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Abstract: Ulaanbaatar (UB), the capital city of Mongolia, has extremely poor wintertime air quality
with fine particulate matter concentrations frequently exceeding 500 µg/m3, over 20 times the
daily maximum guideline set by the World Health Organization. Intensive use of sulfur-rich coal
for heating and cooking coupled with an atmospheric inversion amplified by the mid-continental
Siberian anticyclone drive these high levels of air pollution. Ground-based air quality monitoring in
Mongolia is sparse, making use of satellite observations of aerosol optical depth (AOD) instrumental
for characterizing air pollution in the region. We harnessed data from the Multi-angle Imaging
SpectroRadiometer (MISR) Version 23 (V23) aerosol product, which provides total column AOD and
component-particle optical properties for 74 different aerosol mixtures at 4.4 km spatial resolution
globally. To test the performance of the V23 product over Mongolia, we compared values of MISR
AOD with spatially and temporally matched AOD from the Dalanzadgad AERONET site and find
good agreement (correlation r = 0.845, and root-mean-square deviation RMSD = 0.071). Over UB,
exploratory principal component analysis indicates that the 74 MISR AOD mixture profiles consisted
primarily of small, spherical, non-absorbing aerosols in the wintertime, and contributions from
medium and large dust particles in the summertime. Comparing several machine learning methods
for relating the 74 MISR mixtures to ground-level pollutants, including particulate matter with
aerodynamic diameters smaller than 2.5 µm (PM2.5) and 10 µm (PM10), as well as sulfur dioxide
(SO2), a proxy for sulfate particles, we find that Support Vector Machine regression consistently has
the highest predictive performance with median test R2 for PM2.5, PM10, and SO2 equal to 0.461,
0.063, and 0.508, respectively. These results indicate that the high-dimensional MISR AOD mixture
set can provide reliable predictions of air pollution and can distinguish dominant particle types in
the UB region.

Keywords: MISR; aerosol optical depth; aerosol types; air pollution; particulate matter; machine learning

1. Introduction

Ulaanbaatar, Mongolia (UB) is the coldest capital city, and has some of the worst air pollution in
the world. In winter, concentrations of fine particulate matter (particles with aerodynamic diameter
≤2.5 µm; PM2.5) frequently exceed 500 µg/m3, which is over 20 times the World Health Organization
(WHO) guideline value that limits 24 h concentrations to 25 µg/m3 [1]. In a report by the World Bank,
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it was estimated that up to one third of the mortality in greater UB could be prevented by lowering
local ambient air pollution levels to 10 µg/m3, the WHO annual guideline [2]. The primary source
of air pollution in the UB area comes from burning coal and biomass for heating and cooking in the
outskirt Ger settlements during the harsh, cold winter [3]. Approximately 60% of UB households
are located in the Ger district, and in winter these households account for up to 70% of the PM2.5

emissions [2]. Three coal-fired power plants within the city limits are also an important source
of particulates, contributing approximately 27% of the annual PM2.5 emissions [3]. Air quality is
worsened by the geographic position of UB, which is in a valley surrounded by mountains, and by
its extreme winter weather, which is affected by the mid-continental Siberian anticyclone that causes
a wintertime temperature inversion that effectively traps pollutants within the breathing level of
the city’s population. Although the total population of the country is small (3.2 million), according
to the National Statistical Office of Mongolia, nearly half of Mongolians live in the greater capital
city area and are affected by extremely high levels of air pollution during the wintertime months
(October–March) [4].

There have been a few efforts by researchers to measure and characterize air pollution in
Mongolia. An emissions inventory was developed to estimate the contributions of household and
industrial sources of the major particulate (PM2.5, PM10) and gaseous (SO2, NO2, CO) pollutants [3].
Chemical speciation of coarse and fine particulate matter from a two-day per week sampling campaign
at the University of Mongolia in 2004–2008 showed that the dominant source of PM2.5 was coal
combustion, with sulfur and black carbon being the largest components of the particle mass [5].
In another short-term seasonal sampling campaign in 2008 [6], PM10 analyzed for chemical speciation
was significantly higher in carbon (elemental and organic) and sulfate in the winter, compared to
the summer. Hasenkopf et al. [7] imaged particles from a site located 600 m from the Ger district
from June 2012 to March 2013 using transmission electron microscopy and ice nucleation coupled
with microscopy to determine their shape (spherical, fractal, irregular) and type (mineral dust, soot,
sulfate/organic). They found the collected samples primarily consisted of spherical particles with
sulfate/organic composition and that, in winter months, when the concentrations of PM increased,
so did their sulfur content. Furthermore, spherical particles were most generally related to PM with
aerodynamic diameter ≤2.5 µm, and over the study period 99% of the particles sampled were smaller
than 10 µm in diameter.

