarization, and are determined by the emissivity and physical temperature of the satellite observed media.
The LPDR algorithms exploit the multi-frequency and vertically- and horizontally-polarized (V-pol, H-pol)
Tb observations available from the AMSR sensors for near simultaneous iterative estimation of multiple
land parameters, with minimal requirements for other ancillary inputs [32]. The LPDR PWV represents the
total amount of water vapor in the atmospheric column within the satellite sensor field-of-view (FOV).
The LPDR PWV algorithms were previously calibrated using the AIRS PWV record [31]. The LPDR
VOD term is a negative natural logarithm of the vegetation transmissivity (Γ) to land surface microwave
emissions and is frequency dependent. The LPDR data are projected to a consistent 25-km resolution
global Equal-Area Scalable Earth Grid (EASE-Grid v1) projection [30].

In the LPDR algorithms, an iterative procedure is used for estimating PWV and the effective surface
temperature (Ts) derived from 18 GHz Tb observations [30,32]. The resulting Ts is an intermediate output
representing the physical temperature of the media within the effective microwave penetration depth [30].
Daily Tmx and Tmn are then estimated from the corresponding ascending (1:30 p.m.) and descending
(1:30 a.m.) orbit Ts estimates, based on empirical relationships developed between Ts and daily surface
air temperature measurements from the global weather station network [30]. Previous LPDR accuracy
assessments indicated RMSE performance levels within 4.98 mm for PWV and 3.46 ◦C for Tmx and Tmn [32].
More detailed descriptions of the LPDR algorithms are provided elsewhere [32].

The LPDR (version 2.0) dataset used for this study was derived from a consistent, calibrated
global Tb record encompassing the AMSR-E (2002–2011) and AMSR2 (2012–2017) periods of record [32].
For this investigation, the LPDR daily outputs for Ts (◦C), PWV (mm), fw (dimensionless), and Γ
(dimensionless) were used for global estimation of daily VPD dynamics for selected years 2010 and
2013, which represent AMSR-E and AMSR2 portions of record, respectively. No weather station
measurements were used in the LPDR algorithm for estimating Ts, PWV, or Γ. Here, VPD was derived

https://catalog.data.gov/dataset/integrated-surface-global-hourly-data-f6180
https://catalog.data.gov/dataset/integrated-surface-global-hourly-data-f6180
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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on a per grid cell basis for all land areas (fw < 0.5) under non-frozen conditions [38] and with minimal
June, July, and August (RFI) detected, consistent with the other LPDR parameters. The VPD record
was also derived in the same 25-km resolution global EASE-grid projection format as the LPDR.

2.2. ISH Record

The NCDC Integrated Surface Data (ISD) is composed of hourly and synoptic (3-hourly) weather
observations from over 35,000 stations worldwide, including more than 14,000 stations being actively
updated (https://www.ngdc.noaa.gov/). Most stations are distributed over North America, Europe,
Australia, and parts of Asia [39]. The AMSR VPD algorithm from this study was developed and
validated based on ISD hourly station observations (ISH) of surface air temperature and dew-point
temperature representing the AMSR satellite observation times. Three independent sets of weather
station observations, each representing 67 global stations, were used for algorithm development and
validation of the AMSR VPD retrievals over the two selected study years (2010 and 2013). For each
of the 67 weather stations in each ISD validation set, stations were selected to represent the major
global land cover classes defined by a MODIS (MCD12C1) global International Geosphere-Biosphere
Programme (IGBP) land cover classification (Figure 1) [40]. Considering the uneven distributions of
the ISD stations and different spatial scales represented by station and satellite measurements, the sites
were selected to ensure that their numbers were proportional to the global areal coverage of the land
cover classes. The stations were also selected to represent relatively homogeneous land cover areas
within the overlying 25-km resolution EASE-grid cells, following previous AMSR LPDR validation
studies [30,31]. For a given year, the stations were also required to have year-long (more than 360 days)
and high-quality (quality flag indicating quality check passed) measurements within ±30 min of the
satellite observation time. The weather station records used for training the VPD algorithm (Section 3.2)
were independent of both validation datasets, with no overlapping stations. The two validation
datasets were also relatively distinct from each other due to limited stations satisfying the above
selection criteria and having observations covering both 2010 and 2013.
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Advanced Microwave Scanning Radiometer 2 (AMSR2) (2013; star symbols) portions of record. 

Figure 1. Locations of three sets of 67 Integrated Surface Global Hourly (ISH) stations used for algorithm
training (white solid circles), and validation of Vapor Pressure Deficit (VPD) retrievals over the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E; 2010; black solid circles) and Advanced Microwave
Scanning Radiometer 2 (AMSR2) (2013; star symbols) portions of record. Station locations are presented
with the Moderate Resolution Imaging Spectroradiometer (MODIS) International Geosphere-Biosphere
Programme (IGBP) land cover map.

https://www.ngdc.noaa.gov/
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2.3. MERRA-2 Reanalysis

MERRA-2 is the latest atmospheric reanalysis produced by the NASA Global Modeling and
Assimilation Office (GMAO), which is an improvement over the original MERRA by integrating
new advancements in the assimilation system [17,41,42]. In previous studies, VPD from the original
MERRA showed strong correspondence (correlation coefficient (R) = 0.83) with measurements from
global WMO weather stations [16]. The MERRA air temperatures were used to evaluate high-latitude
freeze/thaw state distributions and trends [43,44]; and MERRA land temperatures were also applied
to the development of global soil moisture and carbon products from the NASA Soil Moisture Active
Passive (SMAP) mission [16]. In MERRA-2, the precipitation falling on the land surface is corrected
with observations [45], which results in better land surface hydrology and energy estimates than
in the original MERRA product [46,47]. Note that MERRA-2 uses only precipitation and surface
pressure measurements from weather stations on land, but not surface (2-m) air temperature or
humidity measurements.

