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Abstract: Super-resolution land cover mapping (SRM) is a method that aims to generate land cover
maps with fine spatial resolutions from the original coarse spatial resolution remotely sensed image.
The accuracy of the resultant land cover map produced by existing SRM methods is often limited
by the errors of fraction images and the uncertainty of spatial pattern models. To address these
limitations in this study, we proposed a fuzzy c-means clustering (FCM)-based spatio-temporal SRM
(FCM_STSRM) model that combines the spectral, spatial, and temporal information into a single
objective function. The spectral term is constructed with the FCM criterion, the spatial term is
constructed with the maximal spatial dependence principle, and the temporal term is characterized
by the land cover transition probabilities in the bitemporal land cover maps. The performance of
the proposed FCM_STSRM method is assessed using data simulated from the National Land Cover
Database dataset and real Landsat images. Results of the two experiments show that the proposed
FCM_STSRM method can decrease the influence of fraction errors by directly using the original
images as the input and the spatial pattern uncertainty by inheriting land cover information from the
existing fine resolution land cover map. Compared with the hard classification and FCM_SRM method
applied to mono-temporal images, the proposed FCM_STSRM method produced fine resolution land
cover maps with high accuracy, thus showing the efficiency and potential of the novel approach for
producing fine spatial resolution maps from coarse resolution remotely sensed images.

Keywords: super-resolution mapping; spatio-temporal dependence; fuzzy c-means clustering

1. Introduction

Land cover and its change are one of the most prominent landscape signs to record the
characteristic and dynamic processes of the Earth’s surface [1,2]. With the development of remote
sensing technology in recent years, land cover information can be acquired from remote sensing
images with different spatial and temporal resolutions [3]. In general, a land cover map is produced
by the hard classification method, which assigns each pixel in the remotely sensed image to a certain
land cover class. However, the remotely sensed image pixels are often mixed with several different
land cover classes, particularly the pixels located in the land cover patch boundaries in coarse spatial
resolution images. Pixel based hard classification methods always ignore the mixed pixel phenomena
and only use the statistical characteristics of the pixel spectra to classify a mixed pixel as a specific
land cover type, such that the resultant land cover map cannot accurately represent the land cover
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information. A well-known method to address the limitation of hard classification is the use of soft
classification, which is also called spectral unmixing. Soft classification can extract the area percentage
of each land cover class in mixed pixels and obtain more accurate land cover information than hard
classification. However, soft classification does not give the spatial distribution of land cover classes at
the subpixel level and the spatial resolution of classification result does not really improved.

Super-resolution mapping (SRM) or subpixel mapping, which aims to generate land cover
map with fine spatial resolutions from original coarse spatial resolution remotely sensed images,
was subsequently proposed to address the previously mentioned limitations of hard classification and
soft classification [4–6]. In SRM, one coarse spatial resolution pixel is initially divided into subpixels
according to the zoom factor. Then, the subpixel number, which is calculated for each land cover class
based on the fraction images derived from the soft classification, is used as the input. Finally, the spatial
locations of these subpixels are determined according to a certain spatial prior model to produce the
fine spatial resolution land cover map [7–9]. Various SRM algorithms, including pixel-swapping
algorithms [10,11], fuzzy c-means clustering (FCM)-based algorithms [12,13], Markov random field
based algorithms [14,15], and learning-based algorithms [16], have been proposed in the past two
decades. SRM has also been successfully used in many relative fields, such as forest mapping [17–19],
waterline mapping [20–22], and urban tree mapping [12].

In theory, SRM is an inversion problem because it needs to recover missing subpixel information
from the observed coarse spatial resolution images. Various spatial models, such as the maximal
spatial dependence model and the linear spatial model, have been proposed to provide land cover
distribution information at the subpixel scale for SRM. However, applying SRM with a single coarse
resolution image is always limited because no subpixel information is used, and using the spatial
prior model only is insufficient to produce with high accuracy the resultant fine resolution land cover
map [7]. Incorporating the additional site-specific dataset, such as panchromatic band images [23,24],
LIDAR data [25], and vector boundaries [26,27], into SRM can overcome this problem to a large extent.
These additional datasets can provide useful spatial land cover information for SRM and reduce the
uncertainty of the resultant land cover map. However, the effectiveness of this kind of method is
limited by the availability and quality of additional datasets, for example, the acquired time of the
fraction images and the additional datasets should be the same or similar.

Notably, abundant archived fine spatial resolution land cover maps or remotely sensed images
exist globally. These archived fine spatial resolution datasets can provide a valuable prior land
cover pattern for SRM, leading to the spatio-temporal SRM (STSRM) [28]. STSRM aims to generate
a high-resolution land cover map from a coarse resolution remotely sensed image by incorporating
a former high-resolution land cover map. STSRM is not only considered an extension of traditional
SRM approaches that are applied with a single coarse resolution image, but it can also be considered
a spatio-temporal land cover fusion method because of the combined advantages of short cycle times
of coarse spatial resolution images and rich spatial feature information of fine spatial resolution
images, and then generate a series of fine spatial and temporal resolution land cover maps.
Many different STSRM methods, such as the spatio-temporal Markov random field based SRM
model [15], spatio-temporal pixel-swapping model [29], and Hopfield neural network based fast
STSRM model [30] have been proposed in recent years.

In general, existing STSRM models often uses a previous fine spatial resolution land cover map
and current coarse spatial resolution fraction images as input to estimate the current fine spatial
resolution land cover map. The previous fine spatial resolution land cover map can be a documented
dataset or produced by classifying a fine resolution remote sensing image. Coarse spatial resolution
fraction images are always estimated from remotely sensed images by soft classification. Existing
models often assume that the input datasets are error free; however, this assumption is problematic
because errors are unavoidable for the input datasets, particularly for the coarse resolution fraction
images generated by soft classification. In order to overcome this shortcoming, a sub-pixel land cover
fraction change detection method is often first applied in practice, and STSRM is then only applied
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in those coarse resolution pixels with land cover fraction changes [31]. However, this method is still
limited by the accuracy of change detection. Given that the errors of fraction images are caused by
soft classification, if the spectral information can be considered directly in the STSRM model, then the
STSRM result is expected to be improved.

