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Abstract: The automatic image registration serves as a technical prerequisite for multimodal remote
sensing image fusion. Meanwhile, it is also the technical basis for change detection, image stitching
and target recognition. The demands of subpixel level registration accuracy can be rarely satisfied
with a multimodal image registration method based on feature matching. In light of this, we propose
a Generic and automatic Markov Random Field (MRF)-based registration framework of multimodal
image using grayscale and gradient information. The proposed approach performs non-rigid
registration and formulates an MRF model while grayscale and gradient statistical information of a
multimodal image is employed for the evaluation of similarity while the spatial weighting function
is optimized simultaneously. Besides, the value space is discretized to improve the convergence
speed. The developed automatic approach was validated both qualitatively and quantitatively,
demonstrating its potential for a variety of multimodal remote sensing datasets and scenes. As for
the registration accuracy, the average target registration error of the proposed framework is less than
1 pixel, while the maximum displacement error is less than 1 pixel. Compared with the polynomial
model registration based on manual selection, the registration accuracy has been significantly
improved. In the meantime, the proposed approach had the partial applicability for the multimodal
image registration of large deformation scenes. It is also proved that the proposed registration
framework using grayscale and gradient information outperforms the MRF-based registration using
only grayscale information and only gradient information while the proposed registration framework
using Gaussian function as spatial weighting function is superior to that using distance inverse
weight method.

Keywords: multimodal image; Markov Random Field; Grayscale and Gradient Information; spatial
weighting function; non-rigid registration

1. Introduction

Multimodal remote sensing images can be applied to compensate the deficiencies of the single
image source by increasing the amount of the image information. The generic and automatic
registration of multimodal remote sensing image is the necessary step of point cloud coloring, image
fusion, image stitching and mosaic, target recognition and change detection (e.g., change detection
based on two heterogeneous images acquired by optical sensors and radars on different dates [1]). And
it is of fundamental importance for numerous emerging geospatial environmental and engineering
applications (e.g., geometric correction of SAR image using the optical image, band-to-band image
registration developed for the High-Precision Telescope of microsatellite remote sensing [2], the spatial
registration of point/line-scan hyperspectral sensor measurements in-water hyperspectral imaging [3]).
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Therefore, multimodal image registration technology is the major obstacle impeding the improvement
of the accuracy and effectiveness of various problems [4]. Due to the various imaging mechanisms
of different sensors and the disparate time, angle and environment of image acquisition, there are
still many challenges in the field of multimodal images registration. The realization of high-precision
and automatic registration technology is even more difficult, especially in some cases where there
are significant differences between remote sensing data category (e.g., optical and SAR images, point
cloud depth map and panoramic images) and band (e.g., visible light and medium wave infrared
image, near infrared and multi-spectral images).

Traditional remote sensing image registration methods adopt the manual selection of control
points to solve geometric transformation relationships to achieve pixel-by-pixel alignment between
images, which are mainly constrained in terms of two aspects, including the heavy workload and
low efficiency and automation. At present, the automatic registration technology for multimodal
remote sensing images has been extensively studied and is one of the research hotspots in the field of
image processing.

For multimodal remote sensing images, the grayscale characteristic is no longer a linear
relationship. Neither is it even a non-function change generally with statistical correlations and
geometric similarities in the gray relations between images. Meanwhile, the non-uniform deformation
would occur during acquisition of multimodal images. As what is shown in Figure 1, errors are in
pixels and have been calculated based on manually denoted homonymy points. It sometimes would
be ignored that numerous deformation properties of multimodal images are non-rigid and non-linear.
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Figure 1. Non-uniform deformation of multimodal remote sensing image.

Image registration has been comprehensively studied through many approaches being proposed.
Due to the weak grayscale correlation of multimodal images, simple, gray-based registration methods
(e.g., the correlation function [5]) would lead to inaccurate registration. Feature descriptors, although
it has great advantages in homologous image registration, do not perform with the same robustness in
multimodal remote sensing datasets [6] while these methods (e.g., contour feature [7,8], SUSAN [9],
SIFT [10] phase congruency based feature [11,12], extended SURF [13]) are faced with the challenges of
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repetitive feature detection and modal-invariant feature description. Most of them are still exploratory
or are only suitable for specific occasions or certain types of multimodal images.

Due to the statistical correlation of grayscale relationships and the similarity of geometric
structures between multimodal remote sensing images, the regional registration method based on
statistical dependence or image structure consistency is suitable for multimodal image registration.
The following is a summary of the current research status of this type of registration method.