In this study, the gridded (0.5◦ × 0.625◦) hourly surface air temperature (Ta) and dew-point
temperature (Td) at the satellite overpass times were extracted from the MERRA-2 diagnostics [34] and
used to derive daily surface VPD records for each study year. The global distribution of MERRA-2
VPD was then used to evaluate the corresponding AMSR VPD results. The independent MERRA-2
and AMSR VPD records were quantitatively compared against each other and the ISH global weather
station based VPD measurements over the 2010 and 2013 study years.

3. Methods

3.1. Theoretical Basis

The VPD calculation relies on the determination of the saturation vapor pressure es at a given air
temperature Ta and the actual vapor pressure ea as shown in Equation (1) [48]. For this study, the VPD
(kPa), es (kPa), ea (kPa), and Ta (◦C) are defined at a standard 2-m screen-height level.

VPD = es(Ta)− ea (1)

The dependence of es on Ta is theoretically described by the Clausius-Clapeyron relationship and
normally approximated by the Magnus formula in applications [49]. The approximation adopted in
this study has uncertainty within ±1 Pa for air temperatures extending up to 35 ◦C [50]:

es(Ta) = 0.611·[exp(17.27· Ta

Ta + 237.3
)] (2)

Similarly, ea was calculated as the saturation vapor pressure at dew-point temperature Td (◦C), as
shown in Equation (3) [22,50].

ea = 0.611·[exp(17.27· Td
Td + 237.3

)] (3)

Both Ta and Td are commonly measured by standard weather stations associated with the ISH,
and also estimated by MERRA-2. Accordingly, Equations (1)–(3) were used to derive VPD from the
both ISH and MERRA-2 data.

3.2. AMSR VPD Calculation

The AMSR VPD was empirically estimated using VPD observations from the global ISH training
sites (Figure 1) and LPDR outputs related to surface air temperature and humidity. In order to
determine VPD, regression analyses were first completed for es and ea using AMSR LPDR parameters,
surface elevation (H), and corresponding ISH training data. The H (km) was obtained from a global
25-km resolution digital elevation map (DEM) [35] and used as an additional ancillary input.
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Considering the strong correspondence with surface air temperature (Section 2.1), the LPDR Ts

was selected as the main parameter for inferring Ta along with other parameters including Γ, fw, H,
and the absolute value of geographic latitude Lat (radian), similar to a previous study [32] and as
shown in Equations (4) and (5). The es(Ta) was then obtained using the estimated Ta and Equation (2).
The empirical relationships in Equations (4) and (5) were derived for respective AMSR ascending
(~1:30 p.m.) and descending (~1:30 a.m.) passes.

TaPM = 7.20 + 0.91Ts − 20.88Γ + 19.06Γ2 + 9.99 ln( f w + 1.0)− 1.43H − 0.002Lat (4)

Ta AM = 4.46 + 0.82Ts − 7.29Γ + 12.41Γ2 + 21.77 ln( f w + 1.0)− 0.34H − 0.001Lat (5)

The AMSR brightness temperature retrievals at 18 to 23 GHz are sensitive to the PWV of the total air
column within the sensor FOV, rather than just near-surface humidity [31]. However, previous studies
based on in-situ measurements [51] and optical-IR remote sensing observations [22,24,52] demonstrated
the feasibility of estimating ea or Td from PWV. As described in the previous studies [51–53], the linear
formula in Equation (6) was used to describe the relationships between PWV and surface air humidity.

PWV =
p0r0

g(λ + 1)
(6)

where p0 is the surface atmospheric pressure, r0 is the surface mixing ratio, g is the acceleration of
gravity and λ is a parameter related to the atmospheric moisture profile that was empirically defined
using sounding measurements for the four seasons and for zones encompassing every 10 degrees
of latitude over the Northern Hemisphere [51]. In this study, a second degree polynomial function,
in Equation (7), was found suitable to describe the relationships between the mean absolute latitude
(Lat in radians) of each zone and the corresponding λ values obtained from the literature [51], based on
a favorable coefficient of determination (R2 = 0.73) despite seasonal variations in atmospheric profiles.

