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Abstract: The wildland-urban interface (WUI)—the area where wildland vegetation and urban 
buildings intermix—is at a greater risk of fire occurrence because of extensive human activity in that 
area. Although satellite remote sensing has become a major tool for assessing fire damage in 
wildlands, it is unsuitable for WUI fire monitoring due to the low spatial resolution of the images 
from satellites that provide frequent information which is relevant for timely fire monitoring in 
WUI. Here, we take advantage of frequent (i.e., ca. daily), high-spatial-resolution (3 m) imagery 
acquired from a constellation of nano-satellites operated by Planet Labs (“Planet”) to assess fire 
damage to urban trees in the WUI of a Mediterranean city in Israel (Haifa). The fire occurred at the 
end of 2016, consuming ca. 17,000 of the trees (152 trees ha−1) within the near-by wildland and urban 
parts of the city. Three vegetation indices (GNDVI, NDVI and GCC) from Planet satellite images 
were used to derive a burn severity map for the WUI area after applying a subpixel discrimination 
method to distinguish between woody and herbaceous vegetation. The produced burn severity map 
was successfully validated with information acquired from an extensive field survey in the WUI 
burnt area (overall accuracy and kappa: 87% and 0.75%, respectively). Planet’s vegetation indices 
were calibrated using in-field tree measurements to obtain high spatial resolution maps of burned 
trees and consumed woody biomass in the WUI. These were used in conjunction with an ecosystem 
services valuation model (i-Tree) to estimate spatially-distributed and total economic loss due to 
damage to urban trees caused by the fire. Results show that nearly half of the urban trees were 
moderately and severely burned (26% and 22%, respectively). The total damage to the urban forest 
was estimated at ca. 41 ± 10 M USD. We conclude that using the method developed in this study 
with high-spatial-resolution Planet images has a great potential for WUI fire economic assessment. 

Keywords: economic model; ecosystem services; fire; GCC; GNDVI; Haifa; i-Tree; Mt. Carmel; 
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1. Introduction 

The wildland-urban interface (WUI) is the area where wildland vegetation and the city’s 
buildings intermix. The expansion of cities brought a rapid growth in the WUI areas worldwide, 
increasing the risk of WUI fires due to extended human activities [1–3]. Fires at the WUI often cause 
greater economic loss and human casualties than wildland fires [4]. In recent years, there has been 
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an increase in reported cases of large WUI fires in Mediterranean climate regions [5]. Such a trend is 
expected to continue due to projected warming and ongoing urban expansion trends in many 
Mediterranean regions [5,6]. Accurate information regarding the spatial distribution and the level of 
damage (e.g., burn severity) of WUI fires is therefore required to allocate economic resources, and for 
prioritizing proper treatment actions [7], as well as budgeting funds to protect existing trees on 
urbanized and near urbanized land [8]. 

Remote sensing from satellites has become a major tool in fire monitoring. The ability to acquire 
temporally- and spatially-continuous information from satellites can be highly beneficial for pre- and 
post-fire assessments [9–12]. Satellites provide information about the surface of the Earth with a 
wider spatial coverage, and often higher temporal resolution, which is also much cheaper and faster 
to acquire than conventional field surveys [13]. Satellite remote sensing has been used to monitor 
vegetation recovery following major fires [14,15], provide fuel-based maps for fire models [16], follow 
active fire dynamics [17], assess daily-scale forest fire danger in forecasting systems [18], and estimate 
post-fire burn severity levels [12,19,20]. 

Burn severity, which is the level of damage related to biomass consumption caused by the fire 
(also referred to as ‘fire severity’ by some researchers; see e.g., [21]), may be used to quantify the 
economic as well as the ecological damage of the fire. It is important for restoration planning of the 
burnt area [7], as well as for indicating potential areas where flash floods and soil erosion may occur 
[21] following alterations in soil properties and dynamics caused by the fire [22]. Examples of 
satellites used to assess post-fire burn severity mapping include the NASA’s Moderate-resolution 
imaging spectroradiometer (MODIS), with a spatial resolution of 250 m and a daily revisit time, in 
Mediterranean forests and woodlands [23]; Landsat satellites with a higher spatial resolution (30 m), 
but a longer revisit time of 16 days, in Mediterranean forests, shrublands and olive groves at Peloponnese, 
Greece [24]; and, in recent years, the high-to-very-high spatial resolution Sentinel satellites (10–20 m 
and 10 day revisit time) in a Mediterranean pine ecosystem at the Thasos island, Greece [25]. as well 
as the commercial, very high spatial resolution WorldView-2 satellite (2 m) in the Pine Barrens 
ecosystem at Long Island, New York [12,26]. Landsat-class data (including Sentinel 2) are used to 
operationally map burn severity for all wildfires larger than 500 acres in the eastern US, and larger 
than 1000 acres in the western US. This operational use extends beyond a single scientific study. 

