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Abstract: Water clarity (via the Secchi disk depth, SDD) is an important indicator of water quality and
lake ecosystem health. Monitoring long-term SDD change is vital for water quality assessment and
lake management. In this study, we developed and validated an empirical model for estimating the
SDD based on Landsat ETM+ and OLI data using the combination of band ratio of the near-infrared
(NIR) band to the blue band and the NIR band. Time series data of remotely estimated SDD in Lake
Liangzi were retrieved from 2007 to 2016 using the proposed models based on forty Landsat images.
The results of the Mann–Kendall test (p = 0.002) and linear regression (R2 = 0.352, p < 0.001) indicated
that the SDD in Lake Liangzi demonstrated a significant decreasing trend during the study period.
The annual mean SDD in Lake Liangzi was significantly negatively correlated with the population
(R2 = 0.530, p = 0.017) and gross domestic product (R2 = 0.619, p = 0.007) of the Lake Liangzi basin.
In addition, water level increase and the flood have an important effect on SDD decrease. Our study
revealed that anthropogenic activities may be driving factors for the long-term declining trend in
the SDD. Additionally, floods and heavy precipitation may decrease the SDD over the short term
in Lake Liangzi. A declining trend in the SDD in Lake Liangzi may continue under future intense
anthropogenic activities and climate change such as the extreme heavy precipitation event increase.
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1. Introduction

Freshwater, which is mainly stored in lakes and reservoirs, is an essential resource for natural and
human needs. However, the water quality of many lakes is becoming degraded, and people find it
necessary to monitor water quality change [1]. Traditional water quality monitoring is based on in situ
measurements and laboratory analysis, which are accurate but time-consuming and expensive and
cannot monitor an overview of large regions [2,3]. Satellite remote sensing is a powerful tool that has
been widely used to assess spatial and temporal variations in water quality [4–6]. More importantly,
satellite remote sensing is the only way to retrospectively view long-term variations due to many in
situ water environment monitoring efforts only having been started in the past several years. Landsat
series data have been widely used for monitoring surface water quality. Many reliable algorithms for
Landsat data and water quality parameters have been developed, such as chlorophyll-a (Chl-a), total
suspended matter (TSM), total nitrogen, and total phosphorus [3,7,8].

The Secchi disk depth (SDD) is a measure of water clarity that is widely accepted to indicate
water quality conditions [9,10]. Water clarity is related to many other water quality parameters, such
as TSM, Chl-a, and dissolved organic carbon and is a basic and important water quality parameter [11].
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Water clarity also can reflect essential information on light availability in aquatic ecosystems [12,13].
Therefore, it is important to monitor long-term SDD changes to benefit our understanding of lake
ecosystems and lake management. A large number of studies have used Landsat data to retrieve SDDs,
and most of them use the simple linear regression of single band or band ratios [14]. However, these
retrieved algorithms of the SDD are empirical regional algorithms and cannot be used in Lake Liangzi
directly. Thus, customized retrieval models of the SDD based on Landsat data in Lake Liangzi need to
be developed and validated.

The water quality of inland waters is determined by numerous factors, such as hydrologic
conditions, phytoplankton, and anthropogenic activities [11,15]. The watershed human population
and economic development in the area are also important factors of declining water quality with many
direct and indirect effects [16]. The gross domestic product (GDP) provides an indicator of economic
development. Most studies have focused on the effects of anthropogenic activities on water chemical
parameters and trophic status [17,18]. Furthermore, the number of studies linking socioeconomic
metrics to water quality are limited due to administrative units not holding jurisdiction over entire
watersheds in most cases [1]. Alternatively, some extreme weather events, such as floods and heavy
rainfall, may also strongly influence water quality. The immediate and short-term effects of floods and
heavy rainfall on water quality are usually associated with elevated turbidity, total suspended matter
and nutrient matter by inputting a large amount of domestic, industrial, and agricultural effluents
into the lake [19–22]. However, little attention has been given to the effects of the relationship between
anthropogenic activities and climate change on water clarity.