λ = −1.3089Lat2 + 1.157Lat + 2.7878 (7)

Based on Equations (6) and (7), the PWV from the AMSR LPDR was used as the major factor for
inferring ea, as shown in Equations (8) and (9).

eaPM = 0.18 +
(

0.0002Lat2 − 0.0083Lat + 0.058
)

PWV (8)

ea AM = 0.17 −
(

0.0069Lat2 + 0.0017Lat − 0.056
)

PWV (9)

According to the relationships for calculating ea and es (Equations (2), (4), (5), (8), and (9)),
the AMSR VPD record was derived using empirical regressions between the in situ ISH VPD
observations (Figure 1) and the corresponding AMSR LPDR parameters for Ts, Γ, PWV, fw, and the
ancillary inputs for H and Lat (Equations (10) and (11)). The final regression forms of the retrieval
algorithms (Equations (10) and (11)) account for the possible effects of terrain, vegetation [24,53],
geo-location [51], and water body cover [33] on both surface air temperature and humidity. Here,
the vegetation parameter Γ also partially accounts for the influence of vegetation variability and
phenology on VPD.

VPDPM = 0.13 + 0.66es0 − 1.45Γ + 2.50Γ2 − 0.11H − 2.21 f w − (0.02Lat + 0.02)PWV (10)

VPDAM = −0.52 + 0.59es0 + 0.88Γ + 1.00Γ2 + 0.04H − 3.23 f w + (0.01Lat − 0.02)PWV (11)

where
es0 = 0.611· exp (17.27· Ts

Ts + 237.3
)
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Based on Equations (10) and (11), the twice daily global VPD estimates were generated from the
LPDR for respective AMSR ascending (p.m.) and descending (a.m.) overpasses over the two study
years. The availability of the AMSR VPD retrievals is consistent with the availability of the regression
inputs from the LPDR, where no retrievals are performed under sub-optimal conditions, including
frozen soil, severe precipitation, RFI, and snow cover [33].

The resulting AMSR VPD retrieval accuracy was evaluated against concurrent VPD measurements
from the ISH weather stations (Section 2.2; Figure 1). The assessments were completed for both the
global domain and major IGBP land cover classes. The statistical metrics used for the AMSR VPD
accuracy assessment included bias, correlation coefficient (R), Anomaly Correlation Coefficient (ACC),
Root Mean Squared Error (RMSE), and relative RMSE (rRMSE) defined as the RMSE normalized
by the mean of the ISH station VPD value. The ACC is the correlation between the VPD anomalies
calculated by the original VPD values after subtracting their monthly mean. In addition, the AMSR
VPD accuracy is determined by the degrees to which the es and ea components can be represented
by the input variables H, Ts, Γ, fw, Lat, and PWV in the regressions. The regression and accuracy
assessment of the component es and ea variables are also used for further analysis of the resulting
AMSR VPD performance.

4. Results

4.1. AMSR Global VPD Mapping

Global distributions of annual mean VPD for the AMSR p.m. (Figure 2a) and a.m. (Figure 3a)
orbits were compared with corresponding MERRA-2 results for the 2010 portion of record
(Figures 2b and 3b). Both products show generally similar VPD spatial patterns, which highlight
the complex distributions of atmospheric moisture and heat over the global land area. Both products
demonstrate a general decrease in VPD with increasing latitude, especially for the Northern
Hemisphere, due to less evapotranspiration potential and cooler temperatures with lower moisture
holding capacity. Higher VPD estimates from both AMSR and MERRA-2 occurred in arid and
semi-arid areas including Mongolia, central Asia, the Arabian Peninsula, Sahara Desert, the Western
U.S., and Northern Mexico. These regions have characteristic conditions of dry air and/or high
temperatures that promote VPD extremes. In contrast, tropical rainforests have overall moderate to
low VPD levels, due to ample precipitation and humid conditions in these regions, despite relatively
high temperatures. In Australia, the VPD levels generally decrease along a regional moisture gradient
from western and central arid regions to other parts of the country receiving greater precipitation [54].
Major differences between the MERRA-2 and AMSR VPD results occurred in arid and semi-arid areas
with overall high VPD values, and in tropical rainforests where the AMSR VPD is larger (drier) than
MERRA-2 VPD, except over the Mekong River basin (Figures 2c and 3c). Larger VPD differences
also occurred in coastal areas due to AMSR detection of higher humidity levels near coastlines,
as well as larger AMSR retrieval uncertainty for grid cells with higher surface water cover [31,32].
Compared with the p.m. estimates (Figure 2), the a.m. results (Figure 3) of both products exhibited
similar spatial patterns but with much lower VPD levels. The lower a.m. VPD levels were expected
considering generally cooler early morning temperatures and relatively more stable water vapor
conditions throughout the day [55].
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for Research and Applications, Version 2 (MERRA-2) reanalysis data over 2010; (c) the resulting VPD
differences (AMSR minus MERRA-2), and (d) their comparisons with Integrated Surface Global Hourly
(ISH) in-situ measurements.
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Advanced Microwave Scanning Radiometer (AMSR)and (b) the Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2) reanalysis data over 2010; (c) the resulting VPD
differences (AMSR minus MERRA-2), and (d) their comparisons with Integrated Surface Global Hourly
(ISH) in-situ measurements.
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4.2. Quantitative Comparisons between AMSR and ISH VPD