The FCM algorithm, which adopts fuzziness membership values to analyze the spectral
information of remotely sensed images, has been widely used as a soft classification algorithm to
provide land cover fraction images [32,33]. Then, in SRM, as FCM can generate different fraction
images by using different fuzziness parameters, it is usually utilized as the preprocessing step to
generate the input fraction images [9]. Although the FCM can provide flexible choices of fraction
images, it still would carry uncertainty to the SRM result. To overcome this shortcoming, FCM was
further applied to image-based SRM methods. Li et al. proposed an FCM-based SRM (FCM_SRM)
model that incorporates the pixel-unmixing criterion of sFCM into its objective function [9]. Zhang et al.
extended the FCM_SRM model into an unsupervised model [34]. Compared with SRM methods that
use the fraction images generated by soft classification as input, these image-based SRM methods
use the FCM criterion applied to the original coarse spatial resolution images and can eliminate the
influence of fraction errors on the resultant fine resolution land cover map to some extent.

Given that image-based SRM models that use the FCM criterion can overcome the propagation
of fraction error on the SRM result, applying this kind of method in existing STSRM models is
expected to overcome the limitation of handling fraction uncertainty. Therefore, in this study,
we introduced the FCM algorithm into STSRM and proposed a FCM-based STSRM (FCM_STSRM)
method, which considers the fuzziness of the pixels under the STSRM framework. The proposed
FCM_STSRM method fully incorporates the spectral, spatial, and temporal information included in
the input dataset, that is, the FCM criterion for spectral unmixing, the spatial pattern of land cover,
and the temporal pattern of land cover change.

The remainder of this paper is organized as follows: Section 2 introduces the theoretical
background, proposed method, and validation methods of the FCM_STSRM method. Section 3 presents
the experiments. Section 4 discusses the results of the experiments. Section 5 draws the conclusions.

2. Methods

2.1. FCM_STSRM

The objective of FCM_STSRM is to estimate a fine spatial resolution land cover map from the
observed coarse spatial resolution remotely sensed image with the aid of the existing former fine
spatial resolution land cover map. Suppose that the coarse spatial resolution remotely sensed image is
Y with L bands, each contains M1 ×M2 pixels with the spatial resolution R. The former fine spatial
resolution land cover map is Xpre with the spatial resolution r. The zoom factor is z, indicating that
each coarse resolution pixel in Y includes z× z fine resolution pixels in Xpre. Therefore, FCM_STSRM
aims to predict a fine spatial resolution land cover map X at the time of coarse spatial remotely sensed
image Y observation, including M1 × z×M2 × z pixels with the spatial resolution r.

According to the maximum a posteriori rule in the Bayesian framework, the resultant land
cover map X is calculated on the basis of the given map Xpre and coarse spatial resolution remotely
sensed image Y. Therefore, the optimal result can be estimated by solving the maximization problem,
as follows:

X̂ = argmax
{

Pposterior(X|Y, Xpre)
}

= argmax
{

1
Z exp[−Uposterior(X|Y, Xpre)]

} (1)

where Z is a normalizing constant; Pposterior(X|Y, Xpre) is the posterior probability of X;
and Uposterior(X|Y, Xpre) is the corresponding posterior energy function of X, given Y and Xpre.
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On the basis of the Markov random field approach, the search for the optimal X is equivalent
to minimization of the posterior energy function, which can be specified to model the spatial and
temporal dependencies of pixels on its spatial and temporal neighborhoods [35], as follows:

Uposterior(X|Y, Xpre) = Uspectral(X|Y) + αUspatial(X) + βUtemporal(X|Xpre) (2)

where Uspectral(X|Y) is the spectral energy function that provides the constraints of observed coarse
spatial resolution images in the output fine spatial resolution land cover map X; Uspatial(X) is the
spatial energy function that is used to ensure that the output fine spatial resolution land cover map
satisfies a predefined spatial pattern; Utemporal(X|Xpre) is the temporal energy function that is used to
measure the temporal dependence between X and Xpre; and α and β are the weighting coefficients that
control the weights of the spectral, spatial, and temporal terms.

2.2. Spectral Term

The spectral term is used to link the observed coarse spatial resolution image Y with the resultant
fine spatial resolution land cover map X. Here, the FCM criterion is adopted to construct the
spectral term.

In general, the FCM is an unsupervised clustering algorithm that assigns pixels to each category
by using fuzzy memberships. Suppose the sample set S = {s1, s2, · · · , sN}, sj(j = 1, 2, · · · , N) is
the D-dimensional feature vector. The FCM aims to cluster these samples into C classes by using an
iterative optimization that minimizes the objective function defined as follows:

J =
C

∑
i = 1

N

∑
j = 1

um
ij ‖sj − vi‖2 (3)

with the following constraints:

uij ∈ [0, 1]; 0 <
N

∑
j = 1

uij < N, ∀i;
c

∑
i = 1

uij = 1, ∀j (4)

where uij is the fuzzy membership of pixel sj in the i-th cluster; C is the number of classes; ‖.‖ is a norm
metric; m is a constant called fuzziness parameter; vi is the i-th cluster center; and m > 1 is a weighting
exponent on each fuzzy membership that controls the fuzziness of the analysis.

The FCM criterion has been widely used for spectral unmixing. In general, the fuzzy membership,
that is, uc,k, can be applied to represent the fraction value of the class c in the coarse resolution pixel
k. If the endmember of the land cover class is known, then the unsupervised FCM algorithm can be
adopted to be a supervised model with the following objective function:

H =
n

∑
k = 1

z2

∑
i = 1

C

∑
c = 1

(uc.k)
m × ‖xk − vc‖2 (5)

where xk(k = 1, 2, · · · , n) is the coarse resolution pixel k; z is the zoom factor; and vc is the endmember
spectral vector of class c.