Despite the magnitude and severity of the air pollution problem in UB, this issue has
garnered little attention outside of Mongolia. There have been very few health effects studies with
adequate exposure assessment because of scarce resources and inadequate coverage of monitoring
stations. Ground measurements of air pollutants in the region are sparse, with only three PM2.5

monitoring sites providing inconsistent data, and one primary weather station. Harnessing satellite
observations of aerosol optical depth (AOD) to provide air pollution estimates in regions where
ground-level monitoring is severely lacking has been instrumental in global studies [8,9]. The two
most common polar-orbiting satellite instruments providing AOD, the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) onboard the NASA
Terra Earth Observing System (EOS) satellite, launched in 1999, have been used in global estimation
of PM2.5. One limitation of aerosol remote sensing is the difficulty in discerning the contribution of
aerosol atmospheric scattering from bright surface reflectance, such as desert or snow. In Mongolia,
where long winters come with snow cover for 4–6 months of the year, this is a major issue. MISR is
regarded as providing one of the most reliable satellite based aerosol products over land [10], and
with its nine camera angles it has been shown to reliably retrieve particle optical and microphysical
properties over bright surfaces [11,12] more effectively than other instruments [13]. MISR also has
the capability of distinguishing AOD by its component-particle optical properties covering ranges
of “small”, “medium”, and “large” nonabsorbing, absorbing, spherical, and randomly oriented
nonspherical types [12,14]. These properties have been used to develop the current 74 MISR aerosol
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mixtures [12,14], which are related to particle composition, and are a key factor in the performance of
the AOD retrieval [15].

In this paper we evaluate the new 4.4 km MISR Version 23 (V23) global aerosol product in its
ability to estimate air pollution concentrations over Ulaanbaatar, Mongolia. In our evaluation, we
first compare MISR and AERONET AOD observed at the only location in Mongolia, Dalanzadgad,
which is 300 km southwest of UB. We then apply several machine learning methods to AOD retrieved
from the complete set of 74 MISR mixtures to determine the best performing method of estimating
ground-level PM2.5, PM10, and SO2 concentrations.

2. Materials and Methods

Ulaanbaatar is located at approximately 1300 m above sea level 47.920◦N, 106.920◦E, along the
Tuul River in a valley at the foot of Bogd Khan Mountain (Figure 1). Due to its high elevation,
relatively northerly latitude, and distance from the Pacific Ocean, UB experiences an extreme
continental climate with long winters and short summers. Mongolian winters are cold and clear,
and in UB specifically, winter is typically characterized by clear skies, weak synoptic winds, and a
temperature inversion under the influence of a Siberian high pressure anticyclone [16]. Summer (June
through August) is warm and dry, with highs between 20–25 ◦C, low humidity, and average monthly
precipitation of approximately 60 mm. In this study we examine data from January 2011 through
December 2016. During this period, there was snow cover in UB between 90% to 100% of the days in
the months of November through February, and there was some snow in all other months with the
exception of June, July, and August [17].

Figure 1. Ulaanbaatar, Mongolia study region showing gaseous and particulate air pollution monitoring
stations, weather station, and representative 4.4 km grid.