The regional registration methods based on statistical dependency outperforms the previous
methods. The well-known mutual information [14–16] mainly uses the statistical correlation of
gray features between images, which is employed for medical image registration first and the
multimodal image registration afterwards. The normalized mutual information [17] can be applied
to overcome the shortcoming of mutual information sensitivity to image overlap. High-dimensional
mutual information [18], regional mutual information [19], feature mutual information [20] have high
dimension, complex calculation and other defects. Cross-Cumulative Residual Entropy (CCRE) [21]
introduces cumulative residual entropy into mutual information with strong anti-noise ability and
stability. Besides, wavelet transform [22] is applied to registration methods based on mutual
information to realize the registration of infrared and optical images from coarse to fine. It is difficult
for these methods to achieve ideal results in terms of time consumption or registration accuracy.

Generally, the basic structures of ground objects can be preserved in the multimodal image. These
structures share certain similarities and invariances. Image structure information can generally be
represented by gradients, edges and self-similarity. Yan et al. [23] proposed the gradient consistency
operator based on the norm-weighted angle between gradient vectors and applied it to the registration
between medium-infrared and visible images. Heinrich et al. [24] proposed Modality Independent
Neighborhood Descriptor (MIND), which enjoys obvious advantages compared with the anti-noise
characteristics and stability. However, it involves massive calculation. Ye et al. [25] construct a
shape similarity measurement using local self-similarity and normalized correlation coefficients to
for multispectral remote sensing image registration. These methods are only suitable for certain
multimodal images or have low computational efficiency.

Another type of registration methods is to combines image structure information and mutual
information. Among them, the most popular research is the combination of gradient feature
information and mutual information for heterogeneous image registration [26–29], which is widely
applied to medical image registration research. But in the field of remote sensing image registration
and application, these methods are still immature and further research is needed.

In order to register multimodal remote sensing images, various registration methods have been
proposed through these decades. A generic and automated registration framework based on Markov
Random Field (MRF) [30,31] has been successfully utilized for multimodal remote sensing image
registration. The discrete optimization setting along with the introduced data-specific energy terms
form a modular approach with respect to the similarity criterion, which endows the fully exploitation
of the spectral properties of multimodal remote sensing datasets.

However, the registration accuracy of the registration framework based on Markov Random
Field (MRF) cannot reach the subpixel level. Inspired by the aforementioned work, we propose a
common, automatic registration framework of the multimodal image to satisfy the standards of the
desired registration accuracy. The proposed approach performs non-rigid registration, formulates a
Markov Random Field (MRF) model while grayscale and gradient statistical information of multimodal
image is employed for the evaluation of the similarity and the spatial weighting function is optimized
simultaneously. Deformable registration satisfies differential homeomorphism, which can better
maintain the topology of the image [32]. The value space is discretized to improve the convergence
speed. In terms of spatial accuracy, the average registration error is less than 1 pixel while the maximum
registration error is less than 1 pixel. The major contributions of this paper are listed below:

(1) We propose a generic and automatic registration framework for multiple multimodal remote
sensing images which significantly improves registration accuracy.
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(2) Compared with other methods, the proposed approach considers both the grayscale and gradient
statistical information of images, which is used for similarity measures of data-specific energy
term, hence to possess stronger robustness for the registration of multiple heterogeneous remote
sensing images and target scenes.

(3) It can be noted that the contribution of the spatial weight function to the registration energy
should be considered. We employed the Gaussian function method, which can overcome the
discontinuity of the spatial weight function and hence to further improve registration accuracy.

The rest of the paper is organized as follows: In Section 2, we describe the overall process and
details of the proposed generic and automatic MRF-based registration for multimodal remote sensing
image using grayscale and gradient Information. Section 3 presents the experiments and results of four
multimodal datasets to demonstrate the effectiveness both qualitatively and quantitatively. In Section 4,
a discussion about the proposed method with the accuracy improvement and the influence of parameter
analysis is conducted. Section 5 presents the conclusions and suggestions for the future work.

2. Materials and Methods

The multimodal image registration framework considering the gray and gradient information is
the association of Markov Random Field (MRF) and B-spline interpolation. The basic framework of
the framework is the Markov Random Field (MRF) model, which can be used to estimate the optimal
transformation by minimizing the energy function. Firstly, the image is meshed to form a uniform
control grid. Considering the gray and gradient information of the image for cost calculation, the
optimal solution (Fast PD algorithm [33–35], used drop library) is used to obtain the label of MRF
(the displacement of the control grid node). Then the B-spline interpolation strategy is used for the
displacement calculation of each pixel point to control image deformation and perform registration.