For SRM, the FCM criterion for the spectral term is further modified, in which fc.k is used instead
of uc,k. Nc,k, which is the number of fine resolution pixels labeled as c in coarse resolution pixel k,
is utilized in calculating fc.k as follows:

uc,k = fc.k = Nc,k/z2 (6)
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Therefore, the spectral energy Uspectral is ultimately calculated as follows:

Uspectral(X|Y) =
n

∑
k = 1

z2

∑
i = 1

C

∑
c = 1

( fc.k)
m × ‖xk − vc‖2 (7)

2.3. Spatial Term

The spatial term is used to describe the spatial pattern of land cover distribution.
Here, the maximal spatial dependence model, which aims to maximize the spatial neighborhood
correlation among the fine spatial resolution pixels, is used. The spatial term is expressed as follows:

Uspatial(X) =
n

∑
k = 1

z2

∑
i = 1

∑
j∈NS(ai,k)

δ(C2(ai,k), C2(aj)) · wS(ai,k, aj) (8)

where ai,k is the fine resolution pixel i in the coarse resolution pixel k; aj is the neighboring fine
resolution pixel of ai,k; NS(ai,k) is the spatial neighborhoods. δ(C2(ai,k), C2(aj)) is used to express the
spatial dependence. When fine resolution pixel ai,k and aj are assigned to the same land cover class,
the value of δ(C2(ai,k), C2(aj)) equals to −1; otherwise, it equals to 0.

δ(C2(ai,k), C2(aj)) =

{
−1 C2(ai,k) = C2(aj)

0 C2(ai,k) 6= C2(aj)
(9)

The neighboring fine resolution pixels aj at different distances has different influences on the
center fine resolution pixel ai,k. In this paper, wS(ai,k, aj) is utilized to express the influence weight [7].
A Gaussian function of the distance between ai,k and aj is used to calculate the influence weight
wS(ai,k, aj) as follows:

wS(ai,k, aj) =
1

ΩS
e−3d(ai,k ,aj)/σS (10)

where σS is a nonlinear parameter; d(ai,k, aj) is the distance between the two fine resolution pixels ai,k
and aj. ΩS is the normalization constant to ensure ∑ j∈NS(ai,k)

wS(ai,k, aj) = 1.

2.4. Temporal Term

The temporal term is used to link the former fine spatial resolution land cover map Xpre with the
resultant fine spatial resolution land cover map X. In this paper, the land cover transfer matrix was
employed to represent their relationship. The transfer matrix is calculated for each coarse resolution
pixel one by one. Suppose there are C land cover classes, then the transfer matrix is a C × C-sized
matrix. The elements of the transfer matrix represent the transition probability that land cover class
ωi(i = 1, 2, · · · , C) at the former time transformed into the land cover class ωj(i = 1, 2, · · · , C) at the
latter time of coarse resolution remote sensing image acquirement, expressed as follows:

MTrans =


P(c2(•) = ω1|c1(•) = ω1) · · · P(c2(•) = ωC|c1(•) = ω1)

P(c2(•) = ω1|c1(•) = ω2) · · · P(c2(•) = ωC|c1(•) = ω2)

· · · · · · · · ·
P(c2(•) = ω1|c1(•) = ωC) · · · P(c2(•) = ωC|c1(•) = ωC)

 (11)

where P is the transition probability; c1(•) is the class label of the former coarse resolution pixel
degraded from the fine resolution map; and c2(•) is the class label of the pixel in the latter coarse
resolution fraction images.

The transfer matrix is calculated based on the land cover change rule. In general, land cover
change can be classified into three groups [23]:
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(1) The first category is “equal class CS”, which indicates that the fine resolution pixels of this
land cover class do not change. Under this change rule, the transition probability of the “equal class
CS” can be calculated as follows:

P(c2(•) = k|c1(•) = k) = 1

P(c2(•) = l|c1(•) = k) = 0 (l 6= k)

P(c2(•) = k|c1(•) = f ) = 0 ( f 6= k)

. (12)

(2) The second category is “increase class CI”, which indicates that the fine resolution pixels of this
land cover class in the latter map is more than those in the former map. In this situation, fine resolution
pixels of this land cover class in the former map are all transformed into this land cover class in
latter map, and fine resolution pixels of other land cover classes are transformed into this land cover
class, but the fine resolution pixels of this land cover class are not transformed into other land cover
class. Based on this change rule, the transition probability of the “increase class CI” can be calculated
as follows: {

P(c2(•) = k|c1(•) = k) = 1

P(c2(•) = l|c1(•) = k) = 0 (l 6= k)
(13)

(3) The third category is “decrease class CD”, which indicates that the fine resolution pixels of this
land cover class in the latter map is less than those in the former map. In this situation, fine resolution
pixels of this land cover class in the former map are only partly transformed into this land cover class
in the latter map, and fine resolution pixels of this land cover class are transformed into other land
cover classes, but other land cover classes are not transformed into this land cover class. Therefore,
the transition probability of the “decrease class CD” can be calculated as follows:

P(c2(•) = k|c1(•) = k) = AL
k /AF

k
P(c2(•) = k|c1(•) = f ) = 0 ( f ∈ CD, f 6= k)

P(c2(•) = l|c1(•) = k) =
AL

l −AF
l

∑
l∈CI ,l 6=k

AL
l −AF

l
× AF

k−AL
k

AF
k

(l ∈ CI , l 6= k)
(14)

where AL
k and AF

k are the areas of class k in the latter and former maps. AL
l and AF

l are the areas of
class l in the latter and former maps, respectively.