2.1. Air Pollution Monitoring Data

There are 10 air pollution monitoring stations in UB operated by the Mongolia National Agency
for Meteorology and Environmental Monitoring (NAMEM) (Figure 1). All 10 monitoring stations
have been measuring sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone
(O3) since 2011. Of the 10 sites, 8 measure PM10 and only 2 measure PM2.5 mass concentrations using
tapered element oscillating microbalances (Figure 2). In October 2015 the U.S. Embassy in UB started
measuring PM2.5 using a United States Environmental Protection Agency (EPA)-certified Met One
BAM-1020, which is a stepwise, semi-continuous Beta Attenuation mass measurement method. We
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focus on estimating PM2.5, PM10, and SO2 from AODs from the 74 MISR aerosol mixtures. Since AOD
is a measure of total column aerosol, it is most clearly associated with ground-level PM. However,
given the contribution of sulfur-rich coal burning in the area and the oxidation process of SO2 to SO2−

4
(sulfate) [18], we also investigate SO2 as a good proxy for PM2.5 sulfate particles.
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Figure 2. Daily concentrations of PM2.5 (black), PM10 (green), and SO2 (blue) at one of two UB sites
measuring all three pollutants from January 2011 through December 2016.

2.2. MISR AOD and AOD Mixtures

The MISR instrument onboard the NASA Terra Satellite has been collecting data from nine
different camera angles and four spectral bands since early 2000. Its configuration is such that it has
local overpass approximately every five days around 12:00 LT (04:00 UTC). The previous Level 2
(swath-based) version of the MISR aerosol product, Version 22 (V22), was reported on a spatial grid at
17.6 km resolution. The entire MISR mission, going back to March 2000, has been reprocessed with the
new version of the algorithm, V23, which is now reported on a spatial grid with 4.4 km resolution [19].
Additional improvements to the algorithm have been made, especially for retrievals over water [20].
Besides total column AOD, the V23 aerosol product includes component-particle optical properties
covering ranges of “small”, “medium”, and “large” nonabsorbing, absorbing, spherical, and randomly
oriented nonspherical, which are the same types used in the V22 MISR aerosol product. Detailed
information about the particle models and the proportions of these components that make up the
74 mixtures can be found in Kahn and Gaitley [14]. Mixtures designated with numbers from 1 to
30 are made up of spherical, non-absorbing components. Mixtures with numbers in the range from
31 to 50 contain spherical, absorbing components, while mixture numbers from 51 to 74 contain
nonspherical, dust analogues. The MISR particle properties have been analyzed globally, and they
provide robust aerosol-type classification for distinguishing aerosol mass types including polluted,
smoky, maritime, and dusty conditions [12,14]. In this study we only considered V23 aerosol retrievals
that reported a successful AOD for the complete set of 74 mixtures, matching pixels from available
MISR overpasses to the nearest air pollution monitor reporting PM2.5, PM10 or SO2.
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The V23 product is provided as Network Common Data Form 4 (NetCDF4) with total AOD
reported in the NetCDF4 group “4.4_KM_PRODUCTS” at a wavelength of 550 nm (mid-visible)
in the variable “Aerosol_Optical_Depth”. The AOD at 550 nm for each of the 74 aerosol mixtures
is reported in the “AUXILIARY” subgroup in the variable “Aerosol_Optical_Depth_Per_Mixture”.
We further examined the variable “Aerosol_Optical_Depth_Raw”, contained in the same subgroup.
Like the “Aerosol_Optical_Depth_Per_Mixture” variable, this field is reported for a wider range of
conditions than the preferred AOD variable, primarily due to stricter cloud screening applied to the
“Aerosol_Optical_Depth" variable. In particular, we found that an “Aerosol_Optical_Depth_Raw”
retrieval could be reported where the “Aerosol_Retrieval_Screening_Flags” variable was set to
“Near Cloud” while the “Aerosol_Optical_Depth” did not contain a valid retrieval. In the
following, AOD will refer to the “Aerosol_Optical_Depth” variable, while AOD_raw will refer to
“Aerosol_Optical_Depth_Raw” when discussing MISR V23 aerosol retrievals.

2.3. MISR Validation with AERONET at Dalanzadgad

The Aerosol Robotic Network (AERONET) instrument network of ground-based sun photometers
derive AOD at a number of visible and near-infrared wavelengths from direct sun observations and
serves as the primary standard for validating satellite aerosol products [21]. As MISR V23 AOD
retrievals have not been formally validated over Mongolia, we conducted a comparison of both
AOD and AOD_raw with AOD measured by AERONET at the only site in Mongolia—Dalanzadgad.
Dalanzadgad is approximately 300 km south of UB and has similar climatology as UB. However,
Dalanzadgad does not experience the inversion layer and therefore has much lower pollution levels
than those seen in the capital.

