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Abstract: In the fields of autonomous vehicles, virtual reality and three-dimensional (3D)
reconstruction, 2D laser rangefinders have been widely employed for different purposes, such as
localization, mapping, and simultaneous location and mapping. However, the extrinsic calibration
of multiple 2D laser rangefinders is a fundamental prerequisite for guaranteeing their performance.
In contrast to existing calibration methods that rely on manual procedures or suffer from low accuracy,
an automatic and high-accuracy solution is proposed in this paper for the extrinsic calibration of
2D laser rangefinders. In the proposed method, a mobile sphere is used as a calibration target,
thereby allowing the automatic extrapolation of a spherical center and the automatic matching of
corresponding points. Based on the error analysis, a matching machine of corresponding points with
a low error is established with the restriction constraint of the scan circle radius, thereby achieving
the goal of high-accuracy calibration. Experiments using the Hokuyo UTM-30LX sensor show that
the method can increase the extrinsic orientation accuracy to a sensor intrinsic accuracy of 10 mm
without requiring manual measurements or manual correspondence among sensor data. Therefore,
the calibration method in this paper is automatic, highly accurate, and highly effective, and it meets
the requirements of practical applications.

Keywords: extrinsic calibration; 2D laser rangefinder; point cloud; 3D data fitting

1. Introduction

A two-dimensional (2D) laser rangefinder (LRF) can acquire long-distance and high-accuracy
measurements with a small form factor, a low power requirement and a reasonable cost [1,2].
In the fields of autonomous vehicles, virtual reality and 3D reconstruction, such a measurement
device represents an interesting alternative to stereo vision techniques or 3D laser scanners [3,4].
Combinations of multiple LRFs have been widely employed in a variety of applications, including
NavVis 3D Mapping Trolleys [5] and Google Cartographer backpacks [6], for different purposes,
such as localization, mapping, and simultaneous location and mapping (SLAM) [7–10].

The extrinsic calibration of multiple 2D LRFs, which is a fundamental prerequisite for
accomplishing high-accuracy localization, mapping, or SLAM [11], plays an essential and vital role in
the combined use of multiple sensors. Extrinsic parameters represent the offsets between the sensor

Remote Sens. 2018, 10, 1176; doi:10.3390/rs10081176 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-6683-2342
http://www.mdpi.com/2072-4292/10/8/1176?type=check_update&version=1
http://dx.doi.org/10.3390/rs10081176
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1176 2 of 18

frame and the base reference frame [12] and are required to integrate and fuse all of the measurements
from different LRFs into a global reference frame. Moreover, the accuracies of mapping or SLAM are
strongly influenced by the extrinsic errors and are very sensitive to the extrinsic calibration; particularly
in the case of a long measurement range, small rotation errors can cause significant distortions in the
mapping [13,14].

Over the past several years, some studies have been performed on the extrinsic calibration of
2D LRFs. One method based on the vertical posts of traffic signs requires manual segmentation and
supervised matching [15]; thus, it cannot automatically establish feature correspondences between
individual observations. Other authors proposed algorithms with laser-reflective landmarks that are
manually placed in the environment [16,17], which additionally requires an intensity threshold for
data correspondences and some initial parameters. In contrast to the utilization of special targets,
another approach was proposed based on geometric constraints consisting of the coplanarity and
perpendicularity of different laser line segments [11]; however, despite being an automatic calibration
method, this approach lacks a criterion for selecting corresponding line segments. A more recent
automatic solution is the use of a ball target to estimate rigid body transforms between different
sensors, including 2D/3D LIDARs and cameras [18]; however, the result between 2D LIDARs exhibits
a low accuracy insomuch that the orientation accuracy after calibration is 68 mm, which is five times
greater than the sensor intrinsic error of 12 mm. In summary, the drawback to the abovementioned
existing methods is that they rely on manual procedures or otherwise suffer from low accuracies,
and thus, automatic methods with a reliable accuracy are still missing.

This paper develops an automatic and high-accuracy solution for the extrinsic calibration of
2D LRFs. In the proposed method, a mobile sphere is used as a calibration target that allows the
extrapolation of the center of the sphere and the matching of corresponding points (CPs), which is
automatic similar to [18]. However, in contrast to the method in [18], our approach can match CPs
under the restriction constraint of the scan circle radius and achieve the goal of a high-accuracy
calibration. Based on the relationship between the CP accuracy and the scan circle radius, a CP
selection machine with a low error is established under the conditional constraint of the scan circle
radius, thereby improving the orientation accuracy.