A simple example is used here to illustrate the change strategy in Figure 1. In this example,
the zoom factor is 10; hence, every coarse resolution pixel contains 10× 10 fine resolution pixels.
The four land cover classes are A, B, C, and D, in which the land cover proportions are [0.36, 0.12,
0.30, 0.22] and [0.18, 0.12, 0.38, 0.32] in the former and latter maps, respectively. Accordingly, 36 fine
resolution pixels are labeled as class A, 12 fine resolution pixels are labeled as class B, 30 fine resolution
pixels are labeled as class C, and 22 fine resolution pixels are labeled as class D (Figure 1a). With the
passage of time, land cover changes. The fraction changes of each class are computed by using the
former and latter fraction images (Figure 1b). The potential fine resolution pixel locations of class A,
which is a decrease class, are determined to be the former fine resolution pixels of class A (Figure 1c);
some will need to relabeled to classes C and D according to the transfer matrix. The fine resolution
pixel locations of class B, which is an equal class, are determined to be the former fine resolution pixels
of class B (Figure 1d). The fine resolution pixel locations of classes C and D, which are increase classes,
are determined to be the former fine resolution pixels of classes C and D plus potentially some of the
locations labeled as class A in the former data (Figure 1e,f).
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Figure 1. An example of land cover change and allocation of fine resolution pixel labels according
to the transfer matrix: (a) former 10× 10 fine resolution pixels within one coarse resolution pixel;
(b) fraction change of each class; (c) potential fine resolution pixel locations of class A marked in yellow
color in latter fine resolution map; (d) fine resolution pixel locations of class B marked in greyish-green
color in latter fine resolution map; (e) fine resolution pixel locations of class C marked in dark green
color and potential fine resolution pixel locations for the rest of class C marked in light green color;
and (f) fine resolution pixel locations of class D marked in dark blue color and potential fine resolution
pixel locations for the rest of class C marked in light blue color.

The previously presented example data were used to illustrate the entire procedure for generating
the transfer matrix further (Figure 2). First, for the “equal class B”, the element [2, 2] is set to 1,
and other elements in the entire second row and column are set to 0. Second, for the “increase class
C and D”, the elements [3, 3] and [4, 4] are set to 1. Elements in the third and fourth columns are
set to 0, excluding [3, 3] and [4, 4]. Third, for the “decrease class A”, the element [1, 1] is set to
0.18/0.36 = 1/2. Other elements are calculated with Formula (14), for example, element [1, 3] is set to

0.38−0.3
(0.38−0.3)+(0.32−0.22) ×

0.36−0.18
0.36 = 2/9. Finally, the transfer matrix of this coarse pixel is generated.
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On the basis of the transfer matrix, the objective function of the temporal term can be calculated
as follows:

Utemporal(X|Xpre) =
n

∑
k = 1

z2

∑
i = 1

C

∑
c = 1
−P(c2(ai,k)|c1(ai,k)) (15)
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where P(c2(ai,k)|c1(ai,k)) is the transition probability and ai,k is the fine spatial resolution pixel i in
coarse pixel k.

2.5. Model Implementation and Accuracy Validation

The resultant fine resolution land cover map is produced by optimizing the objective function in
Formula (2). Minimizing the global energy for the entire image is not analytically tractable because
of the large configuration space of the problem. Iterative Conditional Model (ICM), which has the
advantage of fast convergence speed, was utilized to achieve the global energy minima. The flowchart
of the proposed STFCM_SRM is shown in Figure 3, and the main steps are summarized as follows:

(1) The endmember spectra are extracted from the coarse resolution remotely sensed image.
(2) The fraction images are produced by unmixing the coarse resolution remotely sensed image by

using the extracted endmembers.
(3) The SR map is initialized according to the number of subpixels for all land cover classes in each

coarse resolution pixel on the basis of the fraction image.
(4) The transfer matrix is calculated for every coarse resolution pixel one after another by using the

fraction images and the former fine resolution land cover map.
(5) Subpixel labels in the initial fine spatial resolution land cover map are updated iteratively.

The land cover type for each subpixel that contributes to the minimal posterior energy is accepted
as the label of this subpixel. The iteration is terminated when the previously fixed number of
iteration is achieved or the algorithm converges.
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SRM (FCM_STSRM).

Accuracy validation was achieved by comparing the resultant land cover map and the reference
fine resolution land cover map pixel by pixel. The result accuracy of the proposed method was
evaluated using a series of indices, including kappa coefficient, overall accuracy (OA), PULC, PCLC,
KULC, and KCLC. Here, PULC is the correctly labeled percentage of the unchanged land cover pixels;
PCLC is the correctly labeled percentage of the changed land cover pixels; KULC is the kappa coefficient
for the unchanged land covers; and KCLC is the kappa coefficient for the changed land covers.

3. Results

3.1. Experiment 1

3.1.1. Data Preparation

In this experiment, synthetic images were used to assess the performance of the proposed
FCM_STSRM method. Multispectral remote sensing images were simulated from the National Land
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Cover Database (NLCD), which has been applied consistently across the United States at a spatial
resolution of 30 m [36]. The study area covering 2.4 × 2.4 km2 with 800× 800 pixels is located in
Charlotte. The former finer resolution map was obtained from NLCD 2001 (Figure 4a), and the reference
map used for model validation was obtained from NLCD 2006 (Figure 4b). The level I classification of
NLCD with eight land cover classes including water, developed, barren, forest, shrubland, herbaceous,
planted, and wetlands, was used. The changed pixels account for 8.09% of all pixels in the study area.
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in the study area: (a) NLCD 2001; (b) NLCD 2006; and (c) change map.

The fine resolution land cover map in 2006 was degraded with z = 4, z = 8, and z = 16 to
simulate coarse resolution multispectral images with different spatial resolutions. The number of
bands was set to seven to accommodate a dimensionality constraint in spectral unmixing. The eight
endmembers were set to [0.75, 0.68, 0.225, 0.02, 0.08, 0.13, 0.21]T, [0.31, 0.07, 0.107, 0.39, 0.36, 0.33, 0.07]T,
[0.16, 0.29, 0.455, 0.605, 0.72, 0.96, 0.79]T, [0.44, 0.52, 0.35, 0.89, 0.98, 0.52, 0.68]T, [0.58, 0.89, 0.33, 0.2, 0.28,
0.48, 0.34]T, [0.06, 0.54, 0.19, 0.76, 0.89, 0.21, 0.4]T, [0.98, 0.43, 0.34, 0.09, 0.32, 0.43, 0.38]T, and [0.81, 0.42,
0.8, 0.38, 0.64, 0.28, 0.29]T, where T is the transposition operator. The spectral response of each class was
normally distributed in each waveband, and the covariance matrices for all of the classes were set to
A · I, where A = 0.01 is a constant and I is a 7× 7 identity matrix [11]. Three degraded images produced
by different zoom factors are shown in Figure 5.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 

 

reference map used for model validation was obtained from NLCD 2006 (Figure 4b). The level I 
classification of NLCD with eight land cover classes including water, developed, barren, forest, 
shrubland, herbaceous, planted, and wetlands, was used. The changed pixels account for 8.09% of 
all pixels in the study area. 