However, all aforementioned studies (and those not mentioned here) did not exploit the 
information provided by the satellites to assess the economic damage caused by the fire. An exception 
is the study of Molina Martínez et al. 2014 [27], which assessed the economic loss caused by a fire in 
Andalusia, southern Spain, by using burn severity maps derived from MODIS. Moreover, most of 
the burn severity mapping efforts were made with satellites that provide a relatively coarse spatial 
resolution, e.g., by using MODIS (250 m–1000 m) and Landsat (30 m) images [28,29]. To date, as far 
as the authors are aware, there has been no study using high spatial resolution satellite images for 
burn severity mapping at the WUI. This is likely due to the fact that in order to monitor fire damage 
in WUI, it is necessary to have images at high frequency (in order to capture the fire) and at a 
relatively high spatial resolution because of the intermixed nature of this area. However, there is a 
well-known trade-off between the spatial and temporal resolutions of the images that satellites can 
currently provide. 

Recently, the use of nano-satellites constellations (i.e., using a large number of small compact 
satellites at the same time) was suggested to overcome the spatio-temporal limitation of satellite 
images [30]. An example of such a company that uses the advantage of a large constellation of satellite 
systems is Planet Labs (www.planet.com). Planet has been providing image collection in 4 bands at 
a high spatial resolution of 3 m on a daily basis from their so-called “Dove” satellites since the early 
2016. 

A fire that was ignited in 24th November 2016 and lasted for two days in the Mediterranean city 
of Haifa (Northern Israel) caused great damage to houses, infrastructure, and trees; the resulting 
economic loss is yet to be estimated. We used information acquired from Planet Doves to derive high 
spatial resolution maps of burn severity, as well as pre-fire stand density and woody biomass maps 
in the WUI burnt area of Haifa in order to evaluate economic losses to the urban forest caused by the 
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fire. Three vegetation indices were used to derive maps of green normalized difference vegetation 
index (GNDVI), normalized difference vegetation index (NDVI), and green chromatic coordinate 
(GCC). We examined the reliability of our Planet-derived maps by comparing them with similar 
maps derived from the coarser spatial resolution (10 m) European Sentinel-2A satellite, which is 
considered to be more reliable in terms of signal-to-noise and radiometric characteristics [30]. Maps 
were then used with an ecosystem services valuation model (i-Tree), based on the annual value of a 
single tree, to provide a spatially-distributed map of economic losses due to fire-damaged trees in the 
WUI area. 

2. Materials and Methods 

2.1. Study Area 

The WUI study area is in the city of Haifa, which is located in the northern part of Israel 
(32°49′0″N, 34°59′0″E). The city of Haifa was built on the hillslopes of Mount Carmel, near the eastern 
coast of the Mediterranean Sea (Figure 1a). It is one of the largest cities in Israel (6.5 × 103 ha), with a 
population of ca. 280,000 inhabitants [31]. In the WUI of Haifa, some large patches of the original 
native vegetation may be found, mostly Aleppo pines (Pinus halepensis Mill.) and common oak 
(Quercus calliprinos) trees. Some of these patches are located near residential buildings alongside 
ornamental species such as the Australian pine trees (Casuarina equisetifolia). The native vegetation of 
Mt. Carmel is currently preserved in the valley part of the city, as a part of the city’s urban plan [32]. 

 
Figure 1. (a) Location of the study area: the city of Haifa, Northern Israel. (b) The WUI of Haifa 
divided into urban (UR) and wildland (WLD) domains. Post-fire sampling plots are indicated as green 
dots in (b). The location where the fire was ignited and fire advance direction are shown. (c) 
Panoramic view of the WLD as seen from west of the city (location from where the photo was taken 
and view angle are indicated in (b). Photo credit: Odit Abu-Thief and Alexander Eyal. 
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The climate is a typical eastern-Mediterranean type, with dry, hot summers (June–August) and 
cool, rainy winters and autumns (October–May). The average annual rainfall varies with the elevation, 
from 550 mm∙yr−1 to 750 mm∙yr−1 at altitudes of 0 to 550 m above sea level, respectively [23]. 

2.2. The Fire of November 2016 

At the end of November 2016, after several months without rain, and following strong easterly 
winds and extremely dry conditions, several fires were ignited in the central and northern parts of 
Israel [33]. One of these fires occurred within the city limits of Haifa. The fire lasted for two days  
(24–25 November 2016) before it was extinguished by firefighters [34]. The focus of the fire was at 
the grove area within the southwestern part of the city, advancing rapidly to the west towards the 
open area that surrounds the city (Figure 1b). The fire damaged residential areas in Haifa, as well as 
the ornamental and native vegetation in the WUI. A total of 164 buildings were burnt over a total 
area of ca. 121 ha [35]. 

3. Data and Methods 

3.1. Satellite Images 

Multi-temporal satellite imagery including 27 4-band PlanetScope images of high spatial 
resolution (3.125 m) were downloaded from Planet Labs (https://www.planet.com) for the period 
from 9 March 2016 to 19 October 2017. Images were downloaded in two formats: as PlanetScope 
images and as Ortho Scene Product images, both with four spectral bands in the blue, green, red, and 
near infrared spectrum (Table 1). 