The remainder of this paper is organized as follows. We first introduce the basic calibration
principle and the key workflow of this method. Then, we perform Hokuyo UTM-30LX experiments
to analyze and validate the accuracy of the extrinsic calibration based on a mobile sphere. Finally,
a discussion and concluding remarks are presented.

2. Calibration Approach

The basic principle of the extrinsic calibration of parameters between multiple 2D LRF sensors
is to establish feature correspondences or geometric feature constraints between their observations,

and then to estimate the transformation matrix T =

[
R t
0T 1

]
between sensors in a global reference

frame. As shown in Figure 1, after two 2D LRFs scan a common three-dimensional spherical target
with a known radius, there are two scanning planes containing a circular arc. With the point cloud
library (PCL) processing capabilities and the random sample consensus (RANSAC) method, the radius
and center of the circle can be modeled, and then the center coordinates of the sphere in the LRF
body frame can be extrapolated. Although the scanning planes from the different LRF sensors are
different at the same scan timestamp, their calculated spherical centers are still common within the
global reference frame, and they become a pair of CPs for the transformation matrix between the two
LRF body frames. While constantly moving the spherical target in the common view of the LRFs,
we can obtain hundreds of pairs of CPs to establish the calibration equation, which is a least-square
problem that can be solved by a closed-form solution based on the singular value decomposition (SVD)
or a nonlinear optimization numerical solution based on a least-square bundle adjustment.
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Figure 1. Observation of a sphere by a combination of two laser rangefinders (LRFs). The red scans 
reflected by the sphere are from the different LRF body frames, and the spherical center O is the 
common point for establishing the corresponding points (CPs). Assuming that the Laser1 body frame 
is a global reference frame, the transformation parameters (R, t) between the two LRF body frames 
can be solved by extrinsic calibration. 

2.1. Calculation of the Spherical Center 

2.1.1. Point Cloud Filtering 

Each scan from an LRF sensor is composed of hundreds or even thousands of 3D points. 
According to the size of the calibration target and the relative positions between the laser scanners 
and the sphere, we can establish an appropriate coordinate interval as a filter condition to exclude 
outlying points far from the circle model. As shown in Figure 2, the red box is the filtering interval, 
and the white points represent the point cloud before filtering, while the green points represent the 
point cloud after filtering. This PassThrough filter named by PCL [19] helps exclude outside 
interference within the scans, which ultimately benefits the next step constituting the fitting of a circle 
model. 

 
Figure 2. Point cloud filtering preprocessing. The red box is the filtering interval, and the white points 
represent the point cloud before filtering, while the green points represent the point cloud after 
filtering. 

Figure 1. Observation of a sphere by a combination of two laser rangefinders (LRFs). The red scans
reflected by the sphere are from the different LRF body frames, and the spherical center O is the
common point for establishing the corresponding points (CPs). Assuming that the Laser1 body frame
is a global reference frame, the transformation parameters (R, t) between the two LRF body frames can
be solved by extrinsic calibration.

2.1. Calculation of the Spherical Center

2.1.1. Point Cloud Filtering

Each scan from an LRF sensor is composed of hundreds or even thousands of 3D points.
According to the size of the calibration target and the relative positions between the laser scanners and
the sphere, we can establish an appropriate coordinate interval as a filter condition to exclude outlying
points far from the circle model. As shown in Figure 2, the red box is the filtering interval, and the
white points represent the point cloud before filtering, while the green points represent the point cloud
after filtering. This PassThrough filter named by PCL [19] helps exclude outside interference within
the scans, which ultimately benefits the next step constituting the fitting of a circle model.
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Figure 2. Point cloud filtering preprocessing. The red box is the filtering interval, and the white points
represent the point cloud before filtering, while the green points represent the point cloud after filtering.
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2.1.2. RANSAC Circle Model Fitting

RANSAC is an iterative and nondeterministic algorithm employed to estimate the parameters of
a mathematical model from a set of observed data that contains certain outliers [20,21]. Assuming that
there is a circular arc within the observations from the 2D LRFs, we can detect the circle model with
the RANSAC algorithm. The input to the RANSAC algorithm is the point cloud after the filtering from
the previous step, after which the circle model is fitted to the observations; then, we can acquire some
reliable properties such as the center coordinates and circle radius. The main steps are as follows:

Step 1. Select a random subset consisting of three noncoplanar points from the input point cloud.
Call this subset the hypothetical inliers.

Step 2. A circle model M described by (x− xc)
2 + (y− yc)

2 = r2 is fitted to the set of hypothetical
inliers. The circle center is O(xc, yc), and the circle radius is r.

Step 3. All other points are then tested against the fitted model. All points whose distances to the
circle center O are less than the circle radius are effectively suitable for the estimated model and are
considered a part of the consensus set I.

