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Abstract: Cobbles (64–256 mm) are found on beaches throughout the world, influence beach
morphology, and can provide shoreline stability. Detailed, frequent, and spatially large-scale
quantitative cobble observations at beaches are vital toward a better understanding of sand-cobble
beach systems. This study used a truck-mounted mobile terrestrial LiDAR system and a raster-based
classification approach to map cobbles automatically. Rasters of LiDAR intensity, intensity deviation,
topographic roughness, and slope were utilized for cobble classification. Four machine learning
techniques including maximum likelihood, decision tree, support vector machine, and k-nearest
neighbors were tested on five raster resolutions ranging from 5–50 cm. The cobble mapping capability
varied depending on pixel size, classification technique, surface cobble density, and beach setting.
The best performer was a maximum likelihood classification using 20 cm raster resolution. Compared
to manual mapping at 15 control sites (size ranging from a few to several hundred square meters),
automated mapping errors were <12% (best fit line). This method mapped the spatial location of dense
cobble regions more accurately compared to sparse and moderate density cobble areas. The method
was applied to a ~40 km section of coast in southern California, and successfully generated temporal
and spatial cobble distributions consistent with previous observations.
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1. Introduction

Cobbles (64–256 mm) [1] are found on beaches throughout the world [2] and influence beach shape
and morphology (e.g., [3,4]). Incident wave energy fluctuations and the associated currents influence
beach sediment size and distribution [5]. Jennings and Shulemeister [6] categorize gravel beaches
including cobbles into three types: Pure gravel beaches, mixed sand-gravel beaches, and composite
beaches. Mixed sand-gravel beaches consist of intermixed sands and gravels throughout a vertical
beach profile, whereas composite beaches display cross-shore sediment sorting.

Cobble and sand dynamics can vary widely. For example, while sand is usually eroded from
beaches by storm waves, cobbles may move onshore, forming large berms [7,8]. Schupp [9] observed
cobble cusp formation over a few hours on a California beach, and suggested that cobbles move both
on and offshore. On the other hand, Shepard [10] suggests that cobbles are alternately buried and
unburied by both wave and tidal processes. Yates et al. [11] observed seasonal variations of beach
elevations, and ascribed the changes to geologic factors including cobbles. Overall, cobbles appear to
move in various directions and dynamically interact with beach sands.

Cobbles may increase resistance to shoreline change [12]. Beaches with coarse grained materials
are generally more stable under wave attack [13–16] and, therefore, are attractive for ‘natural’ erosion
defense schemes against coastal retreat. Engineered cobble berms have been used for shoreline
stabilization in Oregon [17], Surfers Point in Ventura [18] and recently in Carlsbad, California.

Remote Sens. 2018, 10, 1253; doi:10.3390/rs10081253 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs10081253
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/8/1253?type=check_update&version=2


Remote Sens. 2018, 10, 1253 2 of 16

Allan and Komar [17] monitored an engineered cobble berm (berm face 7–13 degrees, [19]) in Oregon
and found it successfully prevented erosion from storm wave attack. While the general stability
of cobble berms is well recognized, researchers have documented cobble barrier overstepping
(e.g., landward migration) driven by sea-level rise and/or storm conditions [20]. The dependence of
cobble berm evolution on waves and water levels is largely unknown.

Cobble tracer studies (e.g., [21–25]) track individual cobble movements in a range of coastal
settings, revealing rates and patterns of cobble movements, but are generally limited to a small
number of cobble samples. Cobble coverage and landforms are “both variable and difficult to
quantify” [11] (p. 41), ranging from dense cobble berms and cobble cusps to scattered beach face
cobbles. Detailed, frequent, and spatially large-scale observations of cobble coverage and movements
are lacking, and needed to better understand sand-cobble beach systems. This study describes a
method to automatically map cobbles on beaches using ground-based mobile Light Detection and
Ranging (LiDAR) data. The method is tested for accuracy at several control sites, and then applied to a
~40 km coastal section in southern California. The discussion highlights advantages and disadvantages
of the method over other approaches, and identifies refinements needed for improved observations of
sand-cobble beach systems.