We temporally matched AERONET and MISR within a 15 min time window of the Terra satellite
overpass, and took the closest spatial match (within 4.4 km) to the AERONET site for MISR observations
in three paths (131, 132, and 133). We used the latest version of the AERONET processing, Version 3,
Level 2.0 “AllPoints” data obtained from https://aeronet.gsfc.nasa.gov/, and conducted the validation
for the entire MISR mission starting from the year 2000. To compare to the MISR V23 AODs reported
at 550 nm, we interpolated (in log–log space) the available AERONET spectral AODs using a second
order polynomial fit [22]. Expected error envelopes around the 1-to-1 line were constructed using the
greater of 0.05 or 0.2 × AOD following Kahn et al. [12].

2.4. Air Pollution Prediction Using Machine Learning Methods

Seasonally stratified principal component analyses (PCA) were used as an exploratory tool to
better understand which combinations of the 74 MISR mixtures explained the highest proportion
of boreal winter (October–March) and boreal summer (April–September) variance in the observed
AOD. For exploratory PCA, all complete sets of 74 mixtures over the UB region in the 2011–2016
time range were examined. In these analyses, the retrievals were not required to be spatially and
temporally matched with air pollution observations. Heatmaps were constructed to visualize the
mixture correlations and groupings.

To estimate ground-level PM2.5, PM10, and SO2 concentrations from the satellite retrievals, several
machine learning methods were applied to the high-dimensional set of AODs from the 74 MISR
mixtures. We compared K-nearest neighbors (KNN), Least Absolute Shrinkage and Selection Operator
(LASSO), Gradient Boosting (GB), Random Forests (RF), and Support Vector Machines (SVM), all within
a regression setting [23]. A brief description of each method is provided in Table 1.

For each machine learning method, we repeated the tuning–training–prediction process 50 times
with different random seeds to avoid spurious results. In each of the 50 iterations, we first randomly
split the data into a 70% training and a 30% test set. We then tuned for the method-specific
parameter(s) using five-fold cross-validation (due to sample size constraints) on the training set,
with cross-validation R2 as the measure of performance. After tuning, we trained the models on the
training set and predicted on the test set using test R2 as the final measure of performance.

https://aeronet.gsfc.nasa.gov/
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Table 1. Description of machine learning methods applied to the 74 MISR mixture AOD retrievals to
predict PM2.5, PM10, and SO2.

Method Description Tuning

KNN Searched through the entire set of 74 mixtures for the K
most similar neighbors based on Euclidean distance.

Tuned for the optimal number of K
neighbors.

LASSO
Linear regression forcing weak associations between the
74 mixtures and the pollution outcome to zero,
constraining coefficient estimation via L1 regularization.

Tuned for the penalty coefficient λ.

GB Simple regression trees that iteratively improved their
predictive power by minimizing the residual error.

Tuned for the number of iterations,
shrinkage (rate of learning).

RF Uncorrelated regression trees generated via
bootstrap sampling. Tuned for the number of trees.

SVM
Regression with linear or non-linear kernels on the 74
mixtures with minimized prediction errors by tolerating
soft margins of error.

Tuned for the parameter of the
kernel (i.e., the radial basis function
kernel parameter σ), and the soft
margin constant C.