Step 4. If the number of elements in the current set is greater than that in the optimal set Ibest,
then update I and the number of iterations.

Step 5. If the number of iterations is greater than an upper limit of iterations k, then exit; otherwise,
the number of iterations is increased by 1, and the above steps are repeated. To ensure that the points
are selected without replacement, the upper limit can be defined as follows:

k =
log(1− p)

log(1− wm)
(1)

where p is the confidence level, which is generally equal to 0.995, w is the probability that a randomly
selected single point happens to be an inlier, and m is the minimum number of sample points required
for estimating the model and is equal to 3 for the circle model considered here.

2.1.3. Extrapolation of the Spherical Center

After determining the center and radius of the circular arc, it is possible to calculate the spherical
center with the known radius R. Because there is a distance between the circle center and the spherical
center, the calculation of the spherical center is actually a nonlinear extrapolation process. The distance
can be defined as follows:

d =
√

R2 − r2 (2)

It is necessary to mention that the confirmation of the hemispheres that belong to the detected
circle is ambiguous when using only 2D scans, due to the symmetry of the sphere. To determine
whether the Z coordinate of the spherical center is positive or negative, a priori information about
the position of the sensor relative to the sphere is required. When the spherical center is above the
2D scanning plane, the coordinates of the spherical center are defined as P(X, Y, Z) = (xc, yc, d);
alternatively, when the spherical center is below the 2D scanning plane, the coordinates of the spherical
center are defined as P(X, Y, Z) = (xc, yc,−d).

2.2. CP Matching

At the same timestamp, although the scanning planes from the different LRF sensors are different,
their calculated spherical centers are still common within the global reference frame, and they become
a pair of CPs for the transformation matrix between the two LRF body frames. While constantly
moving the spherical target in the common view of the LRFs, we can match multiple pairs of CPs from
multiple observations aligned with the sample timestamp:

P = {p1, . . . , pn}, P′ =
{

p′1, . . . , p′n
}

(3)
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where P represents the spherical centers in the Laser1 body frame, P′ represents the spherical centers
in the Laser2 body frame, and n represents the number of observations.

It is worth noting that fully synchronous samples are difficult to acquire when using multiple
sensors; thus, there is typically a minor difference in the timestamp alignment. According to
experimental statistics, the time difference of the majority of CPs is approximately 5 ms, which is
one fifth of the sensor scanning time. Moreover, the spherical center is suggested to move as slowly
as possible and the speed in our experiment is approximately 0.2 m/s or even lower, close to zero.
Therefore, the error caused by the sensor samples being out of sync and the movement of the spherical
center is approximately 1 mm (5 ms × 0.2 m/s) or even lower, which is so slight and negligible that we
can ignore the effect of the error and regard the low-dynamic collection as approximately the static one.

In addition, there is a significant source of error in the CP matching: the error caused by the
extrapolation of the spherical center. The accuracies of both the circle properties and the spherical
radius affect the extrapolation accuracy of the spherical center. We define the errors of the circle
properties including the radius r and the spherical properties including the radius R as mcircle and
msphere, respectively. While the errors in the X and Y coordinates are mainly derived from the circle
center, which is to say that mX = mY = mcircle, the error in the Z coordinate mZ varies along the radius
of the circle, r, and the radius of the sphere, R. R and r are uncorrelated, and the total differential
equation of (2) is derived as follows:

dZ = − r√
R2 − r2 ∂r + R√

R2 − r2 ∂R

= − 1√
( R

r )
2 − 1

∂r + 1√
1 − ( r

R )
2 ∂R

(4)

Based on the law of the propagation of error [22], the error in the Z coordinate mZ is derived
as follows:

m2
Z = 1

( R
r )

2 − 1
m2

circle +
1

1 − ( r
R )

2 m2
sphere

= K2
c m2

circle + K2
s m2

sphere

(5)

where mcircle and msphere are fixed values determined in the later experiment Section 3, while mZ
is a variance related to KC and KS, which are the error propagation coefficients that vary with r

R .
It is obvious that mZ is a monotonically increasing function of r

R in (5). Based on the relationship
between mZ and r

R , selection of a machine with a CP with low error can be established to provide a
high-accuracy calibration, and we approximate that mZ ≈ mX = mY after the selection, the detailed
analysis of which will be presented in Section 3.3.