2. Background

Previous studies (Table 1) have mapped various beach sediment sizes and distributions
using photo-based techniques, including labor intensive manual digitization-based mapping from
ground-based video cameras (e.g., [26,27]) and Unmanned Aerial Vehicle (UAV) photographs
(e.g., [28]). Other studies used automated photo-based techniques to estimate grain sizes based on
spatial correlation analysis of (grayscaled) image pixel intensity (i.e., autocorrelation technique, [29]).
Barnard et al. [30] and Buscombe and Masselink [31] applied the autocorrelation technique to sediments
ranging from sands to coarse sediments (<~20 mm), and Ruggiero et al. [27] and Warrick et al. [32]
further refined the technique for coarser sediment (~200 mm) applications. The automated photo-based
techniques are operationally low-cost but provide limited spatial coverage (e.g., at a scale covered by a
fixed digital camera) and sometimes require high resolution imagery (image pixel sizes smaller than
grain size). Carbonneau et al. [33,34] increased spatial coverage by using digital images from airborne
surveys (tested in fluvial environments), but errors increased for coarse sediments (>100 mm).
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Table 1. Examples of remotely-sensed beach sedimentary mapping techniques. Sediment sizes (larger than sands) are shown where available.

Survey Tool Remotely Sensed Data Data Property Data Resolution Mapping Technique Sediment Type (Size) References

Multiple video cameras Digital imagery - - Manual mapping Sands to coarse sediments (1~3 m) [26,27]

UAV Digital imagery - 7.5 mm Manual mapping Coarse sediments (>75 mm) [28]

Single camera Digital imagery (Grayscaled) image intensity 2.5–7.9 × 10−2 mm Autocorrelation Sands to coarse sediments (<~20
mm) [30,31]

Airborne Hyperspectral imagery Return signal spectrum 2 m Raster classification Fine to coarse sands containing
shells and gravels [35,36]

Airborne LiDAR point cloud LiDAR intensity, topographic
roughness and luminance 2 m Raster classification Cobbles (to bedrock) [37]

Airborne LiDAR point cloud
LiDAR intensity, topographic

roughness, kurtosis and
skewness

2–4 m Raster classification
(Under water) fine sands,

cobble/boulder (>256 mm) and
bedrock

[38]

Terrestrial (static) LiDAR point cloud LiDAR RGB color,
topographic roughness 0.1 m Artificial neural network

grouping (RGB color) Sands to gravels (49 1 mm) [39]

UAV Digital imagery,
and SfM point cloud

Image texture,
and topographic roughness 1–5 cm

Correlation analysis of grain
size and negative

entropy/roughness
Cobbles to boulders [40] 2

1 D50 median grain size, 2 applied to gravel bed river.
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Recent advances in remote sensing technology (e.g., hyperspectral imagery and LiDAR) provide
unprecedented high resolution surface information over extended areas, greatly improving coastal
morphological observations [41]. Examples of large-scale coastal applications include quantitative
coastal cliff changes [42], shore process-morphology relationships [43], and coastal zone risk
assessment [44]. These technologies have also been applied to coastal sedimentary mapping.
Deronde et al. [35,36] used airborne hyperspectral imagery and a raster classification technique to
delineate in situ beach sand versus beach nourishment material composed of fine-coarse sands, shells,
and gravels. Similarly, Beasy et al. [37] and Cottin et al. [38] used airborne LiDAR data and raster
classification techniques to delineate coastal cobbles and boulders (>256 mm) from other sediment types
and bedrock over regions of a few km (alongshore). Airborne-based approaches provide larger spatial
scale observations and are particularly well suited to regions with limited accessibility. However,
survey frequency can be limited by increased mobilization efforts compared with ground-based
techniques, and data resolution is generally lower than closer range methods. Fairley et al. [39] used a
static terrestrial LiDAR to delineate beach sands and gravels (49 mm, D50 median grain size) using
surface roughness and RGB color information. Woodget and Austrums [40] used a UAV-structure from
motion (SfM) technique to measure (subaerial) river gravel grain sizes. The static terrestrial LiDAR and
UAV-SfM approaches generate high resolution point clouds, but spatial coverage is limited compared
to (manned) airborne methods.