In addition, 29 images of the Sentinel-2A (Sentinel-2MSI L1C) product were download from 
Sentinel’s Scientific Datahub (https://scihub.copernicus.eu/). Sentinel-2A images have also four 
spectral bands in the blue, green, red, and near infrared for the 10-m product (Table 1). 

All images went through radiometric and sensor corrections and were orthorectified to a 
cartographic projection. Sentinel-2A images were atmospherically corrected using the Sen2Cor 
algorithm [36]. Vegetation indices were calculated from the spectral bands for Planet and Sentinel-2A 
(Section 3.2). 

Table 1. Wavelength range of Planet and Sentinel-2A satellites sensors for blue, green, red, and NIR 
spectral bands. 

Band Planet Scope 3-m (nm) Sentinel-2A 10-m (nm) 
Blue 455–515 448–546 

Green 500–590 537–583 
Red 590–670 545–583 
NIR 780–860 763–909 

3.2. Vegetation Indices 

Three satellite-based vegetation indices (VIs) were used to derive post-fire burn severity maps 
and pre-fire stand density and woody biomass maps for the study area at 3-m (Planet) and 10-m 
(Sentinel-2A) spatial resolutions. The three VIs are commonly used as proxies of green biomass and 
vegetation cover are the following: 

3.2.1. NDVI 

NDVI is the most widely used vegetation index [37]. It is based on the solar reflectance in the 
red (Red, 0.6 μm) and near infrared (NIR, 0.8 μm) wavelength bands (Table 2). As its name indicates, 
the NDVI is a normalized index with values in the range of −1 and 1, with full vegetation cover 
approaching the value of 1 and bare soil with values close to 0. Negative values usually indicate 
presence of water. The NDVI has some saturation problems over dense vegetation cover [38]. 
However, it was shown to be very reliable in monitoring vegetation dynamics in Mediterranean 
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forests and woodlands, particularly for Mt Carmel, Israel [23]. It was also successfully used to assess 
burn severity in Mt Carmel forests and woodlands following the great fire of 2010 [23]. 

3.2.2. GNDVI 

The GNDVI is very similar to the NDVI, with the difference that GNDVI uses the green band 
(Green, 0.5 μm) instead of the red (Table 2). It is believed to be more sensitive to chlorophyll—a 
concentration as compared to NDVI [39]—and thus, may be more accurate than NDVI over areas 
with dense vegetation cover. The GNDVI was also shown to be better correlated to burn severity than 
NDVI in several Mediterranean sites [40]. 

3.2.3. GCC 

The green chromatic coordinate (GCC) index is based on the visible spectral wavebands using 
red, green, and blue bands with no information from the infrared band. The GCC is calculated as the 
ratio of green to the sum of the three bands (Table 2). It is correlated with the amount of green 
vegetation tissue, and is widely used in proximal sensing such as in-field PhenoCams [41,42] and 
digital camera [43,44]. The GCC is also used in vegetation monitoring from unmanned aerial vehicles 
(UAV) because of the relatively low cost RGB sensors mounted on UAVs [45–47]. 

The use of the GCC also expands the possibility of using images from Planet Doves prior to 
January 2016 when they acquired images only in the RGB spectral bands (since early 2015). 

Table 2. Formulation of satellite-based vegetation indices used in this study. 

Index Formulation Reference 

NDVI 1 NDVI = 
ρ(λNIR) – ρ(λRed)
ρ(λNIR) + ρ(λRed) [48] 

GNDVI 2 GNDVI = 
ρ(λNIR) – ρ(λGreen)
ρሺλNIRሻ + ρ(λGreen) [49] 

GCC 3 GCC = 
ρ(λGreen)

ρሺλGreenሻ + ρሺλBlueሻ + ρ(λRed) [50] 

1 NDVI is the normalized difference vegetation index; 2 GNDVI is the green NDVI; 3 GCC is the green 
chromatic coordinate index. 

3.3. Using MODIS NDVI Time Series to Track Vegetation Phenology 

Helman et al. 2015 [23] showed that MODIS NDVI time series may be used to distinguish 
between ephemeral herbaceous understory vegetation and evergreen woody vegetation in 
Mediterranean environments. Using time series of the MOD13Q1 product, they demonstrated that 
the baseline of the NDVI time series corresponds to the signal coming from the trees, while the 
seasonal component of the time series mostly corresponds to the ephemeral herbaceous vegetation 
in the understory of the forests [23,37]. 

We used the technique proposed by [23] to find the relevant dates in which the woody vegetation 
mostly contributed to the VI signal. For that purpose, the NDVI derived from the 3-m and 10-m images 
(Planet and Sentinel-2A, respectively) were aggregated to the MODIS-pixel size and compared to the 
longer NDVI time series from MODIS (MOD13Q1) in the study area (Figure 2). Comparison was 
done using the Google Earth Engine platform after adding a constant value of 0.16 to the NDVI time 
series from Planet, due to a known shift towards lower values from Planet satellites [30]. 

The MOD13Q1 product is based on a single day maximum value criteria and is considered to be 
of a high quality and very reliable for vegetation monitoring [38]. We used a robust, locally-weighted 
regression and smoothing scatterplots (lowess) technique, as in [51,52], to reduce noise and uncertainties 
originating from cloud contamination and sensor artefacts (see green line in Figure 2). 

