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Abstract: Vegetation biophysical parameter retrieval is an important earth remote sensing system
application. In this paper, we studied the potential impact of the addition of new spectral bands in
the red edge region in future Landsat satellites on agroecosystem canopy green leaf area index (LAI)
retrieval. The test data were simulated from SPARC ‘03 field campaign HyMap hyperspectral data.
Three retrieval approaches were tested: empirical regression based on vegetation index, physical
model-based look-up-table (LUT) inversion, and machine learning. The results of all three approaches
showed that a potential new spectral band located between the Landsat-8 Operational Land Imager
(OLI) red and NIR bands slightly improved the agroecosystem green LAI retrieval accuracy (R2 of
0.787 vs. 0.810 for vegetation index approach, 0.806 vs. 0.828 for LUT inversion approach, and 0.925
vs. 0.933 for machine learning approach). The results of this work are consistent with the conclusions
from previous research on the value of Sentinel-2 red edge bands for agricultural green LAI retrieval.
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1. Introduction

Vegetation monitoring is a key application of earth observing systems. Currently, several remote
sensing satellites such as MODIS [1] and MERIS [2] provide vegetation monitoring products using
their multi-temporal and multi-angular observations. However, these products have relatively coarse
spatial resolution, which makes them less useful for precise crop yield prediction or local scale forest
monitoring. A higher spatial resolution vegetation product would be desirable. In 2015 and 2017, the
Sentinel-2A and Sentinel-2B satellites were launched and made progress toward filling this need. The
Sentinel-2 missions have a revisit date of five days and high spatial resolution vegetation monitoring
related bands: 10 m for blue/green/red/NIR bands and 20 m for red-edge bands/SWIR1/SWIR2
bands. These characteristics of a moderate revisit interval and high spatial resolution make the
Sentinel-2 mission a good data source for vegetation monitoring studies.

The Landsat-8 and -9 (launch expected in 2020) Operational Land Imager (OLI) have similar
orbits as the Sentinel-2 missions. The Sentinel-2 instruments have similar spectral bands as Landsat 8
(excluding the red-edge bands), but Sentinel-2 does have higher revisit frequency, larger swath and
different spatial resolutions. Recently, the next satellite in the Landsat series (Landsat 10) has been
under consideration and different concepts have been proposed. One idea is the potential addition of
red edge bands. The red edge is the sharp change in leaf reflectance between 680 and 750 nm [3]. It is a
key wavelength range in remote sensing that is sensitive to vegetation conditions and can be used to
support different vegetation parameter retrieval products.

Considering vegetation related products, the leaf area index (LAI) is among the most common.
LAI is leaf area per unit ground area [4]. It is required by many process models to describe energy
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and mass exchanges in the soil/plant/atmosphere system [5]. So far, different methods have been
adopted to retrieve LAI from top of canopy (TOC) reflectance spectra. These can be divided into
four groups [6]: (1) retrieval based on the empirical relationship between a vegetation index (VI)
and LAI/chlorophyll; (2) physical model-based inversion, including iterative optimization and
look-up-table (LUT) inversion; (3) machine learning approaches, e.g., neural networks (NNs) [5];
(4) hybrid approaches that combines physical based methods and machine learning methods. Each
method has advantages and disadvantages. Empirical methods are easy to implement, but are time
and location variant and suffer from saturation effects [7,8]. The physical model-based approach,
for example, LUT inversion, is more general and can be used globally. It requires no prior knowledge
or in situ measurements., but does require a radiative transfer model (RTM). Different vegetation
RTMs have been proposed. Among them, PROSAIL is one of the most popular [9]. It has been used
in multispectral/hyperspectral based retrieval studies [10–12]. Machine learning approaches are fast
and can capture the nonlinear relationship between different parameters, but they are time variant
and location dependent. Researchers in [13] used neural network (NN), support vector regression
(SVR), and Gaussian process regression (GPR) to study the promise of Sentinel-2 and 3 for biophysical
parameter retrieval. In [2] Bacour et al. combined NN and RTM models to estimate different vegetation
parameters using MERIS reflectance data. Vuolo et al. studied both empirical vegetation index
and statistical machine learning approaches for time-series LAI estimation, based on multi-temporal
DEIMOS-1 satellite observations [14].

There are several studies focusing on biophysical parameter retrieval based on Landsat
data [8,15–17]. However, most of these used Landsat ETM+/TM data, which have lower SNR than
Landsat 8 OLI and a wide NIR band (760–900 nm) that covered the entire red edge and reflectance
plateau wavelength range. Landsat 8’s OLI has a much narrower NIR band (850–880 nm) that only
covers the high reflectance plateau. Neither has a narrow band capturing the rise in reflectance from
the red to the NIR, and as such a new band is of interest for future Landsat instruments.