Therefore, the main objectives of this study are to (1) develop empirical remote sensing models to
retrieve SDDs in Lake Liangzi based on Landsat ETM+ and OLI images, (2) document the temporal and
spatial variations in SDDs from 2007 to 2016 using the proposed estimation models, and (3) understand
the long-term changes in lake water SDDs driven by anthropogenic activities and climate change.

2. Materials and Methods

2.1. Study Area

Lake Liangzi (30◦5′–30◦18′N, 114◦21′–114◦39′E), which has a water surface area of 362.5 km2,
a catchment area of 3260 km2, a mean water depth of 3.0 m, and a water volume of 12.65× 108 m3, is the
largest shallow lake in Hubei Province, historically, China. Lake Liangzi is a macrophyte-dominated
lake in the middle and lower reaches of the Yangtze River but the macrophytes have degraded in the
past few decades [23,24]. The mean water level of Lake Liangzi is 18.01 m. From 2007 to 2016, two
major floods occurred in Lake Liangzi in 2010 and 2016. The maximum water levels of Lake Liangzi in
2010 and 2016 were 21.29 m and 21.49 m, respectively. Lake Liangzi is the backup potable water source
of Wuhan. However, in recent years, some areas of Lake Liangzi have become lightly eutrophic [25].

2.2. Sampling Sites and Water Quality Parameters Measurements

The in situ SDD observations were conducted monthly at predefined sites in Lake Liangzi
in 2016. Forty-five sampling sites were distributed uniformly across Qianjiangdahu, Manjianghu,
and Gaotanghu (Figure 1). The sampling vessel used could not reach the Zhangqiaohu and Niushanhu
areas due to the steel cable enclosure between regions. Thus, there were no sampling sites in these two
lake regions. For each season, 90 samples from every two surveys (Spring: April and May; Summer:
July and August; Fall: September and November; Winter: January and February) that were close to the
date of Landsat images were selected and then divided into two groups randomly. One group was
used for calibration and the other for validation. A total of 180 samples (45 samples × 4 seasons) were
used to develop the SDD remote estimate model and another 180 samples (45 samples × 4 seasons)
were used for model validation. A standard 20 cm diameter Secchi disk was used to measure the
SDD. The Secchi disk is a circular black and white disk that is placed by an observer into a water
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column until it disappears from view. When the disk is no longer visible, the depth is recorded as the
SDD (Figure 1).Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 15 
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2.3. Satellite Data Acquisition and Process

For the shape and size of Lake Liangzi, Landsat series imagery is suitable for estimating water
quality because of its 30 m spatial resolution [26]. A total of forty cloud-free Landsat Level 1T
images (24 Landsat ETM+ and 16 Landsat OLI images) from 2007 to 2016 were downloaded from the
Geospatial Data Cloud (http://www.gscloud.cn). First, Landsat ETM+ and OLI data were rescaled
to top of the atmosphere (TOA) radiance values using the radiometric calibration coefficients in the
metadata file (MTL file) via the ENVI 5.3 software (Boulder, CO, USA). The MODTRAN4 radiation
transfer code which is incorporated in the FLAASH module has been widely used in inland water
bodies [27–29]. Thus, the atmospheric correction in this study was based on the MODTRAN4 radiation
transfer calculations from the FLAASH module.

http://www.gscloud.cn
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2.4. Water Level, Rainfall, Air Temperature, Population, and GDP Data

The daily water level of Lake Liangzi was collected from of the hydrological station of Liangzi
(Figure 1), which belongs to the Hubei Provincial Department of Water Resources (http://219.140.162.
169:8800/rw4/report/fa07.asp). The water level data were collected from January 1, 2007 to December
31, 2016. The rainfall and air temperature data from three meteorological stations near Lake Liangzi,
including Jiayu (29.55◦N, 113.58◦E), Jiangxia (30.21◦N, 114.2◦E), and Huangshi (30.14◦N, 115.02◦E),
were collected from 1957 to 2016. These data can be downloaded from the China Meteorological Data
Sharing Service System (http://cdc.nmic.cn). The population and GDP of the Lake Liangzi basin from
2007 to 2016 were collected from Hubei Statistics Bureau (http://www.stats-hb.gov.cn/info/iIndex.
jsp?cat_id=10055).