 
Figure 4. National Land Cover Database (NLCD) land cover maps and the corresponding change 
maps in the study area: (a) NLCD 2001; (b) NLCD 2006; and (c) change map. 

The fine resolution land cover map in 2006 was degraded with z = 4, z = 8, and z = 16 to simulate 
coarse resolution multispectral images with different spatial resolutions. The number of bands was 
set to seven to accommodate a dimensionality constraint in spectral unmixing. The eight 
endmembers were set to [ ]T

0.75, 0.68, 0.225,0.02,0.08, 0.13, 0.21 , [ ]T
0.31, 0.07, 0.107,0.39, 0.36, 0.33,0.07 , 

[ ]T
0.16,0.29, 0.455, 0.605,0.72, 0.96, 0.79 , [ ]T

0.44,0.52, 0.35, 0.89,0.98, 0.52, 0.68 , [ ]T
0.58, 0.89, 0.33,0.2, 0.28,0.48, 0.34 , 

[ ]T
0.06,0.54,0.19,0.76,0.89,0.21,0.4 , [ ]T

0.98,0.43,0.34,0.09,0.32,0.43,0.38 , and [ ]T
0.81,0.42,0.8,0.38,0.64,0.28,0.29 , 

where T is the transposition operator. The spectral response of each class was normally distributed 
in each waveband, and the covariance matrices for all of the classes were set to A I⋅ , where A  = 0.01 
is a constant and I  is a 7 7×  identity matrix [11]. Three degraded images produced by different 
zoom factors are shown in Figure 5. 

 
Figure 5. Simulated coarse spatial resolution images for FCM_STSRM in experiment 1: (a) z = 4;  
(b) z = 8; and (c) z = 16. 

Figure 5. Simulated coarse spatial resolution images for FCM_STSRM in experiment 1: (a) z = 4;
(b) z = 8; and (c) z = 16.



Remote Sens. 2018, 10, 1212 10 of 20

3.1.2. Model Implementation

In the proposed FCM_STSRM, the fine resolution map obtained from NLCD 2001 and the
simulated coarse resolution image in 2006 were used to generate the resultant fine resolution
map in 2006, and the reference map obtained from NLCD 2006 was used for model validation.
The neighborhood window was set to seven, which indicates that the object fine resolution pixel has
48 neighboring fine resolution pixels. The endmembers were directly set as the simulated values.

Two additional approaches, hard classification (HC) and fuzzy c-means clustering based SRM
(FCM_SRM), were used for comparison. In the HC method, the fuzzy membership of each pixel
belonging to each land cover class is calculated. Then, the pixel class label is assigned according to the
maximum membership. The FCM_SRM method is a SRM algorithm that is applied to a mono-temporal
image without considering the temporal information. Indeed, when the temporal coefficient of
FCM_STSRM is set to 0, the STFCM_SRM method degrades to FCM_SRM. All of the algorithms were
tested on an Intel® Core™ i5-3470 CPU @ 3.20 GHz with 4 GB RAM with MATLAB R2016b version
(The MathWorks, Inc., Natick, MA, USA).

3.1.3. Results

HC, FCM_SRM, and FCM_STSRM at different zoom factors were applied for comparison to
validate the performance of the proposed method. In this experiment, the spatial and temporal
coefficients are set to have the optimal values. The resultant land cover maps generated by the three
different methods at z = 4, z = 8, and z = 16 are shown in Figure 6.
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Figure 6. Resultant land cover maps generated by the three different methods with different zoom
factors: (a) HC (z = 4); (b) HC (z = 8); (c) HC (z = 16); (d) FCM_SRM (z = 4); (e) FCM_SRM (z = 8);
(f) FCM_SRM (z = 16); (g) FCM_STSRM (z = 4); (h) FCM_STSRM (z = 8); and (i) FCM_STSRM (z = 16).
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A visual comparison of the results shown in Figure 6 indicates that the proposed FCM_STSRM
method prevailed over the two other methods at all zoom factors. With the increase in zoom factors,
the detailed land cover spatial pattern is more difficult to reproduce. Compared with the reference
map, HC generated land cover maps with low continuity and jagged boundaries, particularly when
the zoom factor value is high (Figure 6c) because, in the HC method, land cover information is
considered only at the pixel level and detailed spatial information is easily lost. Compared with the HC
method, the FCM_SRM method uses maximal spatial dependence to consider the spatial neighborhood
relationship. The FCM_SRM method can provide spatial information at the subpixel scale and generate
a better resultant land cover map to some extent. However, the linear features cannot be easily mapped
by the FCM_SRM method. Moreover, when the zoom factor increases, the resultant land cover map
becomes locally smooth because the maximal spatial dependence model cannot represent the land
cover pattern accurately.

By contrast, the resultant land cover map generated by FCM_STSRM can retain the fine spatial
pattern and is similar to the reference map. The FCM_STSRM method considers the uncertainty in the
process of spectral unmixing by using the FCM criterion under the framework of STSRM, which adds
the temporal term to the FCM_STSRM algorithm. Incorporating the land cover information into
the former fine resolution map can provide valuable spatial pattern for the latter land cover map.
In the areas without land cover change, the resultant land cover map can inherit the land cover
information from the former NLCD 2001 map directly. In this experiment, the change percentage
from NLCD 2001 to NLCD 2006 is only 8.09%. Therefore, the FCM_STSRM method can generate the
resultant land cover map with a high accuracy, even at a high zoom factor (such as z = 16, Figure 6i).