3. Materials and Methods

3.1. Study Area

The study area (Figure 1a, ~40 km alongshore) in northern San Diego County, California,
consists of mixed sand-cobble beaches backed by lowlands, lagoons, coastal cliffs, and infrastructure.
Sand thickness is typically a few meters, but is occasionally reduced to zero when winter storm waves
expose the underlying bedrock. The primary composition of beach sand and bedrock are quartz and
sedimentary rocks (e.g., mudstone, shale, sandstone, and siltstone) [45–47], respectively, whereas cobbles
in the study area are igneous [48]. Median sand size ranges between 0.15 and 0.28 mm (fine-medium),
and mean beach slope ranges 0.01–0.08 degrees [12]. Cobbles are generally more exposed on the beach
surface during winter months [8]. Cobble distributions vary from scattered surface cobbles to extensive
berms (Figure 1b,c) (see also [2,7,8]). Large storm waves can mobilize cobbles and project them at
structures, causing property damage [7]. Other coastal management issues include the closure of beach
access pathways from migrating cobble berms [49]. Quantitative cobble observations in the region are
limited, but are necessary to improve local shoreline change models (i.e., [11]).

3.2. LiDAR Data Collection and Processing

This study used a truck-mounted mobile LiDAR system equipped with a RIEGL VZ-2000 laser
scanner, coupled with a geodetic grade dual-frequency Trimble BD982 global navigation satellite
system and a Trimble AP20 inertial measurement unit. Table 2 summarizes the scanning settings used
in this study. Data were collected while driving alongshore at about 8 km per hour (kph) during low
tide. Surveys consisted of one inland looking pass, one seaward looking pass, and up to two additional
passes in areas with more complex topography, for a total of 2–4 passes and overall average beach
survey rate of 2–4 kph. Data processing employed a direct georeferencing solution and 100 m range
cutoff filter. The resulting point clouds contained beaches, ocean waves, and backshore features such
as coastal cliffs (Figure 2). The typical beach point density was about 1000–3000 points per square
meter with accuracies of a few centimeters (e.g., [50]). Point clouds were filtered and edited to remove
erroneous points such as flying birds and humans on beaches [51].
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Table 2. Scanning settings.

Item Setting

Laser pulse frequency 550,000 Hz
Ranging precision 5 mm

Multi-target detection Applied
Online waveform processing Applied

Scan mode Line scan
Scanner height from the ground 2.5–2.6 m

Grazing scan angle range on beach surface 1.5–40◦
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Figure 2. Example of a 3-D point cloud obtained from the mobile LiDAR system, colored by return
intensity. Black lines enclose manually delineated dense cobble surface exposures.

3.3. Raster Based Cobble Detection

To automatically map cobbles, this study used a raster-based classification approach. Similar to
previous studies [37,38], this study used mean LiDAR intensity (Figure 3a, normalized and corrected for
laser signal decay with distance, i.e., reflectance value) and topographic roughness rasters (Figure 3b),
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and additionally utilized intensity deviation and slope rasters (Figure 3c,d). The intensity deviation
raster was used to exclude non-cobble areas having similar mean intensity and roughness values to
cobble areas. The slope raster was used to exclude non-cobble backshore regions with high slopes.

Intensity deviation and roughness rasters were generated using Equation (1), where vi, v, and N
are the individual point values (intensity, or elevation for roughness), mean value of points, and the
number of points within a pixel, respectively. The slope raster was calculated as an average slope
considering mean elevations of the eight surrounding raster pixels.