Due to the mission similarity, previous studies of Sentinel-2 mission spectral band settings for
vegetation monitoring are valuable for the design of future Landsat instrument. Some of those
Sentinel-2 studies directly explored the significance of red edge bands. Others did not directly report
the significance of red edge bands but this can be inferred from their results. Before the launch of
Sentinel-2, simulation-based studies were carried out to predict the potential of Sentinel-2 bands for
vegetation biophysical parameter retrieval. These studies generated simulated Sentinel-2 data by
either resampling high-resolution field campaign data or running canopy RTMs. In [13] Verrelst et
al. evaluated the predicted performance of LAI, leaf chlorophyll content (LCC) fractional vegetation
cover (FVC) products based on machine learning approaches with Sentinel-2 bands. In particular,
they compared the performance with and without the three red edge bands (705, 740, 780 nm) and
found a slight improvement from their inclusion. In [7], they studied the importance of these red edge
bands for green LAI retrieval through a vegetation index approach. For LAI estimation, they found the
combination of Sentinel-2 red and 705 nm red edge bands provided high performance over multiple
field campaigns data, although a direct comparison between red edge VI and non-red edge bands was
not provided in the work. In [18], they evaluated the performance of crop LAI estimation based on LUT
inversion and a neural network approach. They tested all Sentinel-2 band combinations and evaluated
the significance of each band by counting the frequency each band appeared in the top 5% of the band
combinations. They concluded the importance of spectral regions (in descending order) as NIR, red
edge, visible, and SWIR. Researchers in [19] assessed the importance of Sentinel-2 red edge bands
for wheat and potato crop LAI estimation through both partial least square regression (PLSR) and VI
approach. They concluded the red edge bands are the most important bands. Fernandes et al. [20]
developed a physically based empirical relationship between LAI and the normalized difference of
two Sentinel-2 red edge bands.

After the launch of the Sentinel-2 satellites, real data were available and the latest studies evaluated
the significance of Sentinel-2 red edge bands or compared the performance of biophysical parameter



Remote Sens. 2018, 10, 1458 3 of 14

retrieval using Sentinel-2 and Landsat-8 OLI data. In [21] Clevers et al. studied the importance
of Sentinel-2 red edge bands for potato crop LAI and CCC estimation by comparing the retrieval
performance using 10 m bands VIs (red edge bands excluded) compared to 20 m bands VIs (red edge
bands included). They found the VIs composed of red edge bands do not have better accuracy than
VIs composed of non-red edge bands. Researchers in [22] studied the significance of Sentinel-2 red
edge bands for boreal forest LAI estimation by comparing the results from Sentinel-2 and Landsat-8
data. They found limited improvement (up to approximately 4%) from the addition of the Sentinel-2
red edge bands.

As mentioned above, the significance of Sentinel-2 red edge bands for LAI retrieval has been
evaluated through different approaches. However, those conclusions from Sentinel-2 studies cannot be
directly applied to predict the performance of a future Landsat instrument with red edge bands, since
previous studies have shown that the differences in OLI and Sentinel-2 spectral band position and
relative spectral response (RSR) shape can cause considerable signal differences; e.g., when observing
a forest [23]. Our present work is in support of future Landsat instrument engineering design trade-off
studies. We have studied the potential of the addition of new spectral bands to OLI between the red
and NIR bands in future Landsat instruments in the context of canopy green LAI (one-sided area
of green leaves per unit ground area [24]) retrieval for agroecosystems using empirical surrogate
data. Our objectives were to locate the optimal new band position and to quantify the potential
improvement on LAI retrieval. To keep Landsat mission data continuity, the OLI spectral band settings
were preserved and new spectral bands were considered. To our knowledge, this is the first work to
predict the significance of red edge spectral bands used together with previous Landsat spectral bands
for agroecosystem green LAI retrieval. The paper is organized as follows. The Section 2 presents the
details of the field campaign data and the three retrieval approaches. The Section 3 presents the results
of LAI retrieval and discussions. The Section 4 is the summary. Note: the data used and additional
details on the analysis methods are available upon request to the author.

2. Materials and Methods

2.1. Experimental Dataset

The experimental dataset used in this study is the Spectra bARrax Campaign (SPARC ‘03)
dataset [25], a field campaign organized by ESA during July 2003, at the Barrax, La Mancha region in
Spain. The test area extends 5 × 10 km, and consisted of large flat uniform land-use units [24]. This
campaign was aimed at supporting algorithm calibration, validation, development, in support of the
Phase-A preparations for the SPECTRA mission.

The dataset included nine different crop types (garlic, alfalfa, onion, sunflower, corn, potato, sugar
beet, vineyard, and wheat), different growing stages, and varying soil conditions [24,26]. During the
campaign, multiple biophysical parameters including LAI and chlorophyll content were measured
within 118 20 × 20 m elementary sampling units (ESUs). Each ESU was assigned one LAI value
measured with a LiCor LAI-2000 digital analyzer.