2.3. Calibration

2.3.1. Calibration Model

The purpose of the calibration of the extrinsic parameters is to estimate the transformation matrix

T =

[
R t
0T 1

]
between sensors in a global reference frame. If a set of pairs of matched CPs completely

exists, this issue becomes an Absolute Orientation problem [23,24]. The geometric constraint can be
written as (6) for CP pair i:

∀i, pi = Tp′i + mi. (6)

Then, the point-to-point error is (7):

ei = pi − Tp′i. (7)
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Equation (7) is the basic calibration model in this paper. The objective is to solve for the rigid
transformation matrix T that minimizes the error in the CP pairs. Because of the approximately
equal precision of different co-ordinate observations, mZ ≈ mX = mY, and the point-to-point
error minimization metric (8) is the objective optimization function of the unweighted least-squares
bundle adjustment:

min
R,t

J =
1
2

n

∑
i=1
‖pi − Tp′i‖

2
2. (8)

2.3.2. Solution of Equations

For the convenience of taking the derivative of (7), the Lie algebra form ξ of the transformation

matrix T =

[
R t
0T 1

]
= exp(ξ∧) can be introduced as follows [25,26]:

θ = arccos tr(R) − 1
2 , Ra = a

J = sin θ
θ I + (1− sin θ

θ )aaT + ( 1 − cos θ
θ )a∧

ρ = JTt, φ = θa

ξ∧ =

[
φ∧

0T
ρ

0

]
, ξ =

[
ρ

φ

] (9)

where ξ is a six-dimensional vector corresponding to the six degrees of freedom of the transformation
matrix T, the first dimension ρ is related to translation but does not equal t, the last dimension φ is the
Lie algebra of rotation R, and the other terms are intermediate variables described in detail in the Lie
algebras and Lie group theory [27].

Then, using ξ to represent the pose and linearization, the error equation can be written as follows:

ei = pi − exp(ξ∧)p′i =
∂ei
∂ξ

dξ − li. (10)

Based on the Lie algebraic perturbation model, taking the derivative of (10) with respect to ξ can
be expressed as follows:

∂ei
∂δξ = − ∂(exp(ξ∧)p′i)

∂δξ = −
[

I −(Rp′i + t)∧

0T 0T

]

= −
[

I −pi
∧

0T 0T

]
= −


1 0 0 0 zi −yi
0 1 0 −zi 0 xi
0 0 1 yi −xi 0
0 0 0 0 0 0

 = Ai

(11)

where δξ = X = [δρ, δφ]T is the correction for the calibration parameters, and pi = (xi, yi, zi).
Considering different CP pairs, the error equation can be written as:

e1 = ∂e1
∂ξ dξ − l1

· · ·
en = ∂en

∂ξ dξ − ln

(12)

For convenience, (12) can be simplified into (13):

V = AX− L (13)
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Equation (13) is the basic error equation, and the corresponding normal equation of (13) is
expressed as (14):

(AT A)X = AT L (14)

The solution of (14) is as follows:

X =
(

AT A
)−1(

AT L
)

(15)

When there are no less than three noncollinear CPs, the transformation parameters can be
computed by least-squares adjustment [28]. Some studies have proven that there is a closed-form
solution for the least-squares problem, and that the best rigid-body transformation between two
coordinate systems can be obtained from measurements of the coordinates of a set of points that are
not collinear [24,29,30]. Therefore, a calibration network design with no less than three noncollinear
CPs can result in a unique solution and the global optimal solution.

In the transformation parameters, translation has a linear and strong relation with rotation [31],
which is derived from the transformation model ubiquitously, not depending on the distribution
of CPs. The correlation between the calibration parameters will affect the behavior of the reduced
normal equation and can even cause the morbidity of the least-squares normal equations matrix AT A.
We can judge the condition of the normal equations matrix as cond(AT A). While cond(AT A) is large,
the technique of iteration by correcting the characteristic value [32] can be used to solve this problem
of morbidity.

2.4. Processing Procedure

The extrinsic calibration process between Laser1 and Laser2 based on a mobile sphere is shown
in Figure 3. There are three main processes: calculation of the spherical center, CP matching,
and calibration. The input data are composed of the laser scans reflected by the sphere from the
two LRFs, namely, Laser1 and Laser2. The result is the transformation matrix between the Laser1 body
frame and the Laser2 body frame.

In the calculation of the spherical center, we need to preprocess the point cloud with an appropriate
filter condition and fit the circle model by the RANSAC algorithm requiring the properties (i.e.,
the center and radius) of the circle. Then, the spherical center is extrapolated based on the geometric
relationship with the scan circle center.

Second, by aligning the sample timestamps of Laser1 and Laser2, multiple pairs of CPs can be
matched when observing the mobile sphere. Note that fully synchronous samples are impossible
to acquire between Laser1 and Laser2 and that out-of-sync sensor samples can cause a slight but
unavoidable error in the CP matching.