To further evaluate the VPD retrievals, quantitative comparisons were made among the AMSR,
MERRA-2, and ISH VPD datasets for the two sets of 67 globally distributed validation sites (Figure 1).
The time series of the VPD p.m. estimates over the selected 2010 study year were compared over
the global domain and within four major IGBP land cover classes: evergreen needle leaf forest
(ENF), evergreen broadleaf forest (EBF), grassland (GRS), and barren to sparsely vegetated land (BSV)
(Figure 4). The selected land cover types are associated with different climate and vegetation conditions.
ENF areas predominantly occur in northern high latitude boreal regions with a cold climate, EBF areas
are associated with relatively hot and humid tropical climates, and GRS and BSV areas predominantly
occur in semi-arid and arid environments where ecosystems are more directly affected by VPD than
precipitation [14].
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Figure 4. Afternoon (~1:30 p.m. local time) site-averaged Vapor Pressure Deficit (VPD) time series
derived from respective the Advanced Microwave Scanning Radiometer (AMSR) Land Parameter Data
Record (LPDR) outputs, the Modern-Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) reanalysis and Integrated Surface Global Hourly (ISH) in-situ measurements over (a) the globe
and for major land cover types, including (b) evergreen needle leaf forest (ENF), (c) evergreen broadleaf
forest (EBF), (d) grassland (GRS), and (e) barren to sparsely vegetated land (BSV) land areas over 2010.

The AMSR VPD results show clear seasonal variations and daily fluctuations for all of the land
cover classes that are similar to both MERRA-2 outputs and ISH measurements (Figures 4 and 5).
The p.m./a.m. standard deviations of the AMSR VPD time series are 0.48/0.14 kPa for the global,
0.40/0.11 kPa for ENF, 0.33/0.18 kPa for EBF, 1.04/0.35 kPa for GRS, and 1.40/0.50 kPa for BSV,
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respectively. For ISH VPD data, the corresponding standard deviations are 0.57/0.22 kPa for the
global, 0.45/0.10 kPa for ENF, 0.50/0.10 kPa EBF, 0.96/0.26 kPa for GRS, and 1.64/0.83 kPa for BSV.
Except for EBF, the peak VPD levels generally appeared over the summer season months of June, July,
and August (JJA) in the Northern Hemisphere, where a majority of the validation sites are located.
The EBF validation sites are distributed over Amazonia and Southeast Asia, both of which have
substantial tropical rainforest but different climate patterns and seasonal dry-wet periods [56,57]. Here,
the time series (Figure 4c) reflect collective VPD dynamics of the EBF sites, which exhibit small seasonal
variation relative to higher latitude sites. In contrast to forests (Figure 4b,c), the amplitudes of VPD
seasonal cycles for GRS and BSV are relatively large, due to the predominance of continental climate
conditions with greater annual temperature variations for these sites. Compared with the p.m. results
(Figure 4), the a.m. VPD time series of all three datasets (Figure 5) show much lower VPD levels and
less pronounced seasonality. In particular, cooler early-morning temperatures promote low a.m. VPD
levels for ENF throughout the year, with annual means of all three datasets that are less than 0.11 kPa
for these sites. Accordingly, the ENF VPD morning retrievals tend to have degraded signal-to-noise
ratios and more variable temporal patterns (Figure 5b).
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Figure 5. Morning (~1:30 a.m. local time) site-averaged Vapor Pressure Deficit (VPD) time series
derived from respective the Advanced Microwave Scanning Radiometer (AMSR) Land Parameter Data
Record (LPDR) outputs, the Modern-Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) reanalysis, and Integrated Surface Global Hourly (ISH) in-situ measurements over (a) the globe
and the major land cover types, including (b) evergreen needle leaf forest (ENF), (c) evergreen broadleaf
forest (EBF), (d) grassland (GRS), and (e) barren to sparsely vegetated land (BSV) land areas over 2010.

The complete VPD comparisons over the validation sites for 2010 representing the AMSR-E
observation period are summarized in Tables 1 and 2 for respective p.m. and a.m. results. Both AMSR
and MERRA-2 p.m. VPD estimates (Table 1) show similarly strong correspondence with the ISH station
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measurements (0.77 ≤ R ≤ 0.94 for AMSR; 0.68 ≤ R ≤ 0.97 for MERRA-2). The AMSR p.m. results
also have an overall similar bias (0.07 kPa) but slightly higher RMSE (0.69 kPa) and rRMSE (36%) than
MERRA-2 (bias 0.07 kPa; RMSE 0.63 kPa; rRMSE 33%). The performance of AMSR and MERRA-2 VPD
estimates also varied by land cover class. The AMSR VPD results showed similar or better accuracy than
MERRA-2 for moderately to densely vegetated areas in terms of correlations and RMSE relative to the ISH
observations; whereas the opposite was true for barren to sparsely vegetated land. The ACC values for
both MERRA-2 and AMSR results (0.73 ≤ ACC ≤ 0.92 for AMSR; 0.62 ≤ ACC ≤ 0.97 for MERRA-2) were
generally slightly smaller than the corresponding R statistics but still showed the prediction skills of VPD
after seasonal effects were removed. For the overall results (Tables 1 and 2), which were calculated using
all selected stations distributed across the globe, the similarly high AMSR ACC and R values indicated that
the global VPD patterns related to different land cover classes are well detected by the algorithm.

Table 1. Summary of the accuracy of daily afternoon (~1:30 p.m.) Vapor Pressure Deficit (VPD) levels
derived from respective the Modern-Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) and the Advanced Microwave Scanning Radiometer (AMSR) Land Parameter Data Record
(LPDR) datasets for 2010 and 2013 in relation to in situ Integrated Surface Global Hourly (ISH) station
measurements from 67 global validation sites. The best performance of each metric is highlighted in bold.