3. Results

The results of the validation of the MISR V23 AOD and AOD_raw retrievals against AOD
interpolated to 550 nm from the Dalanzadgad AERONET site are shown in Figure 3. For the validation,
there were 57% more AOD_raw (N = 260) than AOD observations (N = 166) due to the application of
stricter cloud screening to the reported AOD results. The tradeoff for more data is that the correlation
with AERONET is lower (r = 0.7502 vs. 0.8505), and the root-mean-square deviation (RMSD) is higher
(RMSD = 0.0877 vs. 0.0712). The modest under-performance of AOD_raw is further evident in the
percentage of retrievals that fall within the expected error (EE) envelopes. Approximately 52% of
the AOD_raw and 55% of AOD retrievals are within the greater of 0.05 or 0.2 × AERONET AOD.
Finally, the AOD_raw retrievals have a slightly larger bias (0.0566) relative to AERONET than the more
strictly cloud-screened AOD (0.0489). Overall, both types of V23 MISR AOD retrievals show good
performance relative to AERONET for the Dalanzadgad site. By way of comparison, Kahn et al. [12] in
their validation of the V22 MISR AOD for this site found similar performance relative to AERONET
(N = 86, r = 0.825, bias = 0.055, and 59.30% of the retrievals within the EE envelope). While there is
clear evidence in the V23 results of an AOD overestimation at small to moderate values of AERONET
AOD (Figure 3), at the largest values the retrievals are within the EE envelope. However, the sample
size at large AOD values is too small to reveal whether there is a general underestimation at high AOD
values, as was the case for the V22 MISR AOD retrievals [12].

Results from the principal component analyses of the 74 mixtures indicate that the first three
components explain approximately 95% of the variability in AOD (Table 2). To help visualize the
differences in mixture categories the spherical, non-absorbing mixtures (1–30) are shown in normal text;
the spherical, absorbing mixtures (31–50) are in bold; and the nonspherical mixtures (51–74) are shown
in italics. Note that the top 10 mixtures are listed in numerical order within each principal component
(PC) and mixtures can contribute to multiple PCs, but typically with very different weights. Although
there is a significant difference in sample size when the data were stratified, the top 10 mixture
combinations in the first PC are remarkably similar across seasons and the percentage of the variance
explained is nearly identical. The major distinction is that a greater percentage of the variability in
boreal winter (∼7%) is explained by small, spherical, non-absorbing particles. These particles do not
appear in the boreal summer PC, and are likely attributable to sulfates, which are dominant in the
winter. Another important difference is the larger proportion of variability (∼4%) explained in the
boreal summer by medium and large non-spherical dust particles (mixtures 65–74), likely attributable
to transported dust from the Gobi Desert.
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Figure 3. Validation of AERONET AOD interpolated to 550 nm versus MISR AOD (left) and MISR
AOD_raw (right) with 1-to-1 line and expected error (EE) envelope.

Table 2. MISR mixtures with largest contributions to the top three principal components. Normal text
indicates spherical, non-absorbing particles; bold indicates spherical, absorbing particles; and italics
indicates nonspherical particles.

All (N = 4824) % of Variance MISR Mixtures

1 85% 16, 17, 18, 19, 38, 39, 40, 52, 54, 55
2 5% 60, 61, 62, 67, 68, 69, 70, 71, 72, 73
3 4% 41, 42, 43, 44, 45, 46, 48, 70,73 74

Summer (N = 4089)

1 85% 15,16, 17, 18, 19, 20, 38, 39, 52, 54, 55
2 4% 31, 32, 41, 42, 43, 44, 45, 46, 47, 48
3 4% 65, 66, 67,68, 69, 70, 71, 72, 73, 74

Winter (N = 735)

1 83% 17, 18, 19, 36,37, 38, 39, 52, 54, 55
2 7% 1, 2, 3, 4, 5, 6, 7, 8, 9, 12
3 5% 41, 42, 43, 44, 45, 46, 47, 66, 73, 74

Approximately 75% of the matches between MISR and the air pollution stations had minimum
distances greater than 10 km (Table 3). As expected, the number of matched data points was larger for
SO2 and PM10 due to a larger number of ground-based monitors (10 and 8, respectively) than PM2.5