Figure 2 shows the seasonal growth cycle of the vegetation in the MODIS-NDVI time series.  
The minimum value at the beginning of the season corresponds to the signal coming from the trees 
(evergreen woody vegetation), while the seasonal signal of NDVI corresponds mainly to the 
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ephemeral herbaceous vegetation growth and senescence. The fire of November 2016 is evident in 
the NDVI time series as a sharp decrease clearly seen from the NDVI time series derived from the 
three satellites (Figure 2). 

 
Figure 2. Time series of NDVI from 250-m MODIS, 10-m Sentinel-2A and the 3-m Planet Scope Ortho 
Scene (a constant value of 0.16 was added to the Planet-derived NDVI time series—see main text). 

We used Figure 2 to select four dates that better represented the signal from the woody 
vegetation prior to the fire of November 2016 (Table 3). This, in order to avoid mixed-pixel signal 
from the herbaceous vegetation and soil background [53]. VIs calculated from the four images (dates) 
were used to derive stand density and woody biomass maps through calibration with plot-based 
stand density and tree diameter at breast height (DBH) measurements (Section 3.4). The image with 
the VI that best correlated with the aforementioned biophysical parameters was chosen to derive 
stand density and woody biomass maps. It was also used with the first available image following the 
fire to derive burn severity map. In the case of Sentinel-2A, this was ca. a month and a half after the 
fire, while first Planet image was available 11 days after the fire (Table 3). 

Table 3. Dates of images used prior to and following the fire of 24–25 November 2016. 

Satellite 
Before    After 
Date 1 Date 2 Date 3 Date 4 Date 5 

Sentinel-2A 13 September 2016 13 October 2016 12 November 2016 22 November 2016 11 January 2017 
Planet 23 August 2016 13 October 2016 12 November 2016 21 November 2016 5 December 2016 

3.4. Field Survey 

We divided the study area into two domains: (i) urban (UR) and (ii) wildland (WLD) (Figure 1b). 
The two domains differed in terms of total area (40 ha vs. 85.3 ha for UR and WLD, respectively), as 
well as in vegetation composition. The dominant tree species in WLD are mostly native species, like 
Aleppo pines (Pinus halepensis Mill.) and common oaks (Quercus calliprinos Webb), while the UR 
domain contains a greater variety of ornamental species and a much lower percentage of native 
species (Table A1). 

A field-based burn severity map with polygons containing three levels (low, moderate, and 
high) was created using orthophoto (taken in December 2016) and complementary information from 
an extensive field survey [35]. Burn severity was characterized in the field following conventional 
classification [54,55]. It was found that nearly 64% of the inspected area was within the low-moderate 
burn severity class, while 36% was in the high severity class. A second field survey was conducted 
approximately one month after the fire, based on the orthophoto-based burn severity map. Tree 
diameter at breast height (DBH in cm tree−1) was measured for trees in 212 randomly selected 10 m × 
10 m plots within the burnt area (Figure 3). Trees within each plot were characterized by species type 
and counted to derive stand density (trees ha−1) in the plot (Figure 3 and Table A1). 
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Tree stand density was found to be significantly higher (p < 0.001; Student’s t-test) in plots within 
the UR domain (5.4 trees plot−1; N = 135) than in the WLD domain (2.2 trees plot−1; N = 77). In general, 
the WLD was much shrubbier than the UR domain. 

 
Figure 3. Number of trees counted in each (10 m × 10 m) plot in the WUI of Haifa as derived from 
field survey. Circle size is proportional to the number of trees in the plot. Plots are shown over false 
color RGB of (a) Planet Scope Ortho scene and an (b) Sentinel-2A image. Both images were taken prior 
the November 2016 fire (13 October 2016). 

3.5. Deriving Tree Density and DBH Maps from Calibrated Satellite Data 

The three VIs calculated from each of the four images prior to the fire (Table 3), were regressed 
against tree density and mean DBH from field survey to obtain an empirical relationship between the 
two. Because of the mismatch between the spatial resolutions of the satellite and field data, VIs were 
averaged over a window of 3 × 3 (3 m) pixels. The image that provided the best coefficient of 
determination (i.e., highest R2) was used to calibrate the three VIs and derive stand density (trees ha−1) 
and DBH (cm tree−1) maps for the WUI area. 

Six tree density maps and six DBH maps (i.e., from 3 VIs × 2 satellites) were created using the 
best empirical relationships. These maps were then used to derive maps of aboveground woody 
biomass (AGB) loss (Section 3.6) and environmental economic loss (Section 3.9). 