In the specific case of image registration, the MRF model is defined as follows [30]: the node
(the spatial position xp) corresponds to the control point in the uniform B-spline grid; For each node,
there is a set of discrete labels L; The discrete labels set L corresponds to the quantization of the solution
space, representing the allowable discrete displacement. The number of labels set is 4n + 1 while
the uniform sampling number along the x, y and diagonal lines is n. The random variables would
correspond with the displacement of the control points. The optimized energy function consists of
two terms: the data term measures the data (the source image and the gradient image) likelihood of
applying all allowed displacements to each random variable through the use of unary potentials D
and the regular term penalizes non-desirable interactions between the random variables through the
use of pairwise potentials P and introduces the prior knowledge of the smoothing constraints of the
deformation field. Besides, λ is a scalar value used to evaluate the influence of the regular term. The
goal of image registration is to assign an optimal label to every control grid node, so that the following
energy is minimized:

EMRF(l)= ∑
p∈V

Dp(lp)︸ ︷︷ ︸
data term

+ λ ∑
(pq)∈ε

Ppq(lp, lq)︸ ︷︷ ︸
regularisation term

; (1)

At the same time, the framework was implemented in this paper coupled with the pyramidal
representation of the images and a multi-scale approach for the deformation model. The Gaussian
pyramids could reduce the computational cost while the multi-scale approach for the deformation
model can increase the resolution by halving the interval of the control points. Therefore, we can
gradually improve the registration results and restore the larger displacement. For every grid resolution
level under every pyramid level, an iterative scheme was used in order to enhance the efficiency of
discrete labels. It is necessary to keep a reasonable label set space and optimize the labels at each
iteration. Meanwhile, the displacements of grid nodes are used to improve the registration image to
capture smaller displacements. The registration process is summarized in Figure 2.
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2.1. Uniform Grid Division of Control Point and Cost Calculation

The registration model we proposed in this paper is a nonparametric registration model based on
MRF. The image was meshed to form a uniform control point grid G: M × N (M and N are significantly
smaller than the image size; the interval between the grid nodes is δ). The cost calculation of regular
grid codes based on the MRF model is composed by two parts, namely the grayscale data term and
the gradient date term, which are defined by Equation (2). We employed a block-matching similarity
criterion [30] to evaluate the maximum likelihood of applying all permissible displacements to each
random variable, where the similarity measure is performed with the block image and its gradient
image centered on each control grid node:

∑
p∈V

Dp(lp) = ∑
p∈V

Up(lp) + ω ∑
p∈V

Gp(lp) (2)

Up(lp) =
∫

Ω
η̂(‖x− p‖)ρ

(
IS ◦ dlP , IT

)
dx (3)

Gp(lp) =
∫

Ω
η̂(‖x− p‖)ρ

(
GS ◦ dlp , GT

)
dx (4)

where IS, GS denote the original image and its corresponding gradient image. Accordingly, IT, GT refer
to the target image and its gradient image. ω represents the gradient statistic weight, which decreases
corresponding with the increase of the number of the iterations. η represents the block weighting
function around the control point p, ranging from 0 to 1. The closer the space to the central control
point is, the greater the impact is ‖ · ‖ denotes Euclidean norm. Normal distribution is obviously a
desirable weight distribution model. The center point p is taken as the origin while the rest of the
points are measured based on their positions on the normal curve. The density function of normal
distribution is represented by Gaussian function:

η̂ = exp(−(‖x− p‖/b)2) (5)
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where b is the width parameter of the Gaussian function, which can be used to control the radial range.
In this paper, the gradient information of the multimodal image is extracted by the morphological

gradient. The basic operation (e.g., morphological corrosion, expansion, open operation and
closed operation) is used for image processing. The morphological gradient operator is formed
correspondingly. Common morphological gradient operators can be calculated as follows:

G1( f (x, y)) = ( f ⊕ B)(x, y)− f (x, y); (6)

G2( f (x, y)) = f (x, y)− ( f ΘB)(x, y); (7)

G3( f (x, y)) = ( f ⊕ B)(x, y)− ( f ΘB)(x, y) (8)

The morphological gradient is the difference between the expansion graph and the corrosion
graph. It can detect the edge of the image and extract the feature information and hence can obviously
reduce the calculation load of the similarity measure and also improve the local extreme-value problem.