monitors (2–3). The performance of each prediction method is assessed by its median test R2 (Table 3).
Except for PM10, the MISR ground monitor matches <10 km show larger test R2, indicating improved
model performance with spatial refinement. Boxplots of the 50 iterations of each training and test on the
<10 km matched data (Appendix Figure A1) show greater variability for PM2.5, which is not surprising
given the smaller sample size. Support Vector Machine regression consistently performed best for
all three pollutants. Notably, LASSO, a method that emphasizes feature selection, performed poorly,
while ensemble tree-based methods GB and RF, and those that do not prioritize feature selection, KNN
and SVM, all performed markedly better. Methods that harness correlation patterns between mixtures
such as KNN, GB, RF, and SVM, are therefore preferred for these data. This is further illustrated
with a correlation heatmap, constructed by a hierarchical clustering tree (Figure 4), which shows that
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correlations between mixtures are positive and high, ranging from 0.57 to 1. The groupings arranged
as expected in that: (1) mixtures tend to be more correlated with other mixtures within the same
particle size and absorption “families” (i.e., 1–10, 11–20, 21–30, 31–40, 41–50, 51–74); and (2) while the
most strongly absorbing mixtures 41–47 are highly correlated with one another, they are markedly
less correlated with other mixtures. It is also notable that the heatmap groupings closely follow the
components found by PCA (Table 2).

Table 3. Sample sizes of spatiotemporally matched MISR mixtures with median test R2 for each
machine learning method and pollutant. Largest R2 for each pollutant is indicated in bold.

Pollutant Tuning/Training (N) Testing (N) Total (N) KNN LASSO GB RF SVM

PM2.5 359 154 513 0.338 0.154 0.295 0.302 0.360
PM2.5 (<10 km) 86 38 124 0.371 0.072 0.320 0.330 0.461
PM10 742 318 1060 0.111 0.067 0.147 0.107 0.151
PM10 (<10 km) 193 83 276 0.033 0.003 0.047 −0.063 0.063
SO2 1060 455 1515 0.355 0.130 0.292 0.371 0.390
SO2 (<10 km) 269 116 385 0.451 0.161 0.453 0.469 0.508

Mixture  47
Mixture  45
Mixture  46
Mixture  41
Mixture  42
Mixture  43
Mixture  44
Mixture  48
Mixture  49
Mixture  50
Mixture  33
Mixture  31
Mixture  32
Mixture  34
Mixture  35
Mixture  36
Mixture  37
Mixture  11
Mixture  12
Mixture  13
Mixture  51
Mixture  14
Mixture  15
Mixture  63
Mixture  64
Mixture  57
Mixture  56
Mixture  58
Mixture  26
Mixture  27
Mixture  10
Mixture  23
Mixture  21
Mixture  22
Mixture  24
Mixture  25
Mixture  53
Mixture  30
Mixture  28
Mixture  29
Mixture  08
Mixture  09
Mixture  06
Mixture  07
Mixture  03
Mixture  01
Mixture  02
Mixture  04
Mixture  05
Mixture  38
Mixture  39
Mixture  16
Mixture  17
Mixture  18
Mixture  52
Mixture  54
Mixture  55
Mixture  19
Mixture  20
Mixture  40
Mixture  74
Mixture  70
Mixture  69
Mixture  73
Mixture  62
Mixture  59
Mixture  60
Mixture  61
Mixture  65
Mixture  66
Mixture  68
Mixture  72
Mixture  67
Mixture  71

0.5

0.6

0.7

0.8

0.9

Corr.

Figure 4. Correlation heatmap of 74 MISR mixtures ordered based on a hierarchical cluster tree.
The x-axis has the same ordering as the y-axis, starting with Mixture 47.

Focusing on PM2.5 and the best performing regression model, SVM, we generated predicted values
1000 times using the 70–30% training/test split approach. We compared these predictions to the PM2.5

measured at the monitors in the test sample to corroborate the performance of the SVM regression
(Figure 5). The linear association between observed and predicted values indicates moderate overall
underprediction by the model (Bias = −1.793), but follows the 1-to-1 line remarkably closely, and shows
high correlation (r = 0.731). Model performance was assessed for the SVM trained and tested on all data
due to sample size constraints. However, PM2.5 under-predictions are larger at the highest observed
concentrations (>150 µg/m3), which all occurred in the winter. Similarly, a relatively high RMSD (30.521)
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is a result of the wide range in observed concentrations, which were between 5 and 250µg/m3. We applied
the validated model to convert each available MISR retrieval of AOD from the 74 mixtures to PM2.5 for
the time range from 2011 to 2016 over the UB region. Maps of the average seasonal estimates (Figure 6)
show the contrast in estimated concentrations, with average predicted PM2.5 concentrations peaking
at 100 µg/m3 in boreal winter (October–March) compared to 35 µg/m3 in summer (April–September).
Spatially, we see a clear pattern with higher wintertime concentrations in the Ger district on the north side
of the region. Notably, the other hotspot of elevated concentrations occurs just south of the city center,
where the three coal-fired power plants are located.