3.6. Deriving Aboveground Woody Biomass from Vegetation Indices 

We used the DBH maps to produce new AGB maps following a general allometric equation [56]: 

AGB = eα+β∙ln(DBH) (1) 

where α and β are the intercept and slope of the linear regression found by Jucker et al. (2017) [56] 
for ln(AGB) and ln(DBH) relationships in a global synthesis of 108,753 trees. DBH in Equation (1) is 
in cm per tree and the AGB is retrieved in kg tree−1. The AGB per tree was multiplied by the stand 
density to derive AGB in kg ha−1. The AGB map was used with the burn severity map to assess woody 
biomass loss caused by the fire (Section 3.8). 

a

b

sNumber of trees
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3.7. Burn Severity Classification Using Vegetation Indices 

Burn severity was calculated from the three VIs as the difference between the VI value prior to 
and following the fire (∆VI = VIbefore − VIafter) [23]. A larger (positive) ∆VI would correspond to a higher 
level of burn severity and vice versa. The image that best represented the woody vegetation status 
before the fire was chosen as VIbefore, instead of taking the image with the closest date prior to the fire 
(Figure 2). We then compared the field-based burn severity level map (from Section 3.4) with the ∆VI 
map using Two-way ANOVA with Tukey HSD separation procedure to test for significant differences 
between averaged ∆VI in the areas classified in the field as low, moderate, and severe classes. 

3.8. Assessing Burned Trees and Woody Biomass Loss in the Fire Area 

The number of trees that were consumed by the fire (or which died following the fire) were 
calculated from the satellite-derived stand density and burn severity maps. Following in-field 
observations and observations reported by Meigs et al. 2009 [57], we applied assigned values of 22%, 
54%, and 98% burned trees to areas that experienced low, moderate, and high burn severity, 
respectively. Average values of 10%, 25%, and 40% were applied on the AGB map to derive the 
woody biomass consumed by the fire in low, moderate, and high severity burned areas, respectively 
[57]. Higher values were reported in Mediterranean environments of 25%, 47%, and 65% [58], and 
32%, 52%, and 85% [59] for low, moderate, and high burn severities. These values are generally within 
the range provided by Meigs et al. 2009 [57]. Nevertheless, we decided to use here the aforementioned 
averaged values provided by Meigs et al. 2009 [57], which give a more moderate and realistic 
estimation compared to the qualitative assessment which was undertaken during the field survey in 
our study area. 

3.9. Use of Economic Model to Evaluate Fire Damage in WUI 

We adopted the i-Tree method to assess the economic damage caused by the fire in the WUI of 
Haifa [60]. In i-Tree, the annual contribution of each tree to the urban environment is assessed in 
economic terms. The i-Tree method was adopted by several countries, including Israel, Australia, and 
the UK. In i-Tree, the annual economic value of each tree is based on the following formula: 

TotVal (USD) = Base value × DBH × fSpecVal × fLocVal × fCanopCondVal (2) 

where TotVal is the total value of the tree in US dollar (USD) per year; DBH is the diameter of the tree 
at breast height (in cm); fSpecVal is the tree species value factor (fSpecVal ranges between 0 and 1), usually 
provided by tree experts; fLocVal is the location value factor with values between 0 and 1. It is based on 
the extent of exposure that people have to the various benefits of the tree (e.g., a tree located within 
the city area gains higher fLocVal value than a tree located at the interface between the city’s buildings 
and wildland area); fCanopCondVal is a canopy condition value factor, which also ranges between 0 and 1 
depending on the tree’s canopy condition (for e.g., a trimmed canopy gets a lower fCanopCondVal value 
than a fully developed untrimmed canopy). In this study, we used the following fCanopCondVal 
classification of the Israel Ministry of Agriculture and Rural Development (MOAG): a tree with a 
highly-trimmed canopy was assigned a value of 0.6, tree with a moderately trimmed canopy was 
given a value of 0.85, and for a tree with a fully developed, untrimmed canopy a fCanopCondVal value of 
1.0 was used. A base value of 2.5 USD per cm (i.e., DBH) is used as a maximum potential value in 
Equation (2). 

Finally, since we needed the total value of the tree over its entire lifecycle, the annual tree value 
calculated using the i-Tree approach was multiplied by the average life cycle of the tree species after 
reducing its pre-fire age (see Figure A1 for tree age distribution in the burnt area). Future benefits 
were reduced using a 3% discount rate, which refers to the discount in future welfare. This discount rate 
is common in the literature [61], and is currently adopted by the Israeli The Ministry of Environmental 
Protection. The following vector layers were created to calculate the spatially distributed economic 
damage using the i-Tree method: 
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• The Thiessen polygons method [62] was applied to derive tree species distribution within the 
burnt area by using the tree species distribution assessed at the 212 field plots. Then, a fSpecVal 
layer was derived for the entire burnt area at the Thiessen polygons resolution. 

• The fLocVal layer was produced by determining specific fLocVal value for each Thiessen polygon 
through the use of a zoning map of Haifa (http://gis.haifa.muni.il/haifa_html5/) and a pre-fire 
aerial photograph taken in 2016 (Figure A2). Whenever uncertainty regarding the proper fLocVal 
value occurred, we consulted Mr. Israel Galon, the director of the Department of Flowers and 
Plant Engineering in MOAG, previously the director of the forestry services in MOAG; Mr. 
Galon led the adaptation of i-Tree to the Israeli forest system. 