The similarity measure ρ can use mutual information that is insensitive to changes in light. The
normalized mutual information of two images can be used for similarity measure calculation based on
block matching strategy, which can reflect the degree of mutual information between them through
their entropy and joint entropy:

nmiI1,I2(i, k) =
hI1(i) + hI2(k)

hI1,I2(i, k)
(9)

where hI1,I2 can be calculated from the joint probability distribution of the corresponding gray scale [36].
The number of corresponding pixels is n. Parzen estimates [37] is used with the convolution of 2D
Gaussian (represented by ⊗g(i, k)):

hI1,I2(i, k) = − 1
n

log(PI1,I2(i, k)⊗ g(i, k))⊗ g(i, k) (10)

Accordingly, the calculation of hI1 , hI2 can be similar to hI1,I2 :

hI(i) = −
1
n

log(PI(i)⊗ g(i))⊗ g(i) (11)

For the regularization term, the priori constraint of the smoothing deformation field is introduced.
This indicates that the displacement field of the control grid nodes is assumed to be smooth while the
spatially close variables p and q should be assigned to have similar labels. We employ a simple strategy
that is based on the vector differences between candidate labels normalized by grid distance δ:

Ppq
(
lp, lq

)
=
‖lp − lq‖

δ
(12)

It is worth to note that, the cost calculation needs to use the grayscale and gradient information
of the multimodal image based on normalization mutual information (NMI). At the same time, the
block matching strategy is adopted for multimodal remote sensing datasets, which allows the local
difference evaluation between the images to be registered while the computational efficiency can be
improved. Cost calculation visualization flow chart shown in Figure 3.
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2.2. B-Spline Elastic Deformation Model

By optimizing the MRF model, we can solve the labels of controls grid nodes. The elastic
deformation model of B-spline based on the grid can provide one-to-one and reversible conversion. The
basic idea of the deformation model is to deform the underlying image through the control of the nodes
of the grid and calculate their influence in the rest of the image domain via an interpretation strategy:

T(x) = x +
K

∑
i=1

L

∑
j=1

ηij(x)dij (13)

where T(x) is the target image; d is the displacement of the control point ij; η corresponds to the
interpolation or weighting function that determines the effect of the control point ij on the image point
x. The closer the image point is, the greater the effect of the control point would be.

A uniform cubic B-spline function [38] is used by the interpolation strategy. The (m + 3) × (n + 3)
control grid is used to define the 2D uniform cubic B-spline function. The function F2 consists of m × n
2D patches, each of which is determined by 4 × 4 control points. Without loss of generality, a 2D
uniform cubic B-spline function is represented by a patch f 2, which is defined by:

f2(u, v) = (x, y) =
3

∑
i=0

3

∑
j=0

Bi(u)Bj(v)φij (14)

where, 0 ≤ u, v ≤ 1, B0, B1, B2 and B3 is the basic function for the uniform cubic B-spline, φij denotes
to the displacement of the control point.

3. Experiments and Results

3.1. Descriptions of Experimental Data

Four remote sensing datasets of different scenes and applications have been used to evaluate our
method. Several specific data of the four datasets are available in Table 1, shown in Figure 4.
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Table 1. The multimodal datasets.

No. Image Type Image Size Image Introduction
Maximum

Parallax/Average
Parallax

1
Mid-infrared image 2048 * 2048 Aerial image in Daye city of

Hubei province
13 pixels/17 pixels

Visible orthomosaic image 2048 * 2048

2
Terra SAR image 2048 * 2048 Changzhou City, Jiangsu

Province, satellite survey area
48 pixels/23 pixels

Optical image 2048 * 2048

3

Worldview-3 near
infrared image 1536 * 2048 Wuhan City, Hubei Province,

East and West Lake survey
satellite imagery

29 pixels/10 pixels
Worldview-3

multispectral image 1536 * 2048

4
Monolithic cloud point

depth image 2048 * 2048 Wuhan City, vehicle-borne
mobile image

21 pixels/17 pixels
Monolithic visible image 2048 * 2048
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Figure 4. Checkerboard visualization results and local graphs of multimodal images before registration.
The images were superimposed together, in the form of alternate checkerboard before registration. Red
circles demonstrate the non-aligned area of the checkerboard block edge. For each group of multimodal
images, three non-aligned areas were chosen for local amplification. The above row illustrates the raw
unregistered image data: (a) Mid-infrared image and visible orthomosaic image; (b) Terra SAR image
and optical image; (c) Worldview-3 near infrared image and multispectral image; (d) Monolithic cloud
point depth image and visible image.