Finally, the basic calibration model is built based on the geometric constraint of multiple pairs
of CPs, after which the calibration equation is solved by a least-square bundle adjustment solution,
which results in the calibration parameters. There are many ways to take the derivative; in this paper,
the Lie algebraic perturbation model is used for the derivative of the calibration equation.
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Figure 3. Extrinsic calibration process between Laser1 and Laser2 based on a mobile sphere. Step 1:
calculation of the spherical center, including point cloud filtering, random circle consensus (RANSAC)
circle fitting and extrapolation of the spherical center. Step 2: CP matching based on the sample
timestamp alignment. Step 3: establishing and solving the extrinsic calibration model.

3. Experiments and Discussion

3.1. Data Introduction

The UTM-30 LX LRF from the Japanese manufacture Hokuyo is an active sensor that emits
near-infrared light, which is backscattered from the object surface to the sensor, and it is typically
recognized as a time-of-flight ranging system. The Hokuyo UTM-30LX LRF uses pulsed laser light
beams to directly measure a time delay created by light traveling from the sensor to the object and
back [33].

The Hokuyo UTM-30LX [1,2] shifts a continuously rotating mirror with an angular resolution of
0.25◦ between each measurement within a few microseconds. With a 270◦ field of view, the Hokuyo
scanner provides 1080 measurements per scan line in 25 ms. The maximum scanning range is 60 m.
It is worth noting that the intrinsic accuracy mL in the depth direction is 10 mm with a scanning range
from 0.1 m to 10 m. The Hokuyo UTM-30LX performance parameters are shown in Table 1.
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Table 1. Hokuyo UTM-30LX performance parameter table. The intrinsic accuracy is 10 mm with a
scanning range from 0.1 m to 10 m.

Item Technology Performance

Measurement Principle Time of Flight

Light Source Laser Semiconductor λ = 905 nm Laser Class 1

Detection Range Guaranteed Range: 0.1~30 m (White Kent Sheet)
Maximum Range: 0.1~60 m

Detection Object Minimum Detectable Width at 10 m: 130 mm (varies with distance)

Measurement Resolution 1 mm

Intrinsic Accuracy(Precision)

0.1–10 m: σ < 10 mm
10–30 m: σ < 30 mm (White Kent Sheet)

Under 3000 lx: σ < 10 mm (White Kent Sheet up to 10 m)
Under 100,000 lx: σ < 30 mm (White Kent Sheet up to 10 m)

Scan Angle 270◦

Angular Resolution 0.25◦ (360◦/1440)

Scan Speed 25 ms (motor speed: 2400 rpm)

The sphere target employed in the experiment was required to be as accurate as possible, to ensure
the accuracy of the calibration. By measurement via terrestrial laser scanning (TLS) RIEGL VZ-400 and
sphere fitting of the point cloud, the radius of the mobile sphere target r was 0.325 m, and the fitting
precision was 0.003 m, that is, msphere = 0.003 m. The installation configuration of the two Hokuyo
UTM-30LX sensors is shown in Figure 4; the Laser1 LRF was assembled horizontally, while the
Laser2 LRF was assembled vertically. The positions of the sensor assembly platforms remained
unchanged, while the sphere was moved continuously, and the scans from the two sensors were
recorded throughout the process.
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and the Laser2 LRF is assembled vertically. The radius of the mobile spherical target is 0.325 m.

To address the symmetry of the sphere, that is, to distinguish between the hemispheres along the
scan circle, the total CPs were marked as four types depending on the positive or negative direction of
the z-axis in the Laser1 and Laser2 body frames: positive-positive CP, positive-negative CP, negative-
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positive CP, or negative-negative CP. For example, positive-positive CP was located in the positive
direction of the z-axis, both in the Laser1 body frame and in the Laser2 body frame. The noncollinear
distribution of these CPs must be met in the data collection, and we usually preferred to make CPs
distribute in different quadrants and be marked different types.

Moreover, to avoid a poor or morbidity state of the correlation between the calibration parameters,
there must be a noncollinear distribution in some of these CPs. This condition was easy to satisfy in
the data collection, and we then required a unique and best rigid-body transformation between the
two coordinate systems, as mentioned in Section 2.2.

Three datasets in three different configurations of two LRF were collected and used in our
experiment. Dataset1 was used as a representative to present the calibration process in detail and
to analyze the effect of the CP matching, while in total, three datasets were used for accuracy and
robustness validation of this calibration solution. Figure 4 shows the configuration of dataset1,
and more detailed information on these datasets and calculated configurations were presented in a
later section.