• Canopy condition were determined for each tree per plot using a pre-fire very-high-spatial 
resolution aerial photograph. This was then used to assign the fCanopCondVal for each Thiessen polygon, 
as described above. 

The aforementioned layers were used in conjunction with the satellite-derived DBH and burned 
trees raster maps to derive a spatially continuous economic loss map at a spatial resolution of 3m. 

3.10. Accuracy Assessment and Estimated Uncertainty 

We conducted an accuracy assessment of the main maps derived from our methodology: (1) the 
stand density map, and (2) the burn severity map. Validation for the stand density calibration 
equation (Section 3.5) was made using a field-based stand count conducted during a field survey by 
a private company of environmental planning (Miller-Blum & Co. Environmental Planning Ltd.) in 
2016 in an area nearby the WUI study area (2 km apart). A map of 29 plots of 10 × 10 m with a number 
of trees and their relative location within the plot area was provided by Miller-Blum & Co. 
Environmental Planning Ltd. This map was then used to compare with the stand density derived 
from Planet GCC image and the calibration equation. Validation was conducted by collocating 3 × 3 
Planet pixels within the plot area while averaging the stand density over the 3 × 3 pixels. The 
coefficient of determination (R2) was used as an accuracy metric for this validation.  

The burn severity classification map derived from satellite data (Section 3.7) was validated with 
a vector map created from a very-high-spatial resolution aerial photograph (7.5 cm) taken in 28 
November 2016 and the information derived in the field, as in [23], using a confusion matrix 
technique. The overall accuracy (OA) and the kappa of the confusion matrix were used as accuracy 
metrics for the satellite-derived burn severity map. 

We used the mean absolute error (MAE) of the regressions obtained from Section 3.5 and the 
different ranges in percentages of consumed woody biomass per burn-severity class given in  
Section 3.8 to provide the uncertainty estimations of the consumed woody biomass, the stand density, 
and the economic loss through maps of low-to-high estimates of these variables (Results presented 
in Figures A3 – A5 in the Appendix). 

4. Results 

4.1. Stand Tree Density and Woody Biomass in Haifa’s Wildland-Urban Interface Area 

All three vegetation indices showed positive moderate relationships with field-based stand 
density measurements (Table 4). R2 of the VIs-stand density correlations ranged between 0.26 and 
0.62, where the highest correlation found was with the GCC for both satellites and with the image 
corresponding to 23 August 2016 for Planet and 12 November 2016 for Sentinel-2A. The R2 of the  
VIs-DBH correlations were lower, i.e., within the range of 0.22 and 0.48, with GCC being the best VI 
for Planet and GNDVI and GCC for Sentinel-2A (Table 4). 

Figure 4 shows a scatterplot of GCC vs field measurements of stand density and DBH for Planet 
(image acquired in 23 August 2016). The GCC calibrated stand density linear regression equation was 
successfully validated with the stand count conducted in an area nearby the WUI, with R2 = 0.56 
(Figure 4c). 
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Table 4. R2 of the correlation between the three VIs (NDVI, GNDVI and GCC; see Table 2) and stand 
density and DBH measured at the field survey. VIs were correlated with stand density and DBH using 
four images taken at different dates prior to fire. Best correlations are indicated in bold. 

 Planet Sentinel-2A 
Date NDVI GNDVI GCC NDVI GNDVI GCC 

Tree density       
22 November 2016 0.45 0.26 0.49 0.54 0.41 0.62 
12 November 2016 0.27 0.27 0.45 0.55 0.42 0.64 

13 October 2016 0.47 0.50 0.56 0.51 0.47 0.56 
23 August 2016 0.54 0.55 0.65 0.58 0.50 0.59 

AVG 0.43 0.40 0.53 0.54 0.45 0.60 
DBH       

22 November 2016 0.23 0.24 0.30 0.29 0.22 0.29 
12 November 2016 0.27 0.27 0.36 0.31 0.25 0.37 

13 October 2016 0.22 0.29 0.35 0.35 0.37 0.31 
23 August 2016 0.37 0.39 0.48 0.31 0.27 0.32 

AVG 0.28 0.30 0.37 0.31 0.28 0.33 

 
Figure 4. (a,b) Scatterplots of GCC derived from Planet in 23 August 2016 vs. field-measured stand 
density and DBH. (c) Estimated vs observed stand density, using the GCC calibrated linear fit (from a) 
and stand count in a nearby area. Note that in (c), some of the 29 plots have the same value. 

We then used the GCC calibrated stand density and DBH equations to derive the satellite-based 
stand density and DBH maps. 

Figure 5 shows the stand density and AGB maps from Planet and Sentinel 2-A for UR and WLD 
domains. Planet-derived stand density uncertainty maps using the MAE of the linear fit are provided 
in Figure A3. Stand density and AGB were notably higher at the eastern parts of the WLD domain, 
near the urban area, and at the grove area within the UR. In general, Planet-derived maps show 
slightly higher stand densities/AGBs at the grove area within the UR domain. 

The mean stand density and AGB, which were notably higher in the UR than in the WLD, are 
shown in Table 5. 