The accuracy assessment of the three methods is shown in Table 1. The result accuracies decreased
with the increased zoom factor for all three methods because the uncertainty increased when the zoom
factor increased. Compared with the result generated from HC, FCM_SRM has higher overall accuracy
values at z = 4 and z = 8. However, at z = 16, the overall accuracy values of FCM_SRM are slightly
lower than that of HC because of the large uncertainty of fine resolution pixel locations that may be
produced by FCM_SRM when the zoom factor is high. The overall accuracies obtained from HC and
FCM_SRM were lower than 90% when z = 4, whereas the overall accuracy of FCM_STSRM was higher
than 97%. The kappa coefficient, OA, PULC, and KULC values of FCM_STSRM are obviously higher
than those of the two other methods, even at z = 16, because the FCM_STSRM method adopts the
former fine resolution land cover map to provide the spatial pattern for the resultant fine resolution
map. The decrease rate of OA in FCM_STSRM is only about 3% when the zoom factor changes from 4
to 16, which is lower than those in the two other methods.

Table 1. Accuracy statistics of different methods at different zoom factors.

Zoom Factor Methods Kappa OA PULC PCLC KULC KCLC

z = 4
HC 0.7638 83.14% 82.89% 85.89% 0.7621 0.6808

FCM_SRM 0.7719 83.84% 83.51% 87.54% 0.7691 0.7028
FCM_STSRM 0.9640 97.41% 98.41% 86.04% 0.9781 0.6903

z = 8
HC 0.6613 76.15% 76.01% 77.83% 0.6616 0.5145

FCM_SRM 0.6650 76.20% 77.83% 79.92% 0.6636 0.5385
FCM_STSRM 0.9476 96.23% 98.30% 72.71% 0.9765 0.4541

z = 16
HC 0.5630 69.65% 69.76% 68.29% 0.5685 0.3385

FCM_SRM 0.5556 69.47% 69.55% 68.57% 0.5615 0.3152
FCM_STSRM 0.9240 94.53% 98.22% 52.48% 0.9755 0.2100

In the HC and FCM_SRM methods, PULC and PCLC have similar values at z = 4, z = 8, and z = 16
because these two methods do not use the former fine resolution land cover map, such that these
two methods cannot distinguish the changed and unchanged pixels. However, in the FCM_STSRM
method, PULC and PCLC are different. In general, PULC is higher than OA and PCLC. A similar trend
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is observed for KULC and KCLC. PCLC is also drastically reduced when z increased. Hence, KCLC is
also drastically reduced. By contrast, as z increased, PULC and KULC only slightly decreased because
the changed and unchanged pixels are treated with different methods. The labels of unchanged pixels
are inherited from the former fine resolution map, whereas the labels of changed pixels are determined
by the spatial model. Moreover, given that the changed pixels only account for 8.09% of all pixels,
which is a small proportion, the FCM_STSRM method should enable the PULC to reach a high value
and obtain a high OA.

3.2. Experiment 2

3.2.1. Data Preparation

Landsat 5 multispectral images taken over the Amazon area were utilized in this experiment
to explore the proposed FCM_STSRM method further. The study area is located in the Amazon
rainforest of Brazil, which is mainly covered by tropical forest. The experiment was implemented
with two Landsat Thematic Mapper (TM) images acquired on 18 July 2008 and 22 June 2010. The two
Landsat TM images were downloaded from USGS EarthExplorer (https://earthexplorer.usgs.gov).
The WRS_PATH is 226 and the WRS_ROW is 69. The two images have 1120× 1120 pixels and six
bands with a spatial resolution of 30 m. The images are classified into seven classes, which are forest,
grassland, cropland, barren, light surface, dark surface, and water. The changed pixels account for
50.66% of all pixels in the study area. The 2010 land cover map was degraded with z = 8 to simulate the
coarse resolution images with a spatial resolution of 240 m, which is similar to the spatial resolution of
bands 1–2 of the Moderate Resolution Imaging Spectroradiometer (MODIS) image. The data used in
the experiment 2 are shown in Figure 7.
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3.2.2. Results

Comparative experiments among HC, FCM_SRM, and FCM_STSRM were conducted to validate
the proposed method. OA, kappa coefficient, PULC, PCLC, KULC, and KCLC were adopted to conduct
accuracy assessment. The neighborhood window was set to 7. The fuzziness parameter m was set to 2.
The optimal weighting coefficients α and β were determined by trials and errors. The resultant land
cover maps generated by HC, FCM_SRM, and FCM_STSRM are shown in Figure 8.
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The resultant land cover map generated by HC has jagged boundaries (Figure 8a). In Figure 8b,
the resultant land cover map generated by FCM_SRM contained patches with over-smoothed rounded
boundaries. The linear features and some detailed information (highlighted by a yellow circle) were
not mapped correctly in Figure 8a,b because only a mono-temporal coarse resolution image is used
in the HC and FCM_SRM, such that the detailed spatial pattern, particularly for the linear features,
is easily missed. Compared with HC and FCM_SRM, the resultant land cover map generated by
FCM_STSRM (Figure 8c) exhibits a good performance, which is most similar to the reference land
cover map generated from the Landsat TM image (Figure 8d).

In Table 2, as an example, a confusion matrix of FCM_STSRM of the entire area was presented.
In general, classes with similar spectral values are prone to misclassification, such as forests and
grasslands. On the basis of the confusion matrix, the accuracy assessment can be calculated. Table 3
shows the accuracy assessment of the three methods. The OA and kappa coefficient obtained
from FCM_STSRM has the highest value. With the help of former fine resolution land cover map,
FCM_STSRM can retain the fine spatial pattern in the resultant land cover map. The kappa coefficients
for unchanged and changed land covers of the proposed FCM_STSRM are all higher than those of HC
and FCM_SRM. The qualitative and quantitative results show that the proposed FCM_STSRM method
can improve the accuracy compared with the traditional HC method and the FCM_SRM method
applied to a mono-temporal coarse resolution remotely sensed image.
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Table 2. Confusion matrix for the proposed FCM_STSRM in the entire area.