Land Cover # Sites # Obs. # R # ACC # Bias (kPa) RMSE # (kPa) rRMSE # (%)

MERRA-2/AMSR (2010 representing AMSR-E period)

ENF 3 648 0.86/0.86 0.78/0.84 −0.15/0.11 0.31/0.29 52%/47%
EBF 8 1599 0.68/0.77 0.62/0.73 −0.23/−0.25 0.84/0.61 43%/31%
DNF 1 174 0.80/0.84 0.74/0.82 −0.34/0.12 0.54/0.41 52%/39%
DBF 1 248 0.88/0.94 0.82/0.89 0.02/−0.18 0.54/0.38 39%/28%
MF 4 978 0.88/0.90 0.81/0.85 −0.15/0.11 0.36/0.31 43%/37%

SHR 15 3323 0.96/0.91 0.97/0.92 0.08/0.09 0.53/0.74 26%/36%
WSAV 5 1116 0.89/0.94 0.81/0.90 −0.20/−0.17 0.84/0.56 38%/25%
SAV 1 221 0.81/0.87 0.80/0.87 0.71/0.17 1.02/0.53 52%/27%
GRS 7 1553 0.94/0.89 0.90/0.81 0.08/0.18 0.41/0.58 24%/34%
CRO 8 1988 0.87/0.85 0.78/0.76 0.01/0.03 0.44/0.51 44%/49%
UB 1 179 0.88/0.93 0.71/0.85 −0.63/−0.46 0.85/0.61 68%/48%

CNVM 2 512 0.91/0.91 0.87/0.87 0.00/−0.11 0.40/0.41 32%/33%
BSV 11 2651 0.97/0.90 0.94/0.82 0.55/0.34 0.82/1.06 25%/32%

Overall 67 15190 0.94/0.91 0.94/0.91 0.07/0.07 0.63/0.69 33%/36%

MERRA-2/AMSR (2013 representing AMSR2 period)

ENF 3 707 0.87/0.90 0.81/0.86 −0.29/−0.23 0.48/0.42 63%/55%
EBF 8 1524 0.67/0.70 0.65/0.69 −0.16/−0.14 0.78/0.63 50%/40%
DNF 1 176 0.90/0.92 0.87/0.91 −0.06/−0.23 0.36/0.41 32%/37%
DBF 1 216 0.85/0.93 0.81/0.86 0.15/0.18 0.38/0.29 49%/38%
MF 4 817 0.87/0.90 0.81/0.86 −0.15/0.02 0.44/0.37 44%/37%

SHR 15 2671 0.97/0.95 0.97/0.95 −0.15/−0.07 0.50/0.67 27%/35%
WSAV 5 1171 0.94/0.92 0.93/0.91 0.20/−0.12 0.68/0.61 34%/31%
SAV 1 182 0.78/0.88 0.80/0.84 −0.50/−0.64 1.08/0.89 27%/23%
GRS 7 1471 0.93/0.92 0.88/0.87 0.26/0.14 0.59/0.56 32%/30%
CRO 8 1681 0.84/0.88 0.72/0.75 0.11/−0.03 0.50/0.40 49%/38%
UB 1 223 0.89/0.94 0.80/0.83 0.03/−0.03 0.39/0.28 39%/28%

CNVM 2 433 0.81/0.88 0.70/0.78 0.09/−0.06 0.45/0.32 54%/39%
BSV 11 2247 0.94/0.88 0.89/0.81 0.18/−0.10 0.71/0.95 22%/30%

Overall 67 13519 0.94/0.92 0.93/0.92 0.01/−0.07 0.60/0.64 33%/35%
# ENF—Evergreen Needleleaf forest; EBF—Evergreen Broadleaf forest; DNF—Deciduous Needleleaf
forest; DBF—Deciduous Broadleaf forest; MF—Mixed Forest; SHR—Shrublands; WSAV—Woody savannas;
SAV—Savannas; GRS—grassland; CRO—Croplands, UB—Urban and built-up; CNVM—Cropland/Natural
vegetation mosaic; and BSV—Barren to sparsely vegetated; R is the correlation coefficient; ACC is Anomaly
Correlation Coefficient; RMSE is the Root Mean Square Error; rRMSE is the relative RMSE, which is the RMSE
normalized by mean values of the ISH measured data.
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Table 2. Summary of the accuracy of daily morning (~1:30 a.m.) Vapor Pressure Deficit (VPD) levels derived
from respective the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)
and the Advanced Microwave Scanning Radiometer (AMSR) Land Parameter Data Record (LPDR) datasets
for 2010 and 2013 in relation to in situ Integrated Surface Global Hourly (ISH) station measurements from
67 global validation sites. The best performance of each metric is highlighted in bold.