3.2. Multimodal Image Registration

3.2.1. Experimental Setup

There were four multimodal datasets being used in our experiment. There are a number of
factors that should be considered when we design the following experiment setup, including three
Gaussian pyramids, three deformation grids and the initial control point grid spacing δ, which is
64 pixels. The other two levels are set to 32 and 16 pixels, respectively. For each level of the pyramid
network at all levels, a 5-iterative scheme is used, which applies the normalized mutual information



Remote Sens. 2018, 10, 1228 9 of 20

as a similarity measure and the Gaussian function is used as the spatial weight function. Meanwhile,
the morphological gradient is used to retain the edge of the ground object contour. The label set is
41 (along with the x, y axis and diagonal uniform sampling of 10 labels plus the origin to build the
label set). In the first iteration, the maximum sample displacement equals to 0.4 × δ, which satisfies
the differential homeomorphism requirements and ensures that the topology of the image would not
change [32]. According to the following iterations, the maximum sample shift corresponds to 0.67
of the maximum displacement of the previous iteration. The initial value of ω is 1. Corresponding
with the increase of the number of iterations, the weight of the gradient statistics tends to zero; λ is the
experience of choice. The patch size equals to 2δ × 2δ.

The arguments that have to be provided for running the FastPD algorithm are as follows: the
numpoints is the number of grid nodes; the numlabels is 41; the numpairs is the number of MRF edges;
the max_iters is 100; the lcosts and wcosts are obtained by cost calculation.

The optimal parameter settings for four multimodal datasets are shown in Table 2.

Table 2. The optimal parameter settings for four multimodal datasets.

Multimodal Dataset Optimal Parameter Settings

Mid-infrared image and visible orthomosaic image λ = 800, η = Gaussian function method.
Terra SAR image and optical image λ = 400, η = Gaussian function method.

Worldview-3 near infrared image and multispectral image λ = 1600, η = Gaussian function method.
Monolithic cloud point depth image and visible image λ = 800, η = Gaussian function method.

In order to evaluate the effectiveness of the proposed registration framework, the experimental
results are compared with three methods, including (1) polynomial registration model based on
manually selection; (2) SIFT-based automatic registration [39]; (3) MRF-based registration framework
using grayscale and gradient information.

The computer environment is based on a personal computer in Wuhan, Hubei Province, China
with an Inter(R) Core(TM) i5-2320 processor, 8G memory without using the GPU for calculating the
computational time. As for the computational efficiency of the developed registration framework, the
calculation of four multimodal datasets takes about 7–8 minutes.

3.2.2. Experimental Results and Evaluation

The evaluation of the developed registration algorithm was performed both qualitatively and
quantitatively. Various checkerboard visualization figures were closely reviewed along with the overlap
images for the qualitatively evaluation, demonstrating that the unregistered and registered image and
the regions of interest on the checkerboards were selected to local zoom for comparative analysis.

As it be seen in Figure 5, the polynomial registration model based on manually selection led to
inaccurate results. Most of checkerboard lattice edge of multimodal image overlay after the registration
had not been aligned.

As it can be seen from Figure 6, due to the differences of the grayscale characteristics and also the
geometrical structure of heterogeneous remote sensing images, the SIFT-based automatic registration
led to error results and was only suitable for Worldview-3 near infrared image and multispectral
image registration.

As it can be seen from Figure 7, each block edge of checkerboard visualization has been aligned
already, demonstrating the effectiveness of the proposed algorithm for multimodal data.

For quantitative evaluation, errors are in pixel level and have been calculated based on homonymy
points, which are manually denoted in all registered images and reference images. The calculated
registration errors (the dx, dy displacements along the axis and the distance D, in pixels) are given in
Table 3.
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Regarding the registration accuracy, the proposed algorithm using grayscale and gradient
information outperforms other two methods. The average target registration errors of four remote
sensing datasets are less than 1 pixel, while the maximum displacement errors are less than 1 pixel.

Above all, the proposed approach is optimal which has the best visualization results and meets
the subpixel-level registration accuracy needs.
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Figure 5. Checkerboard visualization for the qualitative evaluation of the polynomial registration model
based on manually selection: (a) Mid-infrared image and visible orthomosaic image; (b) Terra SAR
image and optical image; (c) Worldview-3 near infrared image and multispectral image; (d) Monolithic
cloud point depth image and visible image.
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3.3. Multimodal Image Registration of Large Deformation 

In the above experiment, the initial maximum disparity of the multimodal image is about 75 
pixels. A test regarding whether the framework is effective for the large parallax multimodal image 
or not is conducted in order to further verify the adaptability of the proposed framework. The mid-
infrared image is subjected to manual translation while the mid-infrared data of the large initial 
disparity is experimented. 