Overall, compared to using the MISR AOD alone, there is a marked improvement in the sample
sizes when AOD from the complete sets of 74 mixtures were used. This is because the AODs for the
mixtures are reported with less strict cloud screening than the AOD, similar to AOD_raw. Of the 808
MISR overpasses in the 2011–2016 period over the UB region, an additional 142 days are covered by
using the AODs from the 74 mixtures (Appendix Figure A2). When matched with the air pollution
monitors, we similarly find a decrease in sample size by using AOD alone, with only 51% to 56% of
the sample sizes shown in Table 3 available for analysis. For illustration, using this reduced sample we
find the linear association between AOD matched within 10 km of each of the available air pollution
monitors is much weaker than what we show above using machine learning methods on the AODs
from the 74 mixtures. The R2 for the linear associations between AOD and PM2.5, PM10, and SO2 are
0.024, 0.011, and 0.012, respectively.
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Figure 5. Predicted vs. observed PM2.5 from 1000 iterations of Support Vector Machine regression
applied to 74 MISR AOD mixtures. Linear regression (dashed line) with 95% confidence band (gray
shading) and 1-to-1 line (solid line) shown with corresponding statistics.
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Figure 6. Predicted PM2.5 from Support Vector Machine regression over the greater UB region averaged
over study period 2011–2016 for boreal summer (left) and winter (right).

4. Discussion

Harnessing the unique capabilities of the MISR satellite instrument to distinguish component
aerosol particle properties into 74 mixtures, we can generate reliable predictions of PM2.5 and SO2

over Ulaanbaatar, Mongolia, a region where there is a severe air pollution problem yet very little
ground-level monitoring. Support Vector Machine regression had the best performance, but other
machine learning methods including KNN, Random Forests, and Gradient Boosting performed nearly
as well. Particularly promising is the ability of the AODs from the set of 74 MISR mixtures to perform
so well without including additional adjustments, such as meteorology, even at higher observed
concentrations and during winter when there were fewer retrievals due to persistent cloudiness and
snow cover. In previous studies over the U.S., far more data were available to develop spatiotemporal
models (with the inclusion of additional meteorology and land use variables) to convert fractionated
4.4 km MISR AOD to PM2.5 and PM10 [24] and particle sulfates, nitrates, and carbon [25]. The results
of these studies are comparable to those shown here. Franklin et al. [24] observed cross-validated
model performance with CV-R2 = 0.51 for PM2.5 and CV-R2 = 0.44 for PM10. While the machine
learning methods presented here did not reach this level of performance for predicting PM10, our
observed ability to predict PM2.5 with far fewer ground monitors and no adjustments for meteorology
is encouraging. The poor performance in predicting PM10 is likely in part due to its spatial variability,
which can be on the order of less than 1 km for coarse particles [26]. Due to data availability, we
matched MISR observations with ground monitoring concentrations that were within 10 km, likely too
large a spatial scale to detect associations with PM10. Meng et al. [25] found that fractionated MISR
AOD used in conjunction with meteorology and land use information was able to explain 66% of the
variability in sulfate PM2.5 in central and southern California. While we did not have access to particle
sulfate concentrations in UB, we assumed gaseous SO2 was a reliable proxy, and found that the MISR
mixtures have similar predictive performance.

Paciorek and Liu [27] conducted a comparison of statistical models containing AOD and other
parameters including land use, meteorology, emissions factors, and regional temporal variability,
and found almost no improvement in long term (monthly to annual) average PM2.5 estimates from
the models that included satellite observations versus those that did not. However, they noted that
this is mostly due to the availability of high quality data in the U.S., and that in developing countries
with higher pollution levels and less reliable ground monitoring and emissions data, spatially and
temporally variable satellite observations can provide more information to the model. In addition,
the relative magnitude of errors caused by uncorrected spatial variability in surface reflectance would
be smaller at higher pollution levels. In this study, we find that AODs from the 74 MISR mixtures are
in fact able to contribute significantly to the explanatory power to estimate PM2.5 (and SO2) without
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the inclusion of other parameters. This promising result suggests that generating external geographic
and meteorological data to include in AOD-PM estimation models is not necessarily critical when
there is sufficient information on particle size and type. For global studies where these external data
may also be limited, relying on satellite information alone is highly desirable.