SQRT((
N

∑
i=1

(vi − v)2)/N) (1)
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Figure 3. Rasters (20 cm resolution, location shown in Figure 2) of (a) mean intensity, (b) roughness, (c)
intensity deviation, and (d) slope. Black and blue lines show manually delineated cobble and backshore
areas, respectively.

The potential cobble areas were determined as raster pixels classified as “cobble” in the
mean intensity, roughness, and intensity deviation rasters, and “non-backshore” in the slope raster
(Figure 4). Quick Terrain Modeler (Applied Imagery, Silver Spring, MD, USA) was used to generate
rasters (Universal Transverse Mercator Zone 11N coordinate system) at five different pixel sizes
(5, 7.5, 10, 20, and 50 cm) to determine optimum raster resolution for automated cobble mapping
(e.g., Reference [52]). The multi-raster combination approach presented here improves cobble mapping
accuracy because several raster metrics are used, helping to eliminate areas mapped as cobble by one
metric, but non-cobble by a different metric.

3.4. Raster Classification

This study examined four algorithms for automated machine learning-based supervised raster
classification including maximum likelihood (MLi), decision tree (DT), support vector machine (SVM),
and k-nearest neighbors (KNN) (Figure 5). Each algorithm used four training rasters of mean intensity,
roughness, intensity deviation, and the slope generated from a ~70 m alongshore section (shown in
Figure 2) with known cobble and backshore locations.
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Figure 5. Pre- and main process flowcharts of supervised raster classification using (a) maximum
likelihood (MLi), and (b) decision tree (DT), support vector machine (SVM), and k-nearest
neighbors (KNN).

To implement MLi supervised classification, a signature file and a look up table (LUT) were
established from the training rasters (Figure 5a, pre-process). First, unsupervised classification using an
iterative self-organizing clustering algorithm (ISO, [53]) was applied to the training rasters to generate
pixel classes and the associated signature files. Next, each feature class was manually designated
cobble, backshore, or neither in a LUT. In the main process, input rasters were classified into pixel
classes using the MLi algorithm with equal priors and the signature files (i.e., supervised classification),
and were designated as cobble, backshore, or neither with the LUT. ArcGIS (Esri, Redlands, CA, USA)
was used for both unsupervised and supervised raster classification with default parameters and a
maximum class number of 10.

Similar to the MLi-based approach, DT, SVM, and KNN classifiers were initially established using
the training rasters (Figure 5b, pre-process). First, a total of 1000 pixels were manually sampled and
assigned a feature type (cobble/non-cobble or backshore/non-backshore). Five variables (minimum,
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maximum, mean, standard deviation, and range) characterizing the sampled pixel region (a 5 × 5
pixel block, centered on the sampled pixel) were calculated. Next, the variables and corresponding
feature types were analyzed with DT, SVM, and KNN algorithms using a five-fold cross-validation
technique to derive the associated DT, SVM, and KNN classifiers. In the main process, input rasters
were classified using the DT, SVM, and KNN classifiers and calculated pixel block variables of the
input raster. Matlab (Mathworks, Natick, MA, USA) was used for DT, SVM, and KNN classifier
development with parameters and associated settings listed in Table 3.

Table 3. Parameters and settings used in DT, SVM, and KNN classifier development.

Classifier Parameter Settings

DT Maximum number of splits 4
Split criterion Gini’s diversity index

SVM Kernel function Gaussian
Kernel scale 0.56

Box constraint level 1
Multiclass method One-vs-One

KNN Number of Neighbors 10
Distance metric Euclidean

In total, 20 combinations of pixel sizes (5, 7.5, 10, 20, and 50 cm) and raster classification techniques
(MLi, DT, SDM, and KNN) were tested. The testing combinations are termed as “raster classification
technique-pixel size” (e.g., MLi-5, DT-7.5, etc.) in this study.