Figure 7. Checkerboard visualization and local zoom graph of the interest regions on the checkerboard
visualization for the qualitative evaluation of the proposed multimodal registration framework:
(a) Mid-infrared image and visible orthomosaic image; (b) Terra SAR image and optical image;
(c) Worldview-3 near infrared image and multispectral image; (d) Monolithic cloud point depth
image and visible image.

Table 3. Quantitative evaluation results after the application of the proposed multimodal
registration framework.

Multimodal
Dataset Experimental Method dx

(pixels)
dy

(pixels)
D

(pixels)
dx_max
(pixels)

dy_max
(pixels)

Mid-infrared
image and visible

orthomosaic image

Manual selection +
Polynomial Model 2.658 3.345 4.272 3.875 4.961

Grayscale and gradient
information + MRF 0.298 0.548 0.624 0.750 0.950

Terra SAR image
and optical image

Manual selection +
Polynomial Model 5.771 −8.961 10.658 6.520 −9.414

Grayscale and gradient
information + MRF 0.521 0.565 0.769 0.754 0.890

Worldview-3 near
infrared image and

multispectral
image

Manual selection +
Polynomial Model 3.107 4.251 5.265 4.268 6.632

Grayscale and gradient
information + MRF 0.344 0.406 0.532 0.537 0.562

Monolithic cloud
point depth image
and visible image

Manual selection +
Polynomial Model 4.401 3.185 5.433 −5.133 9.701

Grayscale and gradient
information + MRF 0.712 0.630 0.951 0.888 0.791

3.3. Multimodal Image Registration of Large Deformation

In the above experiment, the initial maximum disparity of the multimodal image is about 75 pixels.
A test regarding whether the framework is effective for the large parallax multimodal image or not is
conducted in order to further verify the adaptability of the proposed framework. The mid-infrared
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image is subjected to manual translation while the mid-infrared data of the large initial disparity
is experimented.

According to the maximum label value and the pyramid image series of the displacement discrete
space, three experiments are set up correspondingly in this paper: the translation of the mid-infrared
image in the x, y and diagonal direction is carried out about 75 pixels. The images will be registered to
the visible orthomosaic image. The experimental configuration is similar to the above experiment.

The mid-infrared images before the registration and the checkerboard visualization results after
registration are shown in Figure 8. The registration accuracy is presented in Table 4. The average
target registration errors of x, y and diagonal direction are less than 1 pixel, while the maximum
displacement errors are less than 1 pixel. Compared with the smaller deformation of the multimodal
image registration, the matching accuracy of the homonymy point pairs is basically the same. Therefore,
it can be assumed that the proposed framework is better to meet the registration accuracy requirements
for the large deformation of the multi-modal image. Multimodal image registration experiments of
large deformation illustrate that the proposed registration framework could use high-precision POS
directional data and high-speed image stitching to meet the accuracy requirements of multimodal
image registration.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 20 

 

According to the maximum label value and the pyramid image series of the displacement 
discrete space, three experiments are set up correspondingly in this paper: the translation of the mid-
infrared image in the x, y and diagonal direction is carried out about 75 pixels. The images will be 
registered to the visible orthomosaic image. The experimental configuration is similar to the above 
experiment. 

The mid-infrared images before the registration and the checkerboard visualization results after 
registration are shown in Figure 8. The registration accuracy is presented in Table 4. The average 
target registration errors of x, y and diagonal direction are less than 1 pixel, while the maximum 
displacement errors are less than 1 pixel. Compared with the smaller deformation of the multimodal 
image registration, the matching accuracy of the homonymy point pairs is basically the same. 
Therefore, it can be assumed that the proposed framework is better to meet the registration accuracy 
requirements for the large deformation of the multi-modal image. Multimodal image registration 
experiments of large deformation illustrate that the proposed registration framework could use high-
precision POS directional data and high-speed image stitching to meet the accuracy requirements of 
multimodal image registration. 

Translation

 y-direction

Register

Register

Register

 
Figure 8. Mid-infrared image after translation and the registration result. The edges of the 
checkerboard visualization are neatly coincident. 

Table 4. Quantitative evaluation result of the mid-infrared image and visible orthomosaic image after 
translation. Bold indicates the minimum value. 