During the campaign, airborne hyperspectral HyMap images and CHRIS/PROBA satellite images
were acquired. HyMap provides 125 contiguous spectral bands ranging from 450 nm to 2500 nm. Its
average spectral bandwidth is 15–16 nm for visible, NIR and SWIR1 bands and 18–20 nm for SWIR2
bands [27]. CHRIS was configured in Mode 1 and provides 62 spectral bands ranging from 400 nm
to 1050 nm. Since our study focused on future Landsat missions that include SWIR bands, we used
the HyMap data for our work. The HyMap radiance data were atmospherically compensated to
reflectance and georeferenced by DLR [28]. We then spectrally resampled these reflectances to the
Landsat 8 OLI surface sensing bands (blue, green, red, NIR, SWIR1, and SWIR2). Finally, all original
HyMap bands within OLI red and OLI NIR bands were preserved as potential new spectral band
candidates to be considered for future Landsat instruments. Figure 1 plots all spectral bands studied
in this paper, along with a typical agriculture spectral reflectance.
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Figure 1. Spectral bands studied in this work (OLI bands and potential red edge bands) and typical
agriculture spectral reflectance.

Starting with the 118 ESU samples, we first removed bare soil samples (LAI = 0). Then, brown
(dry) LAI samples were also excluded by removing all samples with positive green brown vegetation
index (GBVI) values as Equation (1), where R2000 and R2100 corresponds to spectral reflectance at the
band centered at 2000 nm and 2100 nm respectively [28]. In the end, 98 samples were used for this
study. Their spectra are shown in Figure 2.

GBVI =
R2000 − R2100

R2000
(1)

Figure 2. The 98 SPARC ‘03 campaign HyMap spectra used in our study.
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2.2. Methods

2.2.1. Empirical Vegetation Index Approach

Many vegetation indexes have been developed for biophysical parameter estimation. Each
has its specific objective and application scope. Among them, the normalized difference vegetation
index (NDVI) is the most widely used due to its simplicity, application to broadband sensors, and
compatibility with most operational satellites. The original NDVI was developed to highlight the
contrast in spectral reflectance between the red and NIR spectral regions, although the combination
of red and NIR bands may not be the optimal index to estimate green vegetation LAI. In this study,
following the approaches in [24,29,30], all possible NDVI-like (normalized difference) spectral band
combinations, as shown in (2), were computed and a linear regression between the ground truth LAI
and corresponding NDVI index value were evaluated.

NDVIa−b =
Rb − Ra

Rb + Ra
(2)

here Ra and Rb correspond to the spectral reflectances at bands centered at wavelengths a and b. In
this study, a five-fold cross-validation scheme was adopted to increase the regression robustness.

Besides NDVIa−b, a chlorophyll index (CI) (3) was also evaluated in this study due to its simplicity
and no requirement for soil samples to calculate soil adjustment factors. CI was originally developed
for chlorophyll concentration estimation [31,32].

CIa−b =
Rb
Ra

− 1 (3)

2.2.2. Support Vector Regression Approach

Support vector regression (SVR) retrievals were tested to represent a machine learning approach
for LAI retrieval. SVR performs linear regression in the high-dimensional feature space spanned from
the original spectral reflectance spectra. It has a good compromise between model complexity and
prediction power. Previously, SVR has been successfully used for LAI retrieval [14,33]. In this study,
the radial basis function (RBF) kernel was used. The RBF kernel can capture the non-linear relationship
between input sample dimensions. It has only two free parameters and is easy to tune. During the
SVR training process, grid search and cross validation were adopted to estimate the optimal regressor
parameters [34].

2.2.3. Look-Up-Table Inversion Approach

Compared to empirical parametric VI approaches or machine learning approaches, the
look-up-table (LUT) inversion approach does not require a training dataset to determine the model,
which makes it suitable for operational vegetation biophysical variable estimation tasks [5]. The most
widely used way to build a LUT is by using RTM simulations. The PROSAIL RTM was used in this
study due to its reasonable model assumptions and simplicity. PROSAIL, which is a combination of
the leaf optical properties model PROSPECT and the canopy bidirectional reflectance model SAIL,
allows a description of both the spectral and directional variation of canopy reflectance as a function of
leaf biochemistry and canopy architecture [9]. The PROSAIL model has been validated by comparison
to both in situ measurements and other radiative transfer models using benchmark simulated crop
canopy structures [35].

PROSPECT4, the leaf model, simulates the bi-Lambertian reflectance and transmittance of
leaves as

[re f l, tran] = PROSPECT(N, Cab, Cw, Cm) (4)
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where N is the leaf structure parameter, Cab is the concentration of chlorophyll a and b, Cw is the
equivalent water thickness in leaf, and Cm is the leaf dry matter per unit area [9].

4SAIL [36], the canopy model, simulates the bidirectional reflectance factor of turbid medium
plant canopies by solving four stream radiative fluxes. The canopy reflectance from the 4SAIL model
can be expressed as

RROC = SAIL(re f l, tran, LAI, ALA, hotS, αsoil , skyl, θs, θv, φ) (5)

where re f l and tran are leaf reflectance and transmittance spectra from PROSPECT, LAI is the leaf
area index, ALA is the average leaf angle, hotS is the hot spot parameter describing the ratio between
leaf size and the canopy height, αsoil is the soil scaling factor, skyl is the diffuse incoming solar radiation
and θs, θv, φ are the sun zenith angle, view zenith angle, and relative azimuth angle respectively.