3.5. Control Site Manual Mapping

The automated cobble mapping methods were tested at five control sites with variable cobble
exposure densities (three dense, one moderate, and one sparse) and beach settings (cobbles on
sands and cobbles on bedrock, Figure 6). Dense1 and Dense2 sites contained cobble berms with
average berm faces of 12–17 degrees, whereas Dense3 site was a cobble patch on exposed bedrock.
Moderate and Sparse sites contained cobbles on low slope beaches (<5 degrees). At each control
site, cobble distributions were manually mapped in the field with a Global Positioning System
(GPS SPECTRA ProMark 700, Figure 6b,c), or by visually digitizing point clouds (Figure 6a) or
georeferenced rectified field photographs (Figure 6d,e).

The automated mapping skill for estimating cobble coverage within a defined beach area was
examined with Equation (2), where A denotes an area. Youden’s index (Equation (3)) was used to
examine spatial mapping accuracy (precise location of mapped cobbles) of the automated methods
relative to manual mapping. Higher Youden’s index values indicate better mapping. In Equation (3),
TP (true positive) and FN (false negative) are the number of pixels manually mapped as cobble but
automatically mapped as cobble and non-cobble, respectively. TN (true negative) and FP (false positive)
are the number of pixels manually mapped as non-cobble but automatically mapped as non-cobble
and cobble, respectively. Equation (3) was only applied to Dense1, Moderate and Sparse sites because
there were no non-cobble areas manually mapped in the Dense2 and Dense3 sites.

Cobble coverage error =
Aauto. − Amanual

Acontrol
× 100 [%] (2)

Youden′s index =
TP

TP + FN
+

TN
TN + FP

− 1 (3)
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Figure 6. Manually mapped control sites used to test automated cobble mapping. (a,b) Dense cobble
exposure on sand, (c) dense cobble exposure on bedrock, (d) moderate cobble exposure on sand,
and (e) sparse cobble exposure on sand. Areas enclosed by white lines indicate the areas examined,
and a black line in 6a encloses dense cobble surface exposures. Points in 6a are colored by intensity.

4. Results

4.1. Comparison of Automated and Manual Mapping

The automated mapping capability varied depending on raster pixel size, classification technique,
cobble density, and beach setting (Figure 7). For MLi methods, MLi-20 performed best, with cobble
coverage errors ranging from −20 to +10%. MLi methods with smaller pixel sizes (<20 cm) largely
underestimated cobbles at Dense2 and Dense3 with errors between −100 and −65%. MLi-50 produced
lower errors at Dense3 (−45%) but detected zero cobble at Moderate and Sparse control sites.

DT, SVM, and KNN methods generally exhibited poor mapping capability compared to MLi.
For pixel sizes 7.5 and 10 cm, all three methods produced relatively large mapping errors (−100 to
−45%) at Dense2 and Dense3. For 5 cm pixel size, DT and KNN methods overestimated (>10%) cobble
coverage at Moderate and Sparse control sites. Although errors at Dense1 were comparable to MLi-20,
DT, SVM, and KNN methods using 10–50 cm pixel sizes detected zero cobble at the Moderate and
Sparse control sites.

Youden’s index showed DT, SVM, and KNN methods generally performed better at Dense1
compared to MLi methods except for MLi-20, with Youden’s indices generally >0.5 as opposed to <0.5
for MLi methods. In contrast, Youden’s indices for Moderate and Sparse sites were relatively small
(<0.25) for all methods indicating relatively poor spatial mapping for sparse-moderate cobble densities
compared to Dense1.