Land Cover # Site # Obs. # R # ACC # Bias (kPa) RMSE # (kPa) rRMSE # (%)

MERRA-2/AMSR (2010 representing AMSR-E period)

ENF 3 607 0.19/0.28 0.11/0.22 −0.08/−0.01 0.15/0.16 133%/135%
EBF 8 1614 0.41/0.32 0.37/0.27 −0.02/0.06 0.30/0.31 123%/130%
DNF 1 150 −0.04/0.07 −0.09/−0.05 −0.05/0.11 0.16/0.24 155%/231%
DBF 1 242 0.48/0.46 0.42/0.34 −0.13/−0.01 0.28/0.29 100%/102%
MF 4 950 0.21/0.48 0.20/0.49 −0.11/−0.03 0.20/0.19 135%/124%

SHR 15 3086 0.89/0.77 0.89/0.78 −0.17/0.07 0.42/0.54 55%/72%
WSAV 5 1200 0.66/0.67 0.50/0.46 −0.11/0.11 0.43/0.40 83%/78%
SAV 1 214 0.66/0.38 0.42/0.22 0.25/0.03 0.47/0.39 91%/76%
GRS 7 1512 0.66/0.56 0.55/0.37 −0.10/0.26 0.31/0.45 73%/105%
CRO 8 1775 0.56/0.63 0.49/0.59 −0.06/0.05 0.22/0.21 101%/97%
UB 1 236 0.37/0.62 0.05/0.16 −0.28/−0.12 0.36/0.24 104%/70%

CNVM 2 493 0.47/0.54 0.40/0.48 −0.08/0.06 0.24/0.22 86%/79%
BSV 11 2527 0.91/0.80 0.85/0.69 −0.08/0.05 0.53/0.78 37%/54%

Overall 67 14606 0.90/0.82 0.89/0.81 −0.10/0.07 0.37/0.48 63%/80%

MERRA-2/AMSR (2013 representing AMSR2 period)

ENF 3 642 0.29/0.22 0.23/0.14 −0.14/−0.07 0.23/0.22 133%/123%
EBF 8 1492 0.32/0.15 0.31/0.12 −0.07/0.05 0.26/0.32 121%/153%
DNF 1 156 0.17/0.29 0.04/0.26 −0.10/−0.18 0.32/0.32 124%/125%
DBF 1 208 0.23/0.24 0.23/0.08 −0.13/−0.01 0.19/0.24 102%/125%
MF 4 762 0.10/0.42 0.05/0.36 −0.08/0.06 0.22/0.25 130%/149%

SHR 15 2474 0.89/0.82 0.89/0.82 −0.23/−0.08 0.51/0.58 63%/71%
WSAV 5 1059 0.72/0.72 0.70/0.71 −0.16/−0.09 0.45/0.42 76%/71%
SAV 1 181 0.58/0.47 0.11/0.17 −0.04/0.23 0.58/0.60 60%/62%
GRS 7 1424 0.76/0.66 0.68/0.54 −0.06/0.27 0.30/0.45 62%/93%
CRO 8 1596 0.40/0.52 0.31/0.41 −0.06/0.09 0.24/0.26 107%/119%
UB 1 199 0.56/0.62 0.48/0.43 −0.20/0.04 0.28/0.22 90%/70%

CNVM 2 359 0.20/0.35 0.21/0.31 −0.03/0.02 0.24/0.24 127%/130%
BSV 11 2162 0.82/0.70 0.69/0.60 −0.27/−0.02 0.72/0.82 49%/56%

Overall 67 12714 0.87/0.80 0.86/0.80 −0.15/0.02 0.44/0.50 72%/82%
# ENF—Evergreen Needleleaf forest; EBF—Evergreen Broadleaf forest; DNF—Deciduous Needleleaf
forest; DBF—Deciduous Broadleaf forest; MF—Mixed Forest; SHR—Shrublands; WSAV—Woody savannas;
SAV—Savannas; GRS—grassland; CRO—Croplands, UB—Urban and built-up; CNVM—Cropland/Natural
vegetation mosaic; and BSV—Barren to sparsely vegetated; R is the correlation coefficient; ACC is Anomaly
Correlation Coefficient; RMSE is the Root Mean Square Error; rRMSE is the relative RMSE, which is the RMSE
normalized by mean values of the ISH measured data.

Both AMSR and MERRA-2 a.m. VPD estimates showed lower correlations than the p.m. results
as evaluated by both R and ACC with the ISH observations, which is partly due to the characteristic
smaller a.m. VPD seasonal variations. In an extreme case, correlations with the ISH observations
are very weak for the DNF sites (R = −0.04 for MERRA-2 and 0.07 for AMSR), where overall small
VPD values lead to low RMSE (0.16KPa for MERRA-2; 0.24KPa for AMSR) but large rRMSE (155% for
MERRA-2; 231% for AMSR) values. For the a.m. results, the overall AMSR VPD accuracy was slightly
lower than MERRA-2 for both R and RMSE metrics in relation to the ISH station observations. On the
other hand, the AMSR results showed similar biases (0.07 kPa) for the p.m. and a.m. retrievals,
whereas MERRA-2 VPD had opposite biases for respective p.m. (0.07 kPa) and a.m. (−0.10 kPa)
conditions relative to the ISH observations.