In this study, the LUT was generated using MATLAB toolbox ARTMO [37]. The distribution of
PROSAIL model input variables were set the same as in [26] as shown in Table 1. The input variable
distribution covers most of the ground truth ranges in the SPARC ‘03 campaign. Also, the soil spectrum
required by the SAIL model was represented by the mean of all bare soil sample spectra.

To build the LUT, leaf chlorophyll concentration and LAI were randomly sampled 100 times. Each
of the other variables were randomly sampled 10 times. All parameter combinations resulted in 1010

simulations. To achieve a compromise between good retrieval accuracy and reasonable processing
time, as suggested in [11,38], a random subset of 100,000 sample spectra out of 1010 were selected
as LUT entries. These spectra were spectrally resampled with respect to our study bands. Also, as
suggested by [26], during the inversion process each SPARC spectra was compared with each sample
in the LUT using a Pearson chi-square cost function as shown in (6)

J =
N

∑
n=1

(
Rn − R̂n

)2

Rn
(6)

where N is the number of bands considered, Rn and R̂n corresponds to SPARC sample spectral
reflectance and LUT sample spectral reflectance at band n. The first 500 LUT samples with minimum
cost function value were identified as candidate solutions. Their mean LAI was selected as the
estimated parameter. The means of the first 250, 750, and 1000 solutions were also tested and no
significant differences from using 500 samples were observed.

Table 1. Range and distribution of input parameters used to drive PROSAIL model to generate LUT.

Model Parameters Units Range Distribution

Leaf parameters: PROSPECT-4

N Leaf structure index Unitless 1.3–2.5 Uniform
Cab Leaf chlorophyll content

(
µg/cm2) 5–75 Gaussian (x : 35, SD : 30 )

Cm Leaf dry matter content
(
g/cm2) 0.001–0.03 Uniform

Cw Leaf water content (cm) 0.002–0.05 Uniform

Canopy variables: 4SAIL

LAI Leaf area index
(
m2/m2) 0.1–7 Gaussian (x : 3, SD : 2 )

αsoil Soil scaling factor Unitless 0–1 Uniform
ALA Average leaf angle Degree 40–70 Uniform
hotS Hot spot parameter (m/m) 0.05–0.5 Uniform
skyl Diffuse incoming solar radiation (fraction) 0.05 -
θs Sun zenith angle Degree 22.3 -
θv View zenith angle Degree 0 -
φ Sun-sensor azimuth angle Degree 0 -
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3. Results and Discussion

3.1. Empirical Vegetation Index Approach

The R2 between ground truth LAI and all possible two-band combination NDVIa−b are plotted in
Figure 3a. The red box on the corners corresponds to the VIs composed with Landsat 8 OLI bands only.
The black dashed boxes highlight the spectral band combinations that gave the highest R2 performance.

Figure 3. (a) R2 between ground truth LAI and NDVIa−b for different band combinations; (b) Scatter
plot of the predicted LAI versus ground truth LAI. Blue is from the NDVI655−561, red is from
NDVI561−677.

The R2 of NDVIa−b based on Landsat 8 OLI red and NIR bands (NDVI655−865) was 0.64 ± 0.05.
We observed this was not even the optimal band combination when only OLI bands were considered.
The R2 of the combination of OLI SWIR1 and SWIR2 bands was 0.74 ± 0.03. In [26], Verrelst et al. used
the same dataset and tested the relationship between all possible Sentinel-2 band combination VIs and
LAI. They found the optimal band combination is Sentinel-2 SWIR1 and SWIR2 bands with R2 of 0.739.
In our study, though we achieved similar R2 with OLI SWIR1 and SWIR2 bands, we achieved higher R2

performance with the combination of OLI green and red bands. One explanation for this could be the
difference of red band central wavelengths between Sentinel-2 and Landsat 8 OLI. A small wavelength
difference in this sensitive spectral range can cause differences in product retrieval performance.

When potential new bands were considered, two R2 peaks were observed in Figure 3a. One peak
is in the spectral range of 655–677 nm and 692–707 nm. The optimal band combination in this peak
is 677 nm and 707 nm, with an R2 of 0.79 ± 0.07. This is very similar to the observation in [24] using
the same field campaign data where the optimal NDVIa−b band combination for LAI retrieval was
found as 674 nm and 712 nm. The difference is that in [24] the authors used high spectral resolution
CHRIS data instead of the HyMap data used in this study and they could study the optimal band
combination at a higher spectral resolution. However, they only tested the spectral range between
600 nm and 1000 nm in [24]. In our study, beyond the spectral range studied in [24], a second R2 peak
were found near the green band region containing the overall best performance band combination.
The combination of OLI green and 677 nm or 662 nm band resulted in LAI estimation with an R2

of 0.81 ± 0.07, which is slightly higher than the combination of OLI red and green. This suggests
that for agroecosystems, a new spectral band centered near 662–677 nm will slightly improve the
performance of NDVIa−b based LAI estimation by a few percent. Figure 3b shows the scatter plot of
LAI estimation based on NDVIa−b. Blue scatter corresponds to the OLI optimal band combination
(bands green and red) and red scatter corresponds to the optimal band combination when all potential
new bands were considered (bands green and 677 nm). Two observations can be made: (1) the two