Compared to all methods tested, MLi-20 performed best and was further tested at 10
additional control sites with a range of cobble densities and beach settings, for a total of 15 control
sites. Comparison of MLi-20 automated and manual mapping of cobble coverage showed good
correspondence (r2 = 0.98 and p = 5.5 × 10−12, Figure 8). The best fit line indicates that, on average,
MLi-20 tends to underestimate dense cobble areas, but overall errors considering all cobble densities
are relatively small at <12% (best fit line) and <26% (95% prediction intervals, Figure 8).
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Figure 7. (a) Comparison of manual and automated cobble mapping methods at the control sites,
and the associated (b) cobble coverage mapping errors and (c) Youden’s index. Green, blue, and yellow
pixels in 7a indicate areas of cobble, non-cobble and no data, respectively. The red box highlights the
results of the best performer.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 15 

 

 

Figure 7. (a) Comparison of manual and automated cobble mapping methods at the control sites, 
and the associated (b) cobble coverage mapping errors and (c) Youden’s index. Green, blue, and 
yellow pixels in 7a indicate areas of cobble, non-cobble and no data, respectively. The red box 
highlights the results of the best performer. 

Compared to all methods tested, MLi-20 performed best and was further tested at 10 additional 
control sites with a range of cobble densities and beach settings, for a total of 15 control sites. 
Comparison of MLi-20 automated and manual mapping of cobble coverage showed good 
correspondence (r2 = 0.98 and p = 5.5 × 10−12, Figure 8). The best fit line indicates that, on average, 
MLi-20 tends to underestimate dense cobble areas, but overall errors considering all cobble densities 
are relatively small at <12% (best fit line) and <26% (95% prediction intervals, Figure 8). 

 

Figure 8. Comparison of MLi-20 automated and manual cobble mapping for a range of cobble 
densities and beach settings. 

Figure 8. Comparison of MLi-20 automated and manual cobble mapping for a range of cobble densities
and beach settings.



Remote Sens. 2018, 10, 1253 11 of 16

4.2. Regional Application

To test regional application, MLi-20 was applied to a ~40 km section of coast between La Jolla
and Oceanside, CA (Figure 1a). LiDAR surveys were conducted over 4 consecutive days in both
October 2017 (2nd–5th) and March 2018 (26th–29th) and one additional day in April 2018 (13th) to
resurvey a small portion with poor data quality in the March dataset. A predefined back beach line
was used to determine beach width. Beach area, cobble area (within the beach area) and surface cobble
density (estimated as the cobble area divided by the beach area) were quantified at 50 m alongshore
intervals between the mean high water contour (MHW, elevation 1.402 m, North American Vertical
Datum 1988) and the back of the beach (Figure 9). Surface cobble coverage ranged from 0–68% in
October 2017 and 0–80% in March 2018, with a mean regional increase of 2.2 ± 0.3 to 7.9 ± 1.0%
(Table 4). The seasonal winter increase in cobble exposure is consistent with previous observations [8].
The largest cobble density increase, from near zero to 80%, occurred between locations 35 and 40 km in
Oceanside. South Carlsbad contained notable cobble exposures (Figure 9c) consistent with previously
documented locations of extensive cobble beaches [7]. Few cobbles were detected between locations 9
and 18 km (Del Mar, Figure 9) in either time period.
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Figure 9. Regional application of automated MLi-20 cobble mapping in southern California for October
2017 and March 2018. (a) Beach area normalized by 50 m alongshore interval (beach width), (b) cobble
area normalized by 50 m alongshore interval, and (c) cobble density. Beach width was measured from
MHW to the back beach line.

Table 4. Regional cobble density comparison between October 2017 and March 2018. Mean values
consider the mapping error (<12%, best fit line, Figure 8).

Survey Minimum Maximum Mean

October 2017 0.0% 68% 2.2 ± 0.3%
March 2018 0.0% 80% 7.9 ± 1.0%
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5. Discussion

This study demonstrates automated cobble mapping using mobile terrestrial LiDAR with
relatively low errors in cobble coverage estimations (Figures 7 and 8). The method is applicable
to a variety of cobble and beach settings ranging from dense cobble formations (e.g., natural and
artificially constructed berms [19], and dense cobbles on bedrock) to scattered beach face cobbles
(e.g., Figure 1c), at both local and regional scales (Figure 9). The observed temporal (seasonal) and
spatial (alongshore) cobble coverage variations quantified at regional scales can provide data needed
for a better understanding of mixed sand-cobble beach system dynamics.