Forest Grassland Cropland Barren Light Surface Dark Surface Water

Forest 551,605 16,172 7862 71 651 1250 14,892
Grassland 3349 17,037 1237 10 288 476 39
Cropland 2649 1743 98,027 142 3318 9187 434

Barren 182 103 547 17,355 2640 314 4
Light surface 936 787 6652 2519 76,752 4268 122
Dark surface 2653 2065 23,286 963 8396 368,894 708

Water 966 19 340 0 14 166 2310

Table 3. Accuracy statistics of different methods.

Methods Kappa OA PULC PCLC KULC KCLC

HC 0.8293 88.52% 94.78% 82.43% 0.7928 0.7303
FCM_SRM 0.8367 89.12% 96.06% 82.36% 0.8386 0.7248

FCM_STSRM 0.8549 90.24% 97.28% 83.39% 0.8879 0.7422

4. Discussion

4.1. Uncertainty of the Classification

Land cover classification is a fundamental task in remotely sensed image analysis, and the
uncertainty of classification is well noticed. One of the most crucial sources of uncertainty is mixed
pixels, as several land cover classes are included in one pixel. Through spectral unmixing, fraction
images can be extracted, and the uncertainty of the spatial locations still exist. SRM is mainly applied
to address this uncertainty. This study proposed an FCM_STSRM method adopting the FCM criterion
in the STSRM. The results of the two experiments showed that the proposed FCM_STSRM approach
exhibits a good performance in improving the spatial resolution and can obtain better results than the
HC and FCM_SRM methods. The proposed FCM_STSRM is universal and expandable and can be easily
applied to many fields, such as landslide change detection, waterline mapping, and forest mapping.

Nevertheless, FCM is not the only possible approach to deal with uncertainty. Recent studies have
tested the effectiveness of fuzzy set theory [37,38] and multi-label classification approaches [39,40]
in solving uncertainty problems. Multi-label classification, which is based on the assumption that the
different labels are not mutually exclusive [41], may restrict its wide use. The recent use of fuzzy set
theory is only pixel-based, which does not consider the uncertainty of mixed pixels and the spatial
distribution of land cover classes. However, fuzzy set theory, which can be quantitative or qualitative,
is capable of generating more reliable results that can be extended to the subpixel level.

4.2. Parametric Analysis of FCM_STSRM

In general, the performance of the proposed FCM_STSRM approach depends on the model
parameters, such as weighting coefficients and fuzziness parameter. Experiment 1 was used here as
an example to analyze the effect of the parameters.

4.2.1. Effect of the Weighting Coefficients

Weighting coefficients, which are used to balance the spectral, spatial, and temporal terms in
the objective function, are important to the result. If the weighting coefficients are not well assigned,
then it can generate a resultant land cover map with low accuracies and missing detailed information.

Four representative resultant land cover maps were selected here to illustrate the effect of the
weighting coefficients (Figure 9). In Figure 9a, the spatial coefficient α is set to have a small value, that is,
0.001. The temporal coefficient β = 0, indicating that the temporal term is useless here. As a result,
the resultant land cover map has low continuity and jagged boundaries because of the lack of spatial
pattern and missing detailed information. In Figure 9b, the spatial coefficient α is set to have a high
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value, that is, 10. The temporal coefficient β = 0.1, indicating that the spatial term plays a leading role
here and the former fine resolution land cover map can only have a slight effect on the resultant land
cover map. As a result, the resultant land cover map contained patches with over-smoothed rounded
boundaries, and the linear features were difficult to classify correctly. From the visual comparison,
the land cover map shown in Figure 9c exhibits a good performance and the linear features can
be clearly recognized because of the application of a temporal constraint. However, the land cover
map shown in Figure 9c contains many speckle-like artifacts (highlighted in the red circle) because
of the lack of spatial constraint at α = 0. Compared with the three experiments, the resultant land
cover map shown in Figure 9d exhibits the best performance with clearly linear features and few
speckle-like artifacts.
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OA, PULC, and PCLC of the proposed FCM_STSRM with different weighting coefficients are
shown in Table 4. When β = 0, the values of OA and PULC can only remain at a low level, which are
no more than 77%, regardless of the value of α, because β represents the weight of the temporal
term in the proposed FCM_STSRM. When β is set to 0, the former fine resolution map is useless,
which will lead to uncertainty of the fine resolution pixel locations in the resultant land cover map.
By contrast, for a specific spatial coefficient value α, the values of OA and PULC increased with the
increase in temporal coefficient value β. However, the values of OA and PULC will reach stable
values. Afterward, the values of OA and PULC will remain nearly the same even though the value
of β increases. The optimal weighting coefficients were selected by trials and errors. When β is high,
the PULC value is obviously higher than the PCLC value because PCLC represents the correctly
labeled percentage of the changed land cover pixels. Thus, the former land cover map is useless for
the changed pixels.
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Table 4. Accuracy statistics of the FCM_STSRM method with different weighting coefficients (%).

Result Statistic β α 0 0.001 0.01 0.1 1 10

OA

0 59.04 65.20 76.17 73.32 68.56 68.13
0.001 80.99 82.53 80.56 73.66 68.54 68.21
0.01 95.90 96.32 95.65 76.59 69.16 68.28
0.1 96.13 96.23 96.23 95.66 73.68 68.48
1 96.13 96.17 96.17 96.18 95.63 73.31
10 96.13 96.17 96.17 96.17 96.17 95.63

PULC

0 59.07 65.05 75.85 73.21 68.70 68.25
0.001 82.63 83.71 80.53 73.56 68.57 68.24
0.01 97.93 98.12 97.09 76.56 69.21 68.32
0.1 98.26 98.34 98.30 97.28 73.69 68.54
1 98.29 98.36 98.35 98.30 97.29 73.33
10 98.29 98.36 98.36 98.36 98.30 97.29