Remote Sens. 2018, 10, 1458 8 of 14

sets of band combinations perform very similar; and (2) as reported in previous studies [17,26], the
VI based approach suffers from a saturation effect, which can cause underestimation of high LAI
(>5) values.

Similarly, the results of all band combinations for CIa−b are plotted in Figure 4a. When considering
OLI bands only, the optimal band combination is OLI green and red bands with an R2 of 0.77 ± 0.03.
When all potential new bands are considered, similar to the NDVIa−b result, a peak is observed in
the 655–677 nm and 692–707 nm regions. The optimal band combination was found to be 692 nm
and 677 nm with an R2 = 0.81 ± 0.05. The scatter plot of optimal band combination CIa−b based LAI
estimation is shown in Figure 4b. In general, the CIa−b result was very similar to the NDVIa−b results
in that a slight improvement in agroecosystem green LAI estimation is predicted from the addition of a
new spectral band between the OLI red and NIR bands in future Landsat instruments.

Figure 4. (a) R2 between ground truth LAI and CIa−b for different band combinations. (b) Scatter plot
of the predicted LAI versus ground truth LAI. Blue is from the CI655−561, red is from CI692−677.

3.2. LUT Inversion Result

Compared to regression-based approaches which requires calibration data to calibrate the
regression model, LUT inversion is more practical for operational level LAI estimation. In this study,
first, all possible OLI band combinations (C1

6 + C2
6 + C3

6 + C4
6 + C5

6 + C6
6 = 63 cases) were tested for

LUT inversion. Then the band settings involving potential new band(s) were tested. Up to 3 out of 14
new potential bands were considered. The total number of cases of the addition of 0, 1, 2, or 3 new
potential bands are listed in Table 2.

Table 2. Number of possible band combinations for adding 0/1/2/3 new potential bands.

OLI Band Cases New Potential Band Cases Total Cases

OLI only 63 N/A 63
One new band 64 14

(
C1

14 ) 896
Two new bands 64 91

(
C2

14 ) 5824
Three new bands 64 364

(
C3

14 ) 23,296

Figure 5 is a summary of the LUT inversion results of using no new bands or the addition of
one new potential band. The leftmost result corresponds to the statistics of top 10% performing OLI
band only combinations, which serve as a baseline. In all cases, each blue box corresponds to the
range of the top 10% band combinations when each new potential band was added. For example, the
662 nm box corresponds to the top 10% of the combinations that 662 nm band together with all possible
64 OLI band combinations. In each box, the red line is the average performance and the lower and
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upper boundaries of the box are the first and third quartile performance. The red crosses correspond
to outliers.

Figure 5. Statistics of top 10% performance of adding 0/1 new bands in LUT inversion approach.

For the combination using OLI bands only, the optimal band combination is green/red/NIR/
SWIR1/SWIR2 with an R2 of 0.806. If we consider the best performing cases for each new potential
band added, two spectral range peaks can be observed: 662–677 nm and 723–738 nm. The overall best
performance is 662 nm/OLI band 3 (green)/NIR/SWIR1/SWIR2 with R2 of 0.828.

The statistics of R2 of the top 10% cases of adding no (0), 1, 2, or 3 new potential bands were
examined and are shown in Figure 6. Due to the enormous number of band combinations, the details
of adding two or three new bands are not listed in this paper. We observed that the addition of two
or three new bands only slightly improved the LAI estimation performance (less than 0.01 in R2),
compared to adding one new band.

Figure 6. Statistics of top 10% performing cases of adding 0/1/2/3 new bands in LUT
inversion approach.
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3.3. Support Vector Regression Result

Figure 7 is a summary of studying zero or one new potential band using the SVR approach. The
interpretation is similar to the result of LUT inversion shown in Figure 5. The R2 of the cases in Figure 7
are in a small range from 0.90 to 0.925. The overall performance was higher than the VI and LUT
inversion approaches, which is reasonable because of the power of non-linear regression. However,
the limited variation range (less than 0.03) indicates the SVR result may have suffered from over fitting.
If we consider the best case for each new band added, almost no improvement was achieved after
adding any of these potential new bands. If we consider the average performance of each column,
the new bands within the spectral range between 677 nm and 707 nm were seen to improve the LAI
retrieval accuracy, although the advantage was minimal. The retrieval results of the addition of two or
three new bands are not listed here because no significant improvement was observed.

Figure 7. Statistics of top 10% performance of adding 0/1 new bands in SVR approach.