The presented method uses two types of rasters created from deviation operations: intensity
deviation and height deviation (i.e., roughness) (Figure 3b,c). These two rasters were selected because
they help differentiate cobble areas from other areas such as sand and bedrock that tend to have lower
deviations. Pixel size influences both intensity and height deviations, and the results suggest that a
20 cm pixel best captures the deviation differences between cobble and other areas. These differences
are not captured well for sparse and moderate areas, possibly because the deviation (roughness)
contrast is lower. Despite the relatively low spatially mapping capability of precise cobble locations for
sparse and moderate cobble areas, the cobble coverage errors from the method are still low (Figure 8).

The method offers several advantages over existing beach sediment mapping approaches
(e.g., Table 1). The truck-mounted ground-based mobile LiDAR system allows detailed and frequent
surveys of relatively large areas and permits night time data collection. Night time surveys are often
useful for coastal survey applications because low tides can occur during night. Airborne-based
LiDAR surveys can cover wider areas and operate at night, but are less suited to frequent and
detailed surveys compared to ground-based approaches. UAV-based photogrammetry methods are
capable of generating dense point clouds similar to ground based LiDAR, reduce potential shadowing
because of the aerial perspective, and have been successfully applied to sediment mapping in riverine
environments [40,54], but are limited to daytime lighting conditions.

The disadvantages of using a truck-mounted survey system include limitations imposed by beach
access and drivable terrain. Highly rugged bedrock or steep beaches are difficult to drive and could be
supplemented by airborne-based survey methods such as UAVs. The non-water penetrating LiDAR
system used here limits survey coverage to subaerial topography. LiDAR is also limited to surface
mapping, as opposed to sediment tracer techniques (e.g., radio frequency identification technology)
which can detect subsurface cobbles down to a few tens of cm deep (e.g., [23]). Method improvement
could include shallow water bathymetric surveys and subsurface cobble detection. Additional testing
at other cobble and beach settings such as very steep cobble berms or moderate and sparse cobbles on
bedrock are needed. The methods described here are applicable to other sites with similar beach settings
and sediment distributions to the study area, but need testing before application at different sites.

Many studies (e.g., [4,11,55,56]) indicate that variation in geologic conditions including cobbles
and bedrock influence morphological beach evolution. Fine sand content relative to coarse beach
sediments exerts strong control on hydraulic conductivity [57], and influences beach morphology and
sediment transport [58]. Bedrock location and elevation data are needed to improve beach studies
which often assume homogeneous sediments with no bottom boundary [2]. The present methods
allow quantitative mapping of these additional beach features (e.g., [37]) and further exploration of
temporal and spatial dynamic interactions in non-homogeneous beach settings.

6. Conclusions

Cobbles influence beach morphology and can provide shoreline stability. Quantitative cobble
observations at beaches are vital toward a better understanding of sand-cobble beach systems,
but techniques for detailed, frequent, and large spatial scale sand-cobble beach studies are lacking.
This study tested maximum likelihood, decision tree, support vector machine, and k-nearest neighbors
algorithms to develop an automated raster-based cobble mapping method using mobile terrestrial
LiDAR. The best performer was a method using maximum likelihood applied to 20 cm resolution
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rasters. The method was examined at both local (several to a few hundred square meters) and regional
(~40 km of coastline) scales, and applied to a range of cobble densities and beach settings. Compared to
manual mapping at control sites, cobble coverage estimation errors of the automated method were
<12% (best fit) and <26% (95% prediction intervals). The method mapped the precise spatial location
of dense cobble regions more accurately compared to sparse and moderate density cobble areas.
The regional southern California application revealed temporal and spatial cobble distributions
consistent with previous observations. The quantitative high resolution mapping methods presented
here can help improve studies of mixed sand-cobble beaches.
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