PCLC

0 58.68 66.90 79.71 74.58 67.04 66.81
0.001 62.31 69.18 80.92 74.86 68.18 67.91
0.01 72.85 75.78 79.28 76.97 68.57 67.87
0.1 71.86 72.26 72.71 77.23 73.62 67.89
1 71.65 71.33 71.40 72.01 76.82 73.13
10 71.58 71.29 71.30 71.32 71.94 76.78

4.2.2. Effect of the Fuzziness Parameter

Fuzziness parameter m is the weighing exponent for each fuzzy membership, which ranges from
1 to ∞. In order to explore the effect of the fuzziness parameter on the result, m was set in the range
of 1–3 with an interval of 0.2. The FCM_SRM method was also applied for comparison. OA, PULC,
and PCLC were adopted to conduct accuracy assessment (Figure 10).
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Figure 10. Accuracy assessment of FCM_SRM and FCM_STSRM with different fuzziness parameters:
(a) OA for FCM_SRM; (b) PULC for FCM_SRM; (c) PCLC for FCM_SRM; (d) OA for FCM_STSRM;
(e) PULC for FCM_STSRM; and (f) PCLC for FCM_STSRM.

The values of OA and PULC increased with the increase in the fuzziness parameter m and
remained stable when m reaches between 1.5 and 2. However, in FCM_STSRM, with the increase in m,
the value of PCLC initially increases and subsequently decreases because the value of OA is closely
related to the ratio between PULC and PCLC. In this experiment, the unchanged pixels account for
91.91% of all pixels. Thus, the method tries to make PULC to a large value by adjusting the parameters
so as to obtain a high OA. Accordingly, the value of PCLC will decrease with the increase in PULC.
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Although the result accuracies varied with different values of m in FCM_SRM and FCM_STSRM,
the values of OA and PULC yielded by FCM_STSRM are higher than those yielded by FCM_SRM.
Moreover, in FCM_STSRM, the result accuracy only changes in a small range with the increase in m
(Figure 10d–f), indicating that m has only a slight effect on the result because the former fine resolution
land cover map can provide useful information with the temporal term.

Overall, the weighting coefficients and fuzziness parameter have significant effects on the
results. Optimization and selection of parameters are important to achieve results with high accuracy.
In general, the weighting coefficients can be selected using training data, and the optimal weighting
coefficients can be set to have the highest accuracy value.

4.3. Change Rate

When the proposed FCM_STSRM method is applied in practice, an important concern is the
change rate of land cover during the period between acquired times of the coarse resolution image
and the former fine resolution land cover map. Two experiments were conducted in this study, and the
percentages of changed pixels are 8.09% and 50.66%. The results show that the proposed FCM_STSRM
model can obtain better result accuracy than the two other methods (HC and FCM_SRM) even when
the change rate is more than 50%. However, a high value of OA can be obtained when the change rate is
low because FCM_STSRM can always obtain a high accuracy for unchanged pixels than changed pixels.

In the proposed FCM_STSRM model, the introduction of the former fine resolution land cover map
aims to provide extra information about the spatial pattern of land cover classes. For unchanged pixels,
the former map is useful because the latter sub-pixel land cover labels can be inherited from it directly.
However, the changed pixels must be considered in the processing of SRM, as land cover changes
always occur, particularly when the time interval is long. In the FCM_STSRM model, the spatial
pattern of changed pixels is obtained from the recent coarse remotely sensed image and the land
cover change rule. The uncertainty in the result of changed pixels is larger than that in the result
of unchanged pixels. The ultimate goal of the FCM_STSRM model is to maximize the OA, and the
trade-off between changed and unchanged pixels should be considered. Hence, the use of information
in the former fine resolution land cover map and recent coarse remotely sensed image should be
balanced. Adjusting the weighting coefficients through training data is an important and effective
approach to achieve balance and obtain the highest OA. In the further work, it is possible to consider
using a plurality of former fine resolution land cover maps to find the objects’ change rules in the time
passage to further improve the accuracy.

5. Conclusions

In this paper, an FCM-based spatio-temporal super resolution land cover mapping method
is proposed. The proposed FCM_STSRM method is an image-based SRM method that can be
directly applied to original coarse spatial resolution multispectral images. Moreover, the proposed
FCM_STSRM method does not only characterize the land cover spatial dependence but also links the
latent fine resolution pixels with its former fine resolution land cover labels by temporal dependence.
The proposed FCM_STSRM method incorporates the spectral, spatial, and temporal information
into one objective function, in which the spectral term is constructed with the FCM criterion,
the spatial term is constructed with the maximal spatial dependence principle, and the temporal
term is characterized by the land cover transition probabilities in the bitemporal images. As a result,
the proposed FCM_STSRM method can not only eliminate the influence of spectral unmixing errors on
the resultant super-resolution map compared with fraction-based SRM methods, but can also decrease
the uncertainty in the resultant land cover maps due to the lack of spatial pattern of land covers for
traditional image-based FCM methods applied to a single temporal coarse spatial resolution image.

The performance of FCM_STSRM was validated using two experiments with the land cover maps
and multispectral images simulated with the NLCD 2001 and NLCD 2006 datasets, and real Landsat
imagery, by comparing with the HC and FCM_SRM methods applied to a mono-temporal image.
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The results showed that the HC and FCM_SRM methods cannot reproduce the detailed land cover
pattern, whereas the proposed FCM_STSRM can retain fine spatial pattern by inheriting land cover
information from the former fine resolution land cover maps and can generate land cover maps with
high result accuracy, which are similar to the reference map. The OA obtained from FCM_STSRM is
higher than 97% in experiment 1 based on the NLCD dataset when the zoom factor is 4. Although the
OA decreases as the zoom factor increases, the OA is still higher than 94% at z = 16 in experiment 1.
The OA obtained from FCM_STSRM is 90.24% in experiment 2 based on the Landsat imagery, which is
higher than that of the two other methods. The comparable efficiency of the resultant accuracy of the
proposed FCM_STSRM method indicates that FCM_STSRM is a promising approach for producing
fine spatial land cover maps with coarse spatial resolution remote sensing images.
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