Translation 
Direction 

dx (Pixels) dy (Pixels) 
D (Pixels) dx_max 

(Pixels) 
dy_max 
(Pixels) 

x 0.313 0.676 0.745 0.592 0.931 
y 0.693 0.635 0.940 0.963 0.813 

diagonal 0.148 0.517 0.538 0.258 0.956 
  

Figure 8. Mid-infrared image after translation and the registration result. The edges of the checkerboard
visualization are neatly coincident.

Table 4. Quantitative evaluation result of the mid-infrared image and visible orthomosaic image
after translation.

Translation
Direction

dx
(pixels)

dy
(pixels)

D
(pixels)

dx_max
(pixels)

dy_max
(pixels)

x 0.313 0.676 0.745 0.592 0.931
y 0.693 0.635 0.940 0.963 0.813

diagonal 0.148 0.517 0.538 0.258 0.956
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4. Discussion

4.1. Accuracy Improvements from Gradient Information

In order to verify the performance of the framework and accuracy improvements from gradient
information, these three comparative methods have been studied based on four multimodal datasets,
including (1) MRF-based registration framework only using grayscale information; (2) MRF-based
registration framework only using gradient information; (3) MRF-based registration framework using
grayscale and gradient information.

The evaluation of three comparative registration methods was performed both qualitatively
and quantitatively, the results of which were further evaluated by the local characterization of
the interest region on the checkerboard visualizations for the qualitatively evaluation. After the
registration, the multimodal remote sensing images were superimposed together and displayed
alternately in checkerboard pattern. As can be seen in Figure 9, we selected two regions of interest on
the checkerboards after three different registration methods to local zoom for the comparative analysis,
which correspond to scenes with abundant textures and lack of textures, respectively. Through
the observation of the checkerboard lattice edge of the multimodal image overlay, the following
conclusions of the qualitative evaluation are made, which are presented below:

(1) For mid-infrared image and visible orthomosaic image registration, Worldview-3 near-infrared
and multi-spectral image registration, the checkerboard visualization of the proposed framework is
roughly equivalent with that of all other methods.

(2) For Terra SAR image and optical image registration, monolithic cloud point depth image and
visible image registration, MRF-based registration framework only using grayscale information cannot
achieve successful registration. MRF-based registration framework using grayscale and gradient
information has better performance than that only using gradient information. There are still unaligned
block edges on the checkerboard visualization of MRF-based registration framework only using
gradient information, while checkerboard block edges of MRF-based registration framework using
grayscale and gradient information are neatly coincident, so the registration effect of the proposed
framework is much better than all other methods.

(3) For some scenes with abundant texture, the edge information is relatively abundant,
MRF-based registration framework using grayscale and gradient information outperforms that only
using grayscale information; for some scenes with lack of texture, the edge information is relatively
deficient, MRF-based registration framework using grayscale and gradient information outperforms
that only using gradient information. There are a large number of such areas with lack of textures
in photogrammetry and remote sensing applications, so it is necessary to combine grayscale and
gradient information.

In summary, the proposed framework has the best visualization results.
For quantitative evaluation, errors are in pixel level and have been calculated based on the

manually-denoted homonymy points, which are all shown in Table 5. The following conclusions can
be drawn:

(1) Regarding the registration accuracy, MRF-based registration framework using grayscale and
gradient information has better performance than other methods. The average target registration
errors of four remote sensing datasets are less than 1 pixel, while the maximum displacement errors
are less than 1 pixel.

(2) The proposed framework has improved the registration accuracy of four multimodal datasets,
especially the registration of Terra SAR image and optical image and the registration of monolithic
cloud point depth image and visible image. The proposed framework can achieve the sub-pixel-level
registration precision even in the case where other methods cannot achieve successful registration or
have poor registration accuracy.
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Figure 9. Local zoom graph of the interest regions on the checkerboard visualization after three
comparative registration methods: (a) Mid-infrared image and visible orthomosaic image; (b) Terra SAR
image and optical image; (c) Worldview-3 near infrared image and multispectral image; (d) Monolithic
cloud point depth image and visible image.

Table 5. Quantitative evaluation comparison with two registration methods in four
multimodal datasets.