2.5. Statistical Analysis and Accuracy Assessment

Previous studies showed that the log-transformed water quality parameter relationship to Landsat
images would be better than the relationships between the original data [30,31]. Thus, the SDD data
were log-transformed to obtain stronger corrections to the Landsat data in this study. The Pearson
correlation between the log-transformed in situ water clarity data and band reflectance of Landsat
ETM+ and OLI was conducted to determine which spectral band, or band ratio, was most suitable for
predicting the SDD. Levels are reported as significant if p < 0.05. Then, simple and multiple regression
models were constructed to develop the best prediction algorithms. The root mean square error (RMSE)
between the in situ and estimated values was used to assess the accuracy of the algorithms. The RMSE
was calculated with the following equation:

RMSE =

√
∑n

i=1(Xobs,i − Xmodel,i)
2

n
(1)

where n represents the number of samples, and Xobs and Xmodel represent the in situ observed
and estimated values, respectively. All data analyses were conducted using SPSS 19.0 (SPSS
Incorporated, Illinois, USA). To assess variation trends in the water SDD in Lake Liangzi, we conducted
a Mann–Kendall test using Kendall.exe (which can be downloaded from http://pubs.usgs.gov/sir/
2005/5275/downloads/).

3. Results

3.1. In Situ SDD Characteristics

Table 1 summarizes the characteristics of in situ SDD of Lake Liangzi for calibration and validation
across each season in 2016. The SDD dataset for calibration ranged from 0.25 to 1.10 m, with a mean
(± standard deviation) of 0.63 ± 0.16 m, and the dataset for validation ranged from 0.25 to 1.15 m,
with a mean of 0.64 ± 0.10 m in the aggregated dataset (Table 1).

Table 1. Statistics of the in situ water Secchi disk depth (SDD) for calibration and validation in
Lake Liangzi.

Calibration SDD Dataset (m) Validation SDD Dataset (m)

Min Max Mean ± SD Min Max Mean ± SD

Spring (April and May) 0.45 0.90 0.63 ± 0.10 0.40 1.00 0.66 ± 0.13
Summer (July and August) 0.25 0.65 0.44 ± 0.09 0.25 0.60 0.42 ± 0.10

Fall (September and November) 0.45 1.10 0.73 ± 0.12 0.50 1.15 0.75 ± 0.12
Winter (January and February) 0.35 1.00 0.73 ± 0.13 0.40 1.00 0.72 ± 0.13

Total dataset 0.25 1.10 0.63 ± 0.16 0.25 1.15 0.64 ± 0.17

http://219.140.162.169:8800/rw4/report/fa07.asp
http://219.140.162.169:8800/rw4/report/fa07.asp
http://cdc.nmic.cn
http://www.stats-hb.gov.cn/info/iIndex.jsp?cat_id=10055
http://www.stats-hb.gov.cn/info/iIndex.jsp?cat_id=10055
http://pubs.usgs.gov/sir/2005/5275/downloads/
http://pubs.usgs.gov/sir/2005/5275/downloads/
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3.2. Algorithm Development and Validation

The results of the Pearson correlation coefficients showed negative correlations between the
log-transformed SDD and preprocessed Landsat spectral bands. The blue band, near-infrared (NIR)
band and the ratio of the NIR to the blue band in the Landsat images showed a strong negative
association with the SDD (R = −0.815, −0.855, and −0.925, respectively).

To develop the predictive SDD algorithm, we constructed empirical models using simple and
multiple linear regression models relating log-transformed in situ data and reflectance values of
selected bands and band ratios (Table 2). The multivariate linear regression model with reflectance
of NIR band and ratio of the NIR to blue bands showed the highest coefficient of determination
(R2 = 0.860) for predicting ln(SDD) (Table 2, Figure 2).

Table 2. The estimated ln(SDD) algorithms and statistical parameters of Lake Liangzi (n = 180).