3.2. Circle Model Fitting and the Distribution of CPs

The data about circle model fitting and the distribution of CPs is mainly from dataset1. To prove
the efficacy of the point cloud filtering scheme, we conducted a scan at some timestamp from Laser1
as a representative scan. As shown in Figure 2, the red box represented the filter interval condition,
while the white and green parts represented the point clouds before and after filtering respectively,
indicating that the majority of noise has been removed effectively.

Based on the RANSAC circle detection method described in Section 2.1.2, the result of scanning
is shown in Figure 5. There were 149 interior points (blue points) in the circle model (green circle).

The fitting residual of each interior sample point was defined as res =
√
(x− xc)

2 + (y− yc)
2 − r.

Figure 6 indicates that the maximum residual error was no more than 0.005 m. Through statistical
analysis, the mean value of the residuals was 0.7 mm, and the root-mean-square (RMS) of the residuals
was 2.5 mm, which was the RANSAC circle model fitting accuracy. The above index shows that
the RANSAC algorithm accuracy in a single scan was high and it satisfied the requirements for the
subsequent processes.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 
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Figure 6. Circle fitting residuals on a laser scan. The maximum residual error is no more than 0.005 m.
The root mean square (RMS) of the residuals is 2.5 mm.

After point cloud filtering, applying the RANSAC circle detection algorithm, and extrapolating
the center of the sphere, 308 pairs of CPs could be obtained. Figure 7 shows the distribution of CPs in
different quadrants of the Laser1 body coordinate system. It is obvious that these were noncollinear
distributions, although there are two short tracks of CPs. The distribution for the Laser2 was similar to
the Laser1. Therefore, this dataset had a unique solution and a global optimal solution.
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Figure 8 shows the circle fitting accuracies and arc angles for the total scans of Laser1 and Laser2 in
dataset1. The circle fitting accuracy mRANSAC was clearly less than 0.003 m. The circle fitting successes
and accuracy were consistent, while the arc angle varied, indicating the robustness of the method in
function of incompleteness and gap in the measured circle. Combining the circle fitting accuracy with
the accuracy of the point cloud in the laser scan, mS, the accuracies of the center and radius of the circle
mS were evidently maintained at the same level as the intrinsic accuracy mS, which was also 10 mm.
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3.3. Calibration and Analysis

The external parameters of dataset1 calculated according to the calibration model mentioned in
Section 2 were translated to an equal and easier interpretation style of Euler extrinsic rotation angles
yaw-pitch-roll (YPR) around a fixed Z-Y-X axis (88.88◦, 52.30◦, 88.59◦), and the translation (0.033 m,
−0.117 m, −0.145 m), and frames configuration are shown in Section 3.4.

After calculating the calibration parameters via the proposed method, it was important to evaluate
the accuracy and conduct an error analysis of the calibration solution. Although ground truth for the
relative positions of the sensors can be used to compare the estimated transformation with the exact
transformation among the sensors, requiring the availability of ground truth complicates an absolute
evaluation of the method. Considering the difficulty involved in precisely measuring the correct
pose between a pair of sensors, we cannot guarantee high precision even if the obtained calibration is
correct. This problem is particularly difficult with rotations (i.e., it is possible to have a fairly reasonable
evaluation of the translation with simple measurements using a measuring tape), which is critical,
since small errors in a rotating system may result in large errors within the final registered data.

With this problem in mind, our goal is to perform a calibration of other devices with respect to
one reference sensor. Then, the point cloud of the reference sensor is used as the ground truth, and the
resulting transformation from the calibration is applied to the remaining sensors. This allows us to
evaluate how well the point clouds fit the reference point cloud by calculating the CP residual defined
in (7), which represents the exterior orientation accuracy.

The previous solution with a Sick LMS151 sensor in [18] stated the absolute mean error and the
standard deviation of the Euclidean distance between CPs. Table 2 shows a comparison between the
accuracy of our solution and that of the previous solution. In the previous solution, the value range of
r
R was (0, 1), while the absolute mean error and the standard deviation were 68 mm (approximately five
times the sensor intrinsic accuracy of 12 mm) and 34 mm (approximately 3 times the sensor intrinsic
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accuracy of 12 mm), respectively. In our solution, the value range of r
R was (0,

√
2

2 ), while the absolute
mean error and the standard deviation were12 mm and 14 mm, respectively, which were nearly at the
intrinsic accuracy level of the sensor. This contrast indicates that our solution was more accurate than
the previous solution, because the CP matched the restriction constraint of the scan circle radius.

Table 2. Accuracy comparison with the previous solution.