3.4. Discussion

Table 3 summarizes the LAI estimation performance before and after the addition of potential
new spectral bands using the three approaches studied. For each approach, the optimal new band
spectral range is listed as well.

Table 3. Performance and optimal new band center position range of three retrieval approaches.

VI (NDVIa−b) LUT (One New Band Only) SVR

R2 Optimal two
bands center range R2 Optimal new band

center range R2 Optimal new band
center range

OLI bands
only 0.787 OLI band 3 and

OLI band 4 0.806 N/A 0.925 N/A

With new
bands 0.810 670 ± 8 nm and

700 ± 8 nm 0.828 670 ± 8 nm or
730 ± 8 nm 0.933 692 ± 15 nm

All three approaches show a small improvement from the addition of new potential bands. This
is not too surprising and has been seen in previous studies, both in simulated and real data. For
the estimation of agroecosystem green LAI, using the same SPARC ‘03 field campaign data, ref [13]
studied different machine learning algorithms for biophysical parameter retrieval based on simulated
Sentinel-2 imagery. They found limited improvement in Gaussian process regression (GPR) based LAI
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estimation after including Sentinel-2 red edge bands (R2 = 0.91), compared to using just the Sentinel-2
blue, green, red, and NIR bands (R2 = 0.910). Also, the GPR significance analysis showed that the red
edge bands are less important than Sentinel-2 blue, green, and NIR bands. Researchers in [24] used
SPARC ‘03 and ‘04 CHRIS data to search for optimal two-band combinations for LAI estimation based
on a VI approach. The R2 of their optimal band settings (674 nm and 712 nm) was 0.824, which was
only a slight increase from the combination of OLI red and NIR (R2 ~0.78). Researchers in [18] studied
the LAI estimation in both LUT inversion and artificial neural network approaches with Sentinel-2
band settings. They studied the significance of each Sentinel-2 spectral band by counting the frequency
each band appeared in the top 5% band combinations. In their result, the three Sentinel-2 red edge
bands did not show dominance over the other spectral bands. For single species crop biophysical
parameters retrieval, [21] used real Sentinel-2 data to study the VI approach based potato crop LAI and
canopy chlorophyll content (CCC) estimation. They concluded that Sentinel-2 10 m bands (blue, green,
red, NIR) are better than 20 m bands (red edge bands) for LAI and CCC retrieval. While not a study
using agriculture crops, [22] compared the LAI estimation performance of boreal forest canopy while
using real Sentinel-2 and Landsat-8 data. Their results using Sentinel-2 data were slightly better than
the result based on Landsat-8 OLI data (R2 = 0.734 vs. R2 = 0.725), even though Sentinel-2 has three
red edge bands and Landsat-8 OLI does not have one. Researchers in [29] estimated LAI of a cotton
canopy through a VI approach. After going through all possible band combinations, they observed a
2.2% improvement in R2 using their optimal band combination (700 and 800 nm) over the combination
of Landsat TM red and NIR bands.

Considering Table 3, both VI and LUT approaches have two optimal new band spectral ranges.
The common range is 662–677 nm. This is not surprising and two possible reasons can explain
this. First, the correlation coefficients between the ground truth LAI and spectral reflectance reach a
maximum absolute value near 662–677 nm. As suggested in [39], it is beneficial to select an instrument
spectral band centered at wavelengths with high correlation coefficients. Second, the bandpass of the
OLI red band is from 636 nm to 673 nm, which is wide compared to the studied HyMap bandwidth
(~15 nm in VIS and NIR). The bandpass of HyMap 662 nm is approximately from 655 nm to 670
nm. This is entirely within the OLI red bandpass. In this wavelength range that is very sensitive to
biophysical parameter changes, the narrower HyMap 662 nm band may better capture the spectral
reflectance subtle difference caused by LAI difference than the existing OLI red band. This was verified
in our results by the observation that in the top performing band combinations in the LUT inversion
approach the narrow 662 nm band was selected more often than the existing OLI red band.

Our results have some differences with previous studies that focused on canopy LAI retrieval for
a single crop species. In our work, the small improvement observed from the addition of new bands
may be due in part to the fact we considered a complex agroecosystem of nine crop species at different
growth stages. This may have overwhelmed the spectral features located in the red edge region for
a single crop species. However, our results are representative of typical application of operational
methods and demonstrate anticipated performance gains across a wide range of vegetation crop types
and growth stages.

4. Summary

In this paper, the potential of adding new spectral bands in future Landsat instruments for
agroecosystem green LAI retrieval was studied. Three categories of retrieval approaches were tested:
empirical vegetation index regression (NDVIa−b and CIa−b), physical based LUT inversion, and
machine learning (SVR). The results from all three approaches suggested that a limited retrieval
accuracy increase can be achieved after the addition of at most three new spectral bands located
between the OLI red and NIR bands. In both the VI and LUT approaches, a new band centered in the
range from 662 nm to 677 nm was observed to provide a small improvement in performance. However,
this result may be due to the fact that the new bands studied were narrower than the current OLI red
band and closer to the wavelength most sensitive to LAI change. In general, the addition of new red
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edge bands in future Landsat instruments may be of only marginal benefit to agroecosystem green LAI
retrieval. This is consistent with conclusions from previous studies that the three Sentinel-2 red-edge
bands may not have been significantly beneficial for agriculture green LAI retrieval.