Algorithms R2 p

ln(SDD) = 28.16 × RBlue − 72.38 × RNIR − 0.531 0.646 <0.001
ln(SDD) = −6.781 × (RNIR/RBlue) + 2.023 0.806 <0.001

ln(SDD) = −8.266 × (RNIR/RBlue) + 1.863 × RBlue + 2.386 0.813 <0.001
ln(SDD) = −8.753 × (RNIR/RBlue) + 5.223 × RNIR + 2.552 0.860 <0.001

RBlue and RNIR represent the atmospherically corrected reflectance values of the blue band and near-infrared band
in the Landsat images respectively. The best fit algorithm is shown in bold.
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Figure 2. The SDD algorithms for (a) the calibration of in situ measured SDDs and Landsat reflectance
and (b) the validation of Landsat-estimated SDDs with in situ measured SDD. RBlue and RNIR represent
the atmospherically corrected reflectance values of the blue band and near-infrared band in the Landsat
images, respectively.

To assess the performance of the selected SDD estimation models, regressions between the Landsat
estimated SDD and independent in situ measured SDD were conducted. The estimated SDD retrieved
by the selected algorithms showed a highly significant linear correlation with the in situ measured SDD
(R2 = 0.661) (Figure 2). In addition, the in situ measured and estimated data were distributed along
the 1:1 line demonstrating the consistency (Figure 2). The RMSE of the validation results between
the measured and retrieved SDDs were 0.118 m (Figure 2). The results of validation indicate that the
selected models can be used to retrieve SDD.

3.3. Variations in SDD

The developed SDD estimated algorithms were applied to forty Landsat ETM+ and OLI images
to retrieve SDD values in Lake Liangzi from 2007 to 2016. Then mean and standard deviation values of
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the SDD were extracted to explore variation trends. The results of the Mann–Kendall test indicated
that the SDD in Lake Liangzi showed a significant declining trend during the study period (Z =−3.069,
p = 0.002) (Table 3). The results of the linear regression indicated that the SDD in Lake Liangzi showed
a significant declining trend from 2007 to 2016 (R2 = 0.352, p < 0.001) (Figure 3). The mean seasonal
SDD was highest in summer, with a value of 0.89 m, and lowest was in spring, with a value of 0.71 m,
during the study period (Figure 4). However, the SDD in Lake Liangzi did not present a significant
seasonal variation (p = 0.201).

Table 3. Mann–Kendall test of water SDD variation trends in Lake Liangzi during the study period.

Tau Correlation Coefficient S Z p Value

Whole lake −0.392 −67 −3.069 0.002
Niushanhu −0.480 −82 −3.752 <0.001
Manjianghu −0.345 −59 −2.690 0.007
Gaotanghu −0.415 −71 −3.260 0.001

Qianjiangdahu −0.421 −72 −3.296 0.001
Zhangqiaohu −0.450 −77 −3.524 <0.001
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The SDD of small lake bays was lower than the center of lake (Figure 5). The SDD of Qianjiangdahu
region was usually higher than other regions in Lake Liangzi (Figures 5 and 6). The SDD of Niushanhu
was usually lower than other regions (Figures 5 and 6). The SDD of five lake regions experienced
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a declining trend the same as the whole lake (Table 3, Figure 6). Furthermore, the SDD of Gaotanghu
and Niushanhu decreased much more and much faster than other regions (Figure 6).Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 15 
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3.4. Relationships of Water Clarity with Population and GDP

The population of the Lake Liangzi basin experienced a slow but significant growth from 1.288
million people in 2007 to 1.322 million people in 2016 (R2 = 0.942, p < 0.001; Figure 7a). The GDP of the
Lake Liangzi basin showed significantly rapid growth from 21.38 billion yuan in 2007 to 94.60 billion
yuan in 2016 (R2 = 0.980, p < 0.001; Figure 7b). To evaluate the relationship between the SDD and
anthropogenic activities, linear regressions of the SDD with population and GDP were conducted.
Significant negative correlations were observed when comparing the annual mean SDD in Lake
Liangzi with population (R2 = 0.530, p = 0.017 < 0.05; Figure 8a) and GDP (R2 = 0.619, p = 0.007 < 0.01;
Figure 8b).
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3.5. Relationships between Water Clarity and Air Temperature, Water Levels, and Rainfall