Table 5. Tree stand density (trees ha−1) and AGB (ton ha−1) in the UR, WLD and total burnt area  
(UR + WLD). 

Domain 
Stand Density (trees ha−1) AGB (ton ha−1) 
Mean std Mean std 

UR 414.85 160.69 20.43 27.64 
WLD 222.42 165.27 5.30 13.47 

WLD + UR 318.63 162.98 10.21 20.48 
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Figure 5. Stand density retrieved from GCC using (a) Planet (3 m) and (b) Sentinel-2A (10 m) images; 
and woody aboveground biomass retrieved from Equation (1) and DBH derived using GCC from (c) 
Planet and (d) Sentinel-2A. 

4.2. Burn Severity 

Next, burn severity classification was derived from the different VIs. Figure 6 shows a boxplot 
of the ∆VI values for the three burn severity classes determined in field. In general, ∆NDVI was 
better correlated with burn severity, followed by ∆GNDVI. For both indices, there was a significant 
difference between ∆VI values of the different burn severity classes (p < 0.05 using ANOVA followed 
by Tukey HSD). There was no significant difference, though, between ∆GCC values in low, medium, 
and high burn severity areas. 
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Figure 6. Boxplots of ∆VI in areas classified in field as low, moderate and highly burned. ∆GNVI, ∆ NDVI, and GCC were derived from Planet and Sentinel-2A images. Different letters signify 
statistically different means (p < 0.05) using one-way ANOVA followed by Tuckey HSD separation 
procedure. 

Hence, we used ∆NDVI to derive a continuous burn severity map at the spatial resolution of the 
satellite images, providing low, medium, and high severity classification at the high spatial resolution 
of the satellite images (Figure 7). The classification provided in Figure 7 was further validated with the 
vector layer derived from a combined very-high-spatial resolution aerial photograph and in-field 
assessment. Table 6 summarizes the results of this validation. The overall accuracy (OA) of the 
satellite-derived burn severity map was 87%, with a kappa of 0.75. 

Table 6. Confusion matrix for the three burn severity classes (all values are presented as percentages 
from total). In bold is the percent (%) hit for each burn class category. 

 Reference Data 
Classifier Results Low Moderate High Producer Accuracy (Precision) 

Low 93.7 6.3 0.0 93.7 
Moderate 20.1 70.5 9.4 70.5 

High 0.0 20.4 79.5 79.5 
User Accuracy (Recall) 93.8 66.3 86.2  

Figure 7 shows the spatial burn severity distribution at the UR and WLD domains with severely 
burned areas, particularly at the high stand density and AGB woodland areas of the city (see Figure 5). 
In the UR, 52% (52%) of the area was classified with low severity, while 26% (23%) and 22% (25%) 
were classified as medium and high burn severity, respectively, from the Planet (Sentinel-2A) ∆NDVI map. In the WLD, where the stand density and AGB were substantially lower, 71% (73%) of 
the area was classified with low severity, while only 17% (20%) and 12% (7%) were classified as 
medium and high burn severity classes from Planet (Sentinel-2A) ∆NDVI. 
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Figure 7. Burn severity maps derived from ΔNDVI using (a) 3 m Planet and (b) 10 m Sentinel-2A 
images. The plot-based classification of the burn severity levels is also shown (circles). 

4.3. Environmental and Economic Damages of the Fire 

Finally, burned trees and woody biomass loss maps were created from the burn severity, stand 
density, and DBH maps (Figure 8). As expected from the stand density map (Figure 5 and Table 5), 
the mean woody biomass loss was greater in the UR domain than in the WLD domain  
(6.89 ton ha−1 compared to 2.81 ton ha−1). The total number of burned trees was comparable in both 
domains, with 8120 vs. 8700 burned trees in UR and WLD, respectively (203 and 102 trees ha−1, 
respectively). Results reflecting estimated uncertainty of stand density and consumed biomass are 
provided as maps of low and high estimates in Figures A3 and A4. 

The spatially distribution economic loss caused by the fire of 2016 in Haifa, and calculated with 
the i-Tree model, is shown in Figure 9, while lower and higher estimates from the uncertainty analysis 
are shown in Figure A5. 

Figure 9 shows that the greater economic loss is in UR. This is in spite of the large quantity of 
burned trees in the eastern part of the WLD domain (Figure 8a), and an equal amount of burned trees 
in the area of the two domains. The damage in the UR was estimated at 840 ± 210 K USD per hectare, 
with a total loss of 33,600 ± 8400 K USD for the entire UR burnt area, while in WLD it was one order 
of magnitude smaller, estimated at 85.6 ± 21.4 K USD per hectare, with a total damage of more than 
7300 ± 1800 K USD for the entire WLD burnt area. The total economic damage related to environmental 
damage, of the fire of 2016 in the WUI of Haifa was estimated at ca. 41 ± 10 M USD. 
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Figure 8. Map of (a) burned trees and (b) woody biomass loss caused by the fire of 2016. 

 
Figure 9. Map of spatially distributed economic damage caused to the trees by the fire in the WUI area. 
Estimations are in US dollars per (3 m) pixel. 