Multimodal
Dataset Experimental Method dx

(pixels)
dy

(pixels)
D

(pixels)
dx_max
(pixels)

dy_max
(pixels)

Mid-infrared
image and visible

orthomosaic image

Grayscale information 0.435 0.797 0.908 1.374 1.822

Gradient information 0.857 0.731 1.127 1.438 2.551

Grayscale and gradient
information 0.298 0.548 0.624 0.750 0.950

Terra SAR image
and optical image

Grayscale information 8..496 9.022 12.393 12.974 11.246

Gradient information 1.015 1.336 1.678 3.160 1.731

Grayscale and gradient
information 0.521 0.565 0.769 0.754 0.890

Worldview-3 near
infrared image and

multispectral
image

Grayscale information 0.625 0.950 1.137 0.889 1.175

Gradient information 0.749 0.749 1.060 1.398 1.836

Grayscale and gradient
information 0.344 0.406 0.532 0.537 0.562

Monolithic cloud
point depth image
and visible image

Grayscale information 1.944 5.223 5.573 5.263 7.049

Gradient information 2.638 2.563 3.677 4.125 5.875

Grayscale and gradient
information 0.712 0.630 0.951 0.888 0.791

As shown in Figure 10, the registration error has been significantly decreased while the registration
accuracy has been dramatically improved after the joint use of grayscale and gradient information.
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Above all, the proposed registration framework outperforms all other methods and meets the
subpixel-level registration accuracy need.
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4.2. Accuracy Improvements from the Spatial Weighting Function η

The common spatial weight functions are listed as follows, including (1) distance threshold
method; (2) distance inverse method; (3) Gaussian function method. Although the distance threshold
method is simple, it is constrained by the disadvantages that the function is not continuous. Therefore,
it should not be used in the registration framework. In order to investigate the accuracy improvement
of the proposed framework in relation to the spatial weighting function η, we set up two experiments
correspondingly: other parameters will be fixed as optimal parameter settings in each dataset while the
spatial weighting function η was chosen from distance inverse method or Gaussian function method
for four multimodal datasets.

As shown in Table 6, Figure 11, the use of the Gaussian function method in the proposed
framework can dramatically decrease the registration error and hence to increase the registration
accuracy. Above all, the proposed registration framework using Gaussian function as spatial weighting
function is superior to that using distance inverse method.
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Table 6. Quantitative evaluation comparison with the different spatial weighting function η in four
multimodal datasets.

Multimodal Dataset Spatial Weight
Function

dx
(pixels)

dy
(pixels)

D
(pixels)

dx_max
(pixels)

dy_max
(pixels)

Mid-infrared image and visible
orthomosaic image

Distance inverse 0.317 0.641 0.715 1.044 1.387

Gaussian function 0.298 0.548 0.624 0.750 0.950

Terra SAR image and
optical image

Distance inverse 0.721 0.763 1.050 1.396 1.720

Gaussian function 0.521 0.565 0.769 0.754 0.890

Worldview-3 near infrared
image and multispectral image

Distance inverse 0.432 0.520 0.676 1.456 0.928

Gaussian function 0.344 0.406 0.532 0.537 0.562

Monolithic cloud point depth
image and visible image

Distance inverse 0.906 1.036 1.348 1.188 1.618

Gaussian function 0.712 0.630 0.951 0.888 0.791

4.3. Influence of the Weight of the Regular Term λ

The weight of the regular term λ is a scalar value used to evaluate the influence of the regular
term. In order to test the sensitivity of the proposed framework in relation to the weight of the regular
term, the λ is varied from 200 to 2400.

As shown in Figure 12, the registration error decreases at first before a gradual decrease. The
bottom of registration error reflects the most suitable weight of the regular term λ. There are four
multimodal images having different suitable weights of the regular term λ. When λ is less than the
most suitable weight of the regular term λ, the registration error would greatly increase while the
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registration results would be seemingly distorted. When λ is gradually greater than the most suitable
weight of the regular term, wrong registration results would be obtained.
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5. Conclusions

In this paper, we study the generic and automatic MRF-based registration, which can realize
automatic registration with high stability and registration accuracy. Accounting for the multi-modality
nature of remote sensing data, we appropriately adopt it by using the grayscale and gradient statistics
information simultaneously. The edge features of the multimodal images can be well represented by
the gradient information and hence to enhance the accuracy of the registration results. The spatial
weighting function was optimized and has further improved the registration results. The value
space was discretized to improve the convergence speed. The quantitative validation could reveal
the potential of this approach on multiple multimodal remote sensing datasets. In particular, the
average target registration error of the proposed framework is less than 1 pixel, while the maximum
displacement error is less than 1 pixel. The proposed registration framework uses the mutual
information to measure the joint probability distribution of the multimodal image, so that the initial
disparity range of the image to be registered is limited. In light of this, the registration of multimodal
remote sensing image with significant rotation and scale change needs be further studied. Thus, we
plan to optimize the proposed approach, which will be suitable for other images with large parallax.
Moreover, we plan to explore GPU implementations towards real time performances, which will be
applied on large multimodal remote sensing datasets.
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