From 2007 to 2016, the monthly maximum, minimum, and mean water levels were 21.11 m,
16.99 m, and 18.25 m, respectively (Figure 9a). To evaluate the relationship between the SDD and water
level, rainfall amount, and air temperature, linear regressions were conducted. The results showed
that the SDD was significantly negatively correlated with water level (R2 = 0.524, p = 0.018 < 0.05;
Figure 10a). During the ten years, two floods occurred in 2010 and 2016. When floods occurred, the lake
SDD decreased. The lake SDD decreased from 0.78 m to 0.6 m during the flood of 2010 and decreased
from 0.65 m to 0.49 m during the flood of 2016 (Figure 3). The monthly maximum water levels in 2010
and 2016 were 20.75 m and 21.11 m, respectively, corresponding to monthly rainfall amounts of 586
mm and 549 mm, respectively (Figure 9). The rainfall amount during month of multiple floods were
586 mm and 549 mm, which means that a monthly rainfall amount above 500 mm may lead to a flood
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in Lake Liangzi. Thus, we conducted frequency statistics of the monthly rainfall greater than 500 mm
from 1957 to 2016. The results indicated that the frequency of heavy rainfall or floods increased from
1956 to 2016 (Figure 11).
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4. Discussion

4.1. Predictive SDD Algorithm for Landsat Imagery

Landsat series data provide a historical data set covering almost 40 years and Landsat ETM+
and OLI data have been widely used to estimate water quality parameters, including the SDD [8,32].
Previous studies have shown that the blue and red bands of Landsat were successfully correlated
to water clarity [9,33,34]. In addition, the band ratios of red and blue may be the most suitable
relationship to retrieve SDDs [31,35]. However, in our results, the red band of Landsat did not show
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good correlations to SDD in Lake Liangzi. Zhao et al. (2011) considered that band selection for
retrieving SDDs may depend on the image quality and limnological properties of a water body [34].
In our study, the NIR band and band ratio of the NIR to blue band showed strong negative correlations
to the SDD, which was used for predicting the SDD in Lake Liangzi. The NIR band was strongly
absorbed by water, and the reflectance of the NIR was probably suspended matter reflection. The blue
band was dominated by the absorbing effects of phytoplankton and detritus, and dividing by the
blue band serves to normalize the brightness in the NIR band [2]. Thus, the band and band ratio
selection of the SDD algorithm in our study was reasonable. In addition, the dataset used to develop
the algorithm included all seasons (spring, summer, fall, and winter) covering a large variability of
SDD from 0.25 m to 1.10 m. These characteristics indicated that the developed empirical model was
acceptable for predicting the SDD in Lake Liangzi.

4.2. Potential Factors for Long-Term Changes in SDD

Our results of the Mann–Kendall test and linear regression demonstrate that Lake Liangzi is
experiencing a declining trend in SDD, with a relatively high SDD value of 1 m in 2007 and a low value
of 0.6 m in 2016 (Table 3, Figures 3 and 4). Previous studies showed that the decline in SDD may be
attributed to more intensive agriculture land use [33], increased phytoplankton [11,36], and increased
total suspended matter [37]. The water quality of lakes is seriously affected by anthropogenic activities
in the watershed, such as pollutant emissions, agricultural nonpoint source pollutants, and domestic
sewage, which could be associated with human population growth and economic development [18].

In this study, human population and GDP in the lake basin were used to elucidate the effects of
anthropogenic activities on the decreased SDD in Lake Liangzi. Our results showed that the SDD was
significantly negatively correlated with the population and GDP in the watershed. The population
in the watershed was growing slowly from 1.288 million people to 1.322 million people during
the ten years of the study. The population in the watershed increased with growing demand for
water resources for domestic use, agriculture, and industry, which resulted in the accumulation of
contaminants flowing into lakes [15]. The GDP in watershed was growing rapidly during the ten years.
The rapid growth of the GDP resulted in more resource input and more intensive human influence
on the lake [17]. These may result in increased nutrients input and lake eutrophication, which would
decrease the lake SDD. These indicate that increased human activity intensity in the watershed may
contribute to the SDD decrease in Lake Liangzi. Furthermore, with the fast growing rate of GDP,
the SDD in Lake Liangzi may be further reduced.