This study is one of the first applications of the new V23 MISR aerosol product [19,20].
Our validation of AOD and AOD_raw with AOD from the Dalanzadgad AERONET site included far
more observations, yet the results are nearly identical to those found in Kahn et al. [12]. In another
MISR/AERONET comparison focused on desert sites including Dalanzadgad [28], no systematic
biases or trends were found, demonstrating MISR’s ability to retrieve AOD over bright surfaces.
We extended our analysis to include another new product, AOD_raw, which enabled us to increase the
sample size by 58%, adding some data in winter when there was consistent snow cover and few AOD
retrievals. The validation of AOD_raw with AERONET shows good correlation (r = 0.750) and only
slightly fewer observations within the EE (52%). In a similar manner, using the 74 MISR mixtures also
increased the sample size relative to the standard AOD by more than 50%. Similar to AOD_raw, cloud
screening is relaxed for retrieving mixtures. The only other reason for incomplete sets of AODs from
the full set of mixtures is the exclusion of individual mixtures when the retrieval algorithm fails for
some reason. However, it is important to note that these conclusions are only strictly applicable to
MISR aerosol retrievals in Mongolia. In other regions the performance of the algorithm is likely to
be different, and caution is urged when working with the less strictly cloud-screened AOD_raw and
AOD by mixture variables in the MISR V23 Aerosol Product.

There are some limitations to relying solely on satellite aerosol observations for estimating air
pollution. Although we improved data coverage with the use of MISR AOD_raw and the 74 mixtures,
there was still a lack of retrievals in winter. While the multi-angle views of MISR eliminate surface
reflectance effects more effectively than single-view instruments, and perform well over bright desert
surfaces such as the Sahara [13], there are no instruments capable of producing a valid aerosol
retrieval when viewing extremely bright snow and ice covered surfaces [29]. If daily or near daily air
pollution estimates are needed under such conditions, supplementing satellite-derived AOD with other
information, such as output from a chemical transport model, would help fill these gaps. Inclusion
of these additional data may also help with the under-prediction of PM2.5 concentrations. This is
important future work that, in combination with what we have shown in this study, will enhance air
pollution studies in Mongolia and other countries with poor air quality.

5. Conclusions

In regions of the world with limited ground monitoring, observations of AOD from polar
orbiting satellites provide valuable spatial and temporal coverage needed for estimating air pollution
concentrations. We find that by applying machine learning methods to the high-dimensional set of
74 MISR AOD mixtures in combination with data from 2–3 monitoring sites we can reliably estimate
ground-level PM2.5 and SO2 (a proxy for sulfate particles) in Ulaanbaatar, Mongolia. Our results from
Support Vector Machine regression show good cross-validation statistics and PM2.5 estimates that
capture relevant spatial and temporal patterns over the region. While coverage in the wintertime was
sparse due to snow cover, MISR mixture and AOD_raw data in the “AUXILLARY” field of the new
V23 aerosol product provided some additional days of observations due to the relaxed cloud screening
mask. Coupled with MISR’s reliability over bright surfaces, this increased coverage is extremely
beneficial, particularly since other satellite aerosol products are unable to provide AOD under such
conditions. Our results are promising in that they show predictive power comparable to other studies
without introducing additional data, such as meteorology, into the regression models. Future work
that incorporates chemical transport and weather forecasting model output will help provide much
needed information when there are gaps in satellite aerosol retrievals.
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Figure A1. Boxplots of the training (green) and test (coral) R2 from 50 iterations of each machine
learning method applied to the 74 MISR mixtures for predicting PM2.5 (top), PM10 (middle) and
SO2 (bottom).
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Figure A2. Frequencies of successful MISR 74 AOD mixtures and AOD over the study period 2011–2016.
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