Author Contributions: Z.C. conceived of, designed, and carried out the experiments and wrote the majority of
the paper. J.P.K. provided guidance during the work and contributed to the writing and editing of the paper.

Funding: This work has been supported in part by the National Aeronautics and Space Administration under
grant number NNX14AP40G.

Acknowledgments: The authors thank Jochem Verrelst for sharing the SPARC ‘03 data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.;
Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [CrossRef]

2. Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover
and LAI× Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ.
2006, 105, 313–325. [CrossRef]

3. Horler, D.N.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4,
273–288. [CrossRef]

4. Ganguly, S.; Nemani, R.R.; Zhang, G.; Hashimoto, H.; Milesi, C.; Michaelis, A.; Wang, W.; Votava, P.;
Samanta, A.; Melton, F.; et al. Generating global leaf area index from Landsat: Algorithm formulation and
demonstration. Remote Sens. Environ. 2012, 122, 185–202. [CrossRef]

5. Baret, F.; Buis, S. Estimating canopy characteristics from remote sensing observations: Review of methods
and associated problems. In Advances in Land Remote Sensing; Springer: Dordrecht, The Netherlands, 2008;
pp. 173–201.

6. Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical
remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties: A review. ISPRS J.
Photogramm. Remote Sens. 2015, 108, 273–290. [CrossRef]

7. Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical
estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [CrossRef] [PubMed]

8. Wu, C.; Wang, L.; Niu, Z.; Gao, S.; Wu, M. Nondestructive estimation of canopy chlorophyll content using
Hyperion and Landsat/TM images. Int. J. Remote Sens. 2010, 31, 2159–2167. [CrossRef]

9. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L.
PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113,
56–66. [CrossRef]

10. Richter, K.; Atzberger, C.; Vuolo, F.; D’Urso, G. Evaluation of sentinel-2 spectral sampling for radiative
transfer model based LAI estimation of wheat, sugar beet, and maize. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2011, 4, 458–464. [CrossRef]

11. Darvishzadeh, R.; Matkan, A.A.; Ahangar, A.D. Inversion of a radiative transfer model for estimation of rice
canopy chlorophyll content using a lookup-table approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2012, 5, 1222–1230. [CrossRef]

12. Duan, S.B.; Li, Z.L.; Wu, H.; Tang, B.H.; Ma, L.; Zhao, E.; Li, C. Inversion of the PROSAIL model to estimate
leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data.
Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 12–20. [CrossRef]

13. Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning
regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sens.
Environ. 2012, 118, 127–139. [CrossRef]

14. Vuolo, F.; Neugebauer, N.; Bolognesi, S.F.; Atzberger, C.; D’Urso, G. Estimation of leaf area index using
DEIMOS-1 data: Application and transferability of a semi-empirical relationship between two agricultural
areas. Remote Sens. 2013, 5, 1274–1291. [CrossRef]

http://dx.doi.org/10.1016/S0034-4257(02)00074-3
http://dx.doi.org/10.1016/j.rse.2006.07.014
http://dx.doi.org/10.1080/01431168308948546
http://dx.doi.org/10.1016/j.rse.2011.10.032
http://dx.doi.org/10.1016/j.isprsjprs.2015.05.005
http://dx.doi.org/10.3390/s110707063
http://www.ncbi.nlm.nih.gov/pubmed/22164004
http://dx.doi.org/10.1080/01431161003614382
http://dx.doi.org/10.1016/j.rse.2008.01.026
http://dx.doi.org/10.1109/JSTARS.2010.2091492
http://dx.doi.org/10.1109/JSTARS.2012.2186118
http://dx.doi.org/10.1016/j.jag.2013.05.007
http://dx.doi.org/10.1016/j.rse.2011.11.002
http://dx.doi.org/10.3390/rs5031274


Remote Sens. 2018, 10, 1458 13 of 14

15. Fang, H.; Liang, S.; Kuusk, A. Retrieving leaf area index using a genetic algorithm with a canopy radiative
transfer model. Remote Sens. Environ. 2003, 85, 257–270. [CrossRef]

16. Walthall, C.; Dulaney, W.; Anderson, M.; Norman, J.; Fang, H.; Liang, S. A comparison of empirical and
neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery.
Remote Sens. Environ. 2004, 92, 465–474. [CrossRef]

17. González-Sanpedro, M.C.; Le Toan, T.; Moreno, J.; Kergoat, L.; Rubio, E. Seasonal variations of leaf area
index of agricultural fields retrieved from Landsat data. Remote Sens. Environ. 2008, 112, 810–824. [CrossRef]

18. Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal exploitation of the Sentinel-2 spectral
capabilities for crop leaf area index mapping. Remote Sens. 2012, 4, 561–582. [CrossRef]

19. Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and
potato crops by VENµS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [CrossRef]

20. Fernandes, R.; Weiss, M.; Camacho, F.; Berthelot, B.; Baret, F.; Duca, R. Development and assessment of leaf
area index algorithms for the Sentinel-2 multispectral imager. In Proceedings of the Geoscience and Remote
Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 3922–3925.