The SDD in Lake Liangzi did not show significant correlations with rainfall amount and air
temperature (p = 0.192 and p = 0.114, respectively, Figure 10b, c). However, the SDD was significantly
negatively correlated with water levels in Lake Liangzi (Figure 10a). High water levels could introduce
terrestrial phosphorus and nitrogen from flood land areas, which could fuel algal populations [21].
Furthermore, high water levels could also cause light limitations to submerged macrophytes and
reduce their effects in maintaining the water’s clarity [38].

In addition, flood events and heavy rainfall may have great impacts on water quality and aquatic
ecosystems [20,21]. The mean SDD during the flood years (2010 and 2016) was significantly decreased
compared to that of the previous year. This indicates that floods decrease the water clarity in Lake
Liangzi during the short term. Flooding could introduce significant amounts of suspended matter
and nutrients from land [19]. High inflows in floods and heavy precipitation events could bring in
higher concentrations of colored dissolved organic materials, and these all could reduce water SDD
in the lake [39]. Therefore, a negatively but nonsignificant linear relationship was found between
SDD and rainfall amount. Furthermore, some studies found that heavy precipitation may induce
river plumes and the frequency of heavy precipitation in past decades was increased [22]. Our results
indicate an increase in the frequency of heavy precipitation (monthly rainfall amount >500 mm) in the
Lake Liangzi basin (Figure 11). These results suggest that the frequency of flood events and heavy
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precipitation in the Lake Liangzi basin may increase in future decades. The SDD in Lake Liangzi may
be further decreased in the future if these trends continue.

There are some other factors that may also be contributing to the SDD decrease in Lake Liangzi.
Some regions of Lake Liangzi are used for the aquaculture of fish and crabs [40]. Aquaculture activities
could increase the concentration of nutrients in water, causing eutrophication and reducing water
SDD [41]. In addition, some regions of Lake Liangzi were polluted with the discharge of toxic
wastewater which could kill macrophytes [25]. Macrophytes can help in stabilizing the sediment and
keeping water clarity for shallow Lake Liangzi.

4.3. Implications of Decreasing SDD for Ecosystem Evolution

A declining trend in the SDD of Lake Liangzi may continue with the growth of the human
population, economic development, and climate change such as the extreme precipitation events
increase. Decreases in SDD will reduce the available light entering the water column [42]. In addition,
the temperature of the surface water may increase, and that of the deep water may decrease due to
more solar radiation being absorbed at the water surface [43]. For a macrophyte-dominated lake,
the macrophytes, especially submerged macrophytes, play a key role in maintaining healthy aquatic
ecosystems and providing ecological service in lakes [44]. The available light and temperature decrease
in the water column, especially at lake bottom, will reduce the biomass, growth rate, and photosynthetic
capacity of submerged macrophytes and may result in the degradation of submerged macrophytes
and a state shift from clear macrophyte-dominated status to turbid phytoplankton-dominated
status [24,45]. Additionally, the cover and biomass of floating plants (e.g., Eichhornia crassipes,
Lemna minor, and Hydrocharis dubia) may be enhanced due to the increased temperature of surface
water and trophic status induced by anthropogenic activities [46].

The implications of a decrease in SDD are not limited to macrophytes but could also affect
phytoplankton. A decreasing SDD may affect the critical depth of phytoplankton communities and
reduce primary production [47]. The increased temperature of surface water due to global warming
and SDD decrease may affect the dominated community and phenophase of phytoplankton [48,49].

5. Conclusions

In this study, we developed an empirical model to retrieve the SDD in Lake Liangzi based on
Landsat ETM+ and OLI data and validated its accuracy. Subsequently, the temporal and spatial
variations of the SDD in Lake Liangzi were derived from Landsat data from 2007 to 2016. During
the study period, the SDD in Lake Liangzi presented a significant decreasing trend. The SDD
was significantly and negatively correlated to the human population and GDP in the lake basin.
Anthropogenic activities may be the driving factors for the decreasing SDD trend over long timescales,
and flood events may affect the SDD in the short term. A decreasing SDD may lead to the degradation
of submerged macrophytes and a state shift in the lakes. A declining trend in the SDD in Lake Liangzi
may be continued under future anthropogenic activities and climate change. Remote sensing imagery
can be used to increase the current knowledge of water quality and develop management strategies
for lake conservation.
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