The AMSR VPD estimates for 2013 representing the AMSR2 observation period are consistent with
those for 2010 and show similar error levels and correlations relative to the ISH p.m. (RMSE = 0.64 kPa,
0.70 ≤ R ≤ 0.95, 0.69 ≤ ACC ≤ 0.95, p-value < 0.001; Table 1) and a.m. (RMSE = 0.50 kPa, 0.15 ≤ R
≤ 0.82, 0.08 ≤ ACC ≤ 0.82, p-value < 0.001; Table 2) observations. The performance of the AMSR
VPD record for 2013 also resembled the results for 2010 in the pattern of accuracies varying with
land cover types and seasonal period. In contrast to the positive biases of the AMSR VPD estimates
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for 2010 relative to the ISH observations, a wetter bias (−0.07 kPa) for p.m. and a slightly drier
bias (0.02 kPa) for a.m. were found in the AMSR results for 2013. Considering the overall similar
performance of the AMSR VPD retrievals for the AMSR-E (2010) and AMSR2 (2013) portions of record,
the following analysis is primarily focused on the 2010 record, whereas the general consistency of the
AMSR-E and AMSR2 portions of the VPD data record is discussed further in Section 5.2.

4.3. Evaluations of AMSR es and ea Estimates

For evaluating discrepancies between the AMSR VPD retrievals and the ISH station observations,
additional regressions were completed for the VPD components, es and ea, using the AMSR LPDR
outputs and ISH measurements from the training sites. The relative AMSR accuracy for es and ea was
evaluated against the ISH validation site observations in the 2010 record. The respective AMSR LPDR
es p.m. and a.m. estimates showed overall high consistency with the ISH observations, including
favorable correlations (R = 0.93 and 0.92), small bias (0.03 kPa and −0.01 kPa), relatively low RMSE
(0.68 kPa and 0.42 kPa), and similar rRMSE (22% and 23%) levels. These results suggest a high
correspondence between the LPDR Ts retrievals and surface air temperatures, which is consistent with
previous studies [32]. The ea performance was generally lower than that of es, as shown by decreased
correlations with the ISH observations (R = 0.87 for p.m. and 0.84 for a.m. results). Similar to the
LPDR PWV record, retrieval errors for the p.m. ea results were relatively lower than the a.m. estimates
(respective 0.38 kPa and 32% for RMSE and rRMSE for p.m.; and 0.42 kPa and 34% for a.m. results),
whereas the biases were small for both p.m. (0.05 kPa) and a.m. (0.02 kPa) results. We note that VPD
can also be calculated as the difference between the es and ea estimates, but the corresponding accuracy
(R = 0.91 and RMSE = 0.71 kPa for p.m.; and R = 0.78 and RMSE = 0.51 kPa for a.m.) was slightly lower
than the results derived from Equations (10) and (11) (Tables 1 and 2). The evaluations of es and ea

estimates described here are therefore only used to analyze potential sources of uncertainty in the VPD
retrievals as detailed in the following section.

5. Discussion

The satellite microwave remote sensing based VPD retrieval method described in this study was
found overall to have favorable global performance and strong correspondence with independent
in situ weather station measurements spanning a diversity of climate and vegetation conditions,
though the AMSR VPD accuracy varied with satellite observation time (a.m. vs. p.m.) and for different
land cover regions. The AMSR VPD results also showed similar spatial and seasonal patterns in
relation to other available global VPD records from the MERRA-2 global reanalysis, but with notable
differences in tropical areas. For analyzing VPD retrieval uncertainties, the LPDR performance in
estimating the VPD components es and ea within different land cover classes was evaluated against
the corresponding ISH and MERRA-2 results.

5.1. Retrieval Uncertainties of AMSR VPD, es, and ea

The correspondence between AMSR and ISH results for selected year 2010 was analyzed for VPD
and the component es and ea parameters over the global domain and for major land cover classes
(Figure 6). A similar analysis was also conducted using the MERRA-2 outputs and ISH data (Figure 7).
For the AMSR p.m. results (Figure 6a), the respective correlations with the ISH station observations for
VPD,es, and ea were generally consistent with each other and showed similar spatial and temporal
variations for the different land cover classes. These results suggest common factors influencing all
three humidity parameters. As higher-order retrievals, the AMSR VPD, es, and ea retrievals were
affected by underlying uncertainties in the lower-order Tb observations and LPDR outputs. For the
AMSR LPDR Ts, Γ, and PWV parameters, a low-quality flag was assigned to the 25-km grid cells
having larger expected retrieval uncertainties due to the following conditions: high vegetation biomass
levels (e.g., X-band VOD > 2.3), saturated emission signals indicated by Tb polarization differences
at 18 GHz or 23 GHz less than 1.0 K, or large water bodies occupying more than 20% of a grid cell
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(fw > 0.2) [32]. Accordingly, EBF regions were estimated to have relatively low retrieval quality for
both the original LPDR (Figure 9 in Du et al. [32]) and the current VPD, es, and ea results due to
relatively dense forest cover in these areas. For BSV regions, the relatively low correlation of the
ea results was caused by lower humidity levels in these predominantly arid and semi-arid regions,
which show relatively little temporal variability. Air temperatures played a more important role in
estimating VPD in these warm, dry climate areas as evidenced by similarly high correlations of the
es and VPD results (Figure 6). The AMSR a.m. VPD estimates showed lower correspondence with
the ISH observations than the p.m. results despite strong AMSR and ISH correlations for es and ea