21. Clevers, J.; Kooistra, L.; Van Den Brande, M. Using Sentinel-2 data for retrieving LAI and leaf and canopy
chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [CrossRef]

22. Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of
boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [CrossRef]

23. Rengarajan, R. Evaluation of Sensor, Environment and Operational Factors Impacting the Use of Multiple
Sensor Constellations for Long Term Resource Monitoring. Ph.D. Thesis, Rochester Institute of Technology,
Rochester, NY, USA, 2016.

24. Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote
sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [CrossRef]

25. Moreno, J.F.; Alonso, L.; Fernández, G.; Fortea, J.C.; Gandía, S.; Guanter, L.; García, J.C.; Martí, J.M.; Melia, J.;
De Coca, F.C.; et al. The SPECTRA Barrax Campaign (SPARC): Overview and first results from CHRIS data.
Eur. Space Agency Spec. Publ. SP 2004, 578, 30–39.

26. Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.; Camps-Valls, G.; Moreno, J.
Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods:
A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [CrossRef]

27. Cocks, T.; Jenssen, R.; Stewart, A.; Wilson, I.; Shields, T. The HyMapTM airborne hyperspectral sensor: The
system, calibration and performance. In Proceedings of the 1st EARSEL Workshop on Imaging Spectroscopy,
Zurich, Switzerland, 6 October 1998.

28. Delegido Jesús, J.; Verrelst, J.; Rivera, J.P.; Ruiz-Verdú, A.; Moreno, J. Brown and green LAI mapping through
spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 350–358. [CrossRef]

29. Zhao, D.; Huang, L.; Li, J.; Qi, J. A comparative analysis of broadband and narrowband derived vegetation
indices in predicting LAI and CCD of a cotton canopy. ISPRS J. Photogramm. Remote Sens. 2007, 62, 25–33.
[CrossRef]

30. Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne
hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer
models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [CrossRef]

31. Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy
chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403.1–L08403.4. [CrossRef]

32. Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using
red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [CrossRef]

33. Durbha, S.S.; King, R.L.; Younan, N.H. Support vector machines regression for retrieval of leaf area index
from multiangle imaging spectroradiometer. Remote Sens. Environ. 2007, 107, 348–361. [CrossRef]

34. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Department of Computer
Science and Information Engineering, National Taiwan University: Taipei, Taiwan, 2003.

35. European Commission. RAMI. Available online: http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI3/
RAMI3.php (accessed on 20 May 2017).

36. Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate
hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109,
166–182. [CrossRef]

http://dx.doi.org/10.1016/S0034-4257(03)00005-1
http://dx.doi.org/10.1016/j.rse.2004.06.003
http://dx.doi.org/10.1016/j.rse.2007.06.018
http://dx.doi.org/10.3390/rs4030561
http://dx.doi.org/10.1016/j.rse.2011.04.018
http://dx.doi.org/10.3390/rs9050405
http://dx.doi.org/10.1016/j.rse.2017.03.021
http://dx.doi.org/10.1016/j.eja.2012.12.001
http://dx.doi.org/10.1016/j.isprsjprs.2015.04.013
http://dx.doi.org/10.1016/j.jag.2014.10.001
http://dx.doi.org/10.1016/j.isprsjprs.2007.01.003
http://dx.doi.org/10.1016/j.isprsjprs.2011.09.013
http://dx.doi.org/10.1029/2005GL022688
http://dx.doi.org/10.1016/j.jag.2012.10.008
http://dx.doi.org/10.1016/j.rse.2006.09.031
http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI3/RAMI3.php
http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI3/RAMI3.php
http://dx.doi.org/10.1016/j.rse.2006.12.013


Remote Sens. 2018, 10, 1458 14 of 14

37. Verrelst, J.; Romijn, E.; Kooistra, L. Mapping vegetation structure in a heterogeneous river floodplain
ecosystem using pointable CHRIS/PROBA data. Remote Sens. 2012, 4, 2866–2889. [CrossRef]

38. Weiss, M.; Baret, F.; Myneni, R.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique to
estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 2000, 20,
3–22. [CrossRef]

39. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative
estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs4092866
http://dx.doi.org/10.1051/agro:2000105
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Dataset 
	Methods 
	Empirical Vegetation Index Approach 
	Support Vector Regression Approach 
	Look-Up-Table Inversion Approach 


	Results and Discussion 
	Empirical Vegetation Index Approach 
	LUT Inversion Result 
	Support Vector Regression Result 
	Discussion 

	Summary 
	References