Sensor Intrinsic
Accuracy (mm)

r
R

Absolute Mean
Error (mm)

Standard
Deviation (mm)

Previous Solution Sick LMS151 12 (0, 1) 68 34
Our Solution Hokuyo UTM-30LX 10 (0,

√
2

2 ) 12 14

Using the same Hokuyo UTM-30LX sensor, we then further analyzed the influence of r
R . The error

propagation coefficients KC and KS discussed in Section 2.2 varied with r
R , as shown in Figure 9.

Larger r
R values corresponded to larger KC and KS values and greater errors in the Z coordinate

mZ. In particular, as r
R approached 1, mZ increased dramatically, which was not desirable in the

error propagation.
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When r
R <

√
2

2 , then KC < 1, 1 < KS <
√

2. In this case, the error sourced by the circle radius
was not amplified, and the error sourced by the spherical radius was slightly amplified unavoidably.
A total of 308 CP pairs composed the first subset, while the second subset was selected according to
r
R <

√
2

2 . The calibration solution was conducted on these two subsets separately.
The external parameters are input into the residual calculation formula, and the resulting statistics

are shown in Table 3. The RMS values of the residuals in the second subset were less than those in the
first subset. In particular, the RMS values in the Z direction in the second subset were approximately
one-third of those in the first subset. The means in all three directions in each subset were each less than
1 × 106 m. In the first subset without any restriction constraint for the scan circle radius, the absolute
mean error and the standard deviation both exceeded 0.02 m. While r/R varied from (0, 1) to (0,

√
2

2 )
between the first and second subsets, the absolute mean error and the standard deviation decreased by
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approximately one-half, respectively. This contrast indicates that the CP matching with the restriction
constraint of the scan circle radius was more accurate and evidently improved orientation accuracy
after calibration.

Table 3. Orientation accuracies in the two subsets of dataset1. The RMS of the Euclidean metric equals
the absolute mean error in Table 2. The mean of the Euclidean metric equals the standard deviation in
Table 2.

Subset CP Pairs r
R

RMS (m) Mean (m)

X Y Z Euclidean
Metric X Y Z Euclidean

Metric

1st 308 (0, 1) 0.0147 0.0119 0.0171 0.0255 2 × 108 7 × 109 5 × 108 0.0213
2nd 178 (0,

√
2

2 ) 0.0092 0.0086 0.0060 0.0140 2 × 107 1 × 107 −3 × 108 0.0121

In the second subset with the restriction constraint of the scan circle radius, the mean values
of the residuals along each coordinate axis were close to zero, and the RMS values of the residuals
were approximately 0.01 m. The residual distribution histogram of the second subset in Figure 10
was similar to a standard normal distribution, which indicates that there was no systematic error
after calibration. Therefore, the extrinsic orientation accuracy after calibration was approximately
0.01 m. Considering that the intrinsic accuracy of the Hokuyo UTM-30LX sensor within a range of
10 m was 0.01 m, the calibration parameters acquired in this paper were highly accurate and effective
for further application.
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Figure 10. Residual distribution histogram of the CPs after calibration. (a) Residual distribution
histogram in the X direction. (b) Residual distribution histogram in the Y direction; (c) Residual
distribution histogram in the Z direction.

3.4. Robustness and Accuracy Validation

To verify the robustness of the calibration solution, three datasets from three different laser frame
configurations were collected. Figure 11 shows the laser frame configurations corresponding to the
calculated transformation parameters in the three different datasets. The conditions of the normal
equations matrix cond(AT A) of these three datasets are both approximately 1000, presenting the good
behavior of the normal equation in these three datasets.

The calibration parameters of the three datasets are calculated separately. In these three datasets,
laser rangefinders are assembled with different rotations and translations, and the calibration accuracies
are high, as shown in Table 4. The contrast indicates the robustness of the proposed method in the
function of different rotations and translations (frame configuration) of LRFs.
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Figure 11. The laser frame configurations corresponding to the calculated transformation parameters in
three different datasets, which is defined by a six dimensional vector including Euler extrinsic rotation
angles YPR around a fixed Z-Y-X (blue-green-red) axis and the translation.

Table 4. Orientation accuracies of the training points and test points in the three datasets.