(Figure 6b). The a.m. retrieval uncertainties are magnified by the much smaller seasonal variations in
early morning air temperatures and corresponding VPD values (Figure 5). Compared with the AMSR
estimates, the MERRA-2 es and ea data (Figure 7) showed generally stronger correlations with the ISH
observations, especially for the p.m. results over moderate to sparsely vegetated areas, and for most of
the a.m. results. The relatively higher MERRA-2 accuracy for these parameters also promoted overall
greater VPD accuracy than the AMSR results, as shown in Tables 1 and 2.
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Hourly (ISH) station observations of saturation vapor pressure (es), actual vapor pressure (ea),
and Vapor Pressure Deficit (VPD) for 2010 over the global domain and major land cover classes
including ENF—Evergreen Needleleaf forest; EBF—Evergreen Broadleaf forest; DNF—Deciduous
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Both MERRA-2 and AMSR-based VPD records showed similar spatial and seasonal patterns
over the global domain and different land cover classes (Figures 2–5). The MERRA-2 and AMSR
datasets provide two independent estimations of regional VPD conditions at 0.5◦ × 0.625◦ and
25-km resolutions, respectively, whereas the ISH data are derived from in situ weather station
measurements. Differences in the representative areas of these data records may contribute to
differences in their accuracy.

5.2. Consistency of the AMSR VPD Data Record

As introduced in Section 2.1, the LPDR algorithms were initially developed for AMSR-E and later
applied using similar AMSR2 Tb observations after cross-sensor calibration of the long-term AMSR-E
and AMSR2 Tb records [56]. However, residual Tb biases may remain between the AMSR-E and
AMSR2 portions of record, which may affect the AMSR VPD retrievals. A previous study identified
AMSR2 biases in the LPDR relative to the AMSR-E portion of record for PWV (−0.50 mm for p.m.;
−0.45 mm for a.m.), Tmx (−0.24 ◦C), and Tmn (0.13 ◦C) [30]. The VPD retrievals developed from the
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available LPDR data are therefore also affected by the uncertainties originating from the cross-sensor Tb
calibrations. However, the AMSR VPD assessments for the AMSR-E (2010) and AMSR2 (2013) portions
of the record had similar performance and a generally consistent bias in relation to the independent
ISH stations and MERRA-2 global observations. Assuming the VPD data derived from two sets of
ISH validation stations were consistent, the corresponding biases of the AMSR VPD estimates for the
2013 (AMSR2) and 2010 (AMSR-E) portions of record are −0.14 kPa and −0.05 kPa for the p.m. and
a.m. overpasses, respectively. Alternatively, the MERRA-2 and AMSR datasets have similar spatial
scales and regional representativeness, so the AMSR VPD biases for 2013 and 2010 calculated using
MERRA-2 data as a benchmark are −0.08 kPa and 0.00 kPa for the p.m. and a.m. overpass results,
respectively. A more thorough analysis on the data consistency should be performed for the entire
data record with the assistance of independent and consistent datasets for the globe and over the
same multi-year period. Such analysis is currently limited by the lack of globally distributed stations
satisfying the data selection criteria required for this study (Section 2.2).

6. Conclusions

The near-surface VPD is an important parameter governing ecological processes, yet global
high-temporal repeat and moderate spatial resolution satellite VPD products suitable for landscape
level studies are still lacking. Here, a new method was proposed for satellite-based global assessment
and monitoring of land surface VPD dynamics at 25 km spatial resolution using AMSR passive
microwave remote sensing observations. The AMSR VPD results highlighted the strong global
performance and accuracy in relation to independent VPD observations from global in situ ISH
weather stations. The accuracy of the AMSR VPD retrievals in relation to the in situ measurements
was similar to the VPD estimates derived from the MERRA-2 global reanalysis, which benefits from
a well-calibrated land model informed by extensive global observations [17,42]. The favorable AMSR
VPD performance indicates its potential suitability as an observational benchmark to confront global
models given that atmospheric humidity is an essential climate variable (ECV) that impacts multiple
climate, energy, ecosystem, and hydrological processes.

The AMSR VPD retrievals derived from the ~1:30 p.m. overpass data was generally more accurate
due to stronger seasonality and the larger magnitude of the retrievals relative to the ~1:30 a.m. results.
The retrieval uncertainties also varied for different land cover classes according to the variable climate
and vegetation conditions, and the underlying LPDR accuracy in representing surface air temperature
and humidity. The VPD estimates were evaluated for the 2010 and 2013 period. Future studies
conducted for the whole LPDR multi-year record are needed for a more thorough assessment of the
data quality and consistency. The generally favorable performance from both morning and afternoon
retrievals enables potential investigations of VPD diurnal variability as an influence on vegetation
stress and evapotranspiration. The same VPD retrieval formulas can also be applied to the entire
calibrated AMSR Tb record [58], enabling the development of a long-term (from 2002) global VPD
record, with continued monitoring from ongoing AMSR2 operations. The satellite VPD estimates
derived from AMSR and other complementary satellite sensors, such as AIRS, MODIS, and AVHRR,
provide opportunities for evaluating regional drought patterns and other climate change related
impacts on terrestrial ecosystems, while providing an observational benchmark for evaluating global
climate model predictions.
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