Dataset
Point RMS (m) Mean (m)

Type Number X Y Z Euclidean
Metric X Y Z Euclidean

Metric

1
Training 99 0.0102 0.0087 0.0063 0.0148 −2.9 × 10−8 −3.5 × 10−9 −6.2 × 10−9 0.0129

Test 98 0.0090 0.0087 0.0071 0.0144 3.0 × 10−4 −4.0 × 10−4 −9.0 × 10−4 0.0123

2
Training 814 0.0061 0.0118 0.0054 0.0144 −7.1 × 10−9 −2.4 × 10−7 −2.7 × 10−7 0.0130

Test 814 0.0059 0.0123 0.0053 0.0147 −1.4 × 10−4 2.4 × 10−4 1.4 × 10−4 0.0133

3
Training 755 0.0058 0.0112 0.0050 0.0135 1.5 × 10−8 −7.6 × 10−9 −2.2 × 10−8 0.0120

Test 755 0.0062 0.0150 0.0052 0.0141 3.3 × 10−4 −4.8 × 10−4 −1.9 × 10−4 0.0125

In the situation of difficult access to high-accuracy ground truth, the accuracy validation of the
calibrated system is actually the evaluation of point clouds. According to [8], the evaluation of point
clouds can be roughly divided into three approaches: the control point approach, the subset approach
and the full point cloud approach. Calculating the residuals of the CPs is a classical method to assess
the calibration accuracy [18], which belongs to the control point approach.

The total CP residuals in Section 3.2 reflected the exterior orientation accuracy to some extent,
but it was insufficient. To further verify the accuracy of the calibration parameters, the CPs in every
dataset were randomly divided into two sections: training points and test points. Training points are
mainly used to calculate and estimate the calibration parameters, while test points independent of the
calibration mainly verify the generation of the calibration parameters. Orientation accuracies of the
training points and test points in the three datasets are shown in Table 4.

In these three datasets, the mean values of the residuals for the training points and test points
were both close to zero. Although the level of the mean values for the test points was 1 × 10−4,
which was less than that for the training points at 1 × 10−7, it still demonstrated the high accuracy of
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the extrinsic orientation, considering the error of CPs caused by the intrinsic accuracy of the Hokuyo
UTM-30LX sensor. In terms of the RMS values of the residuals, the test points and training points in
the three datasets performed consistently in all three directions at the level of approximately 0.01 m.
The results verified the correctness of the calibration parameters, and the extrinsic orientation accuracy
after calibration was approximately 0.01 m.

In addition, we tried other two approaches as a supplementary. The full point cloud approach
can be used to evaluate the calibrated system of the 3D laser scanners. However, in our calibrated
system composed by two 2D LRFs, there only two scan lines and it was difficult to compare the two
scan lines with the 3D point cloud from the TLS. Therefore, we had to employ the subset approach as a
supplementary method to verify the correctness of our calibration parameters, and the subset of points
including a specific geometric feature can be extracted and compared to the data from the TLS.

In the practical experiment, a 2D scene of a flat wall and a 3D scene of the calibration sphere
were selected for scanning by our sensor platform. The indoor decoration standard [34] states that the
flatness of the wall is less than 4 mm, and the plane fitting precision in this scene is actually very high
at only 1.2 mm by measurements from the TLS RIEGL VZ-400. The performances of the sphere were
measured by the TLS in Section 3.1. Based on the Laser1 body coordinate system, the point cloud in the
Laser2 system was transformed into the reference coordinate system using the transformation matrix
of dataset1 acquired by the proposed method. The result of the point cloud is shown in Figure 12,
where the green part represents the wall or the spherical target. The wall was segmented, and the
plane fitting error was 8.085 mm, which was less than 10 mm. The spherical radius and the spherical
fitting error of our calibrated system were 0.326 m and 3 mm. This was consistent with the intrinsic
accuracy of the LRF. In conclusion, the calibration method in this paper is effective and meets the
requirements of practical measurements.
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Figure 12. Validation of the point cloud. (a) The green part is the wall with the accuracy 1.2 mm
measured by terrestrial laser scanning (TLS), and the plane fitting error of our calibrated system is
8.085 mm. (b) The green part is the sphere with the radius of 0.325 m and the accuracy of 3 mm
measured by TLS, and the spherical radius and the spherical fitting error of our calibrated system are
0.326 m and 3 mm.

4. Conclusions

This paper presents a methodology for calibrating the extrinsic parameters of a combination of 2D
LRF sensors based on a mobile sphere. The proposed method boasts an automatic and high-accuracy
solution. Moreover, establishing a CP matching machine with the restriction constraint of the scan circle
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radius is established. Experiments using the Hokuyo UTM-30LX sensor show that the method can
match CPs with a low error and improve the orientation accuracy level to 0.01 m, which is consistent
with the intrinsic accuracy of the Hokuyo UTM-30LX sensor. This result indicates that the calibration
method in this paper is effective and meets the requirements of practical measurements.

In addition, due to the symmetry of the sphere, an a priori parameter, namely, the relative position
between the laser scanner and the spherical target (i.e., whether it is placed above or below its equator),
is required. In the future, we plan to conduct some research to resolve all ambiguities corresponding
to the positions of the sensors insomuch that they do not require a priori information regarding their
positions relative to the hemisphere.
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