5. Discussion 

Results of burn severity from Planet VIs were spatially compatible with ground survey burn 
severity classifications in both the WLD and UR domains. This demonstrates the potential use of 
high-spatial-resolution Planet images for burn severity assessment in the WUI. Previous studies 
using high and medium spatial resolution satellite images showed successful assessment of burn 
severity in WLD [23,25,63]. However, as far as the authors are aware, this study is the first to provide 
a burn severity assessment at the WUI.  

Planet Doves provide a limited number of four spectral bands, lacking the shortwave infrared 
(SWIR) band. The SWIR is the most frequently-used band for burn severity mapping, successfully 
tracking burn severity variability across the burnt area [13,64]. Previous studies have shown that 
SWIR-based indices are usually preferable over NIR-based VIs [25], and in some cases, even essential 
when used for burn severity monitoring in Mediterranean ecosystems [19]. However, in this study, 
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we found that simple NIR-based VIs, like GNDVI and NDVI, may provide satisfactory results in 
terms of burn severity assessment.  

We found that, in general, the NIR-based VIs (i.e., GNDVI and NDVI) performed better in terms 
of burn severity assessment than the RGB-based GCC index. This may be because of the higher 
sensitivity that GNDVI and NDVI have to vegetation due to their use of the NIR band [65]. Another 
reason may be shadow effects, which usually increase with spatial resolution, particularly in RGB-
based indices [66]. 

Comparisons with the more reliable Sentinel-2A satellite revealed that Planet may provide  
high-quality images for fire monitoring and tree parameter assessments in the WUI. Moreover, the 
advantage of the temporal resolution of Planet—which has been improved since 2016—over that of 
Sentinel-2A was essential for tracking vegetation status immediately after the fire. The first available 
image from Sentinel-2A was 48 days after the fire (Table 3) when herbaceous vegetation had already 
started to grow, thereby affecting the VI signal [29] (see also Figure 2). This was probably the reason 
for the wider area classified by Sentinel-2A as medium instead of high burn severity in the WLD 
(where herbaceous vegetation is widely present) compared to Planet (a ratio of 2.86 compared to 1.42 
of medium/high percentage area in WLD, respectively; see also Figure 7). Differences between the 
two satellite sensors for the same date (Table 4) were likely due to differences in the width of the 
spectral wavelength bands (see Table 1), and to the different spatial resolution. 

A recent study using Planet VIs showed that the high spatio-temporal resolution of Planet 
images may be used to track changes in stem water potential in Mediterranean vineyards [53]. This 
study also showed that simple Planet-derived vegetation indices can be used to derive important 
parameters of forest structure, such as stand tree density and DBH in a highly fragmented 
Mediterranean system composed of a variety of plant species (Table A1). The stand densities in our 
study area were within the range reported for similar Mediterranean systems [67]. Such results were 
also found in similar ecosystems in Greece [68] using Sentinel-2A images and with higher spatial 
resolution images acquired from the QuickBird satellite [69]. However, stand density was previously 
impossible to derive in urban areas with the coarser spatial resolution of Landsat (30 m) because of a 
mixed signal from features such as buildings, roads, and other impervious surfaces [70]. 

Finally, with regard to the economic evaluation of the fire damage to the urban forest in the 
WUI, our total estimated economic loss was of 41 ± 10 M USD based on i-Tree model, with some 
adaptations to the Israeli case. Notably, several methods were suggested to quantify value of trees in 
urbanized/near urbanized areas. These methods can be categorized into three approaches: the cost 
approach (e.g., Depreciated Replacement Cost, which assumes that the tree benefits can be 
reproduced by replacing the tree [71]), the market approach, which accounts for the trees’ wholesale 
values [72], and the benefit-based approach, which is based on future stream of benefits that a tree 
might produce. While a plethora of such benefits were acknowledged in the literature (see [73] for an 
exhaustive description), not all have actually been quantified. In turn, quantified benefits include 
energy conservation (e.g., due to shading effects and reductions in the urban heat island), surface and 
storm-water runoff reductions, atmospheric carbon dioxide reductions, and increased property 
values.  

Finally, while some studies have found other substantial benefits such as lower levels of violence 
and stress in neighborhoods surrounded by trees, the i-Tree model currently lacks quantification of 
these benefits [60,74,75]. However, we found the i-Tree method to be the most appropriate 
considering our primary objectives, the locations of the trees, and the availability of data. Other 
benefit-based methods are based on variables that are more subjective, and thus, difficult to measure 
(e.g., historical significance). Nevertheless, as with many other methods, our method suffers from 
some limitations, specifically due to lack of accurate data (for example data on the exact condition of 
the trees). Future studies may improve the results obtained here by using more frequent high spatial 
resolution satellite schemes, providing more accurate information on trees’ species and condition. In 
addition, a sensitivity analysis using the i-Tree model may improve economic evaluation, accounting 
for uncertainty in economic loss estimates. 
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6. Conclusions 

Results from this study demonstrate that images acquired from the high-spatial-resolution 
Planet Doves database may be used to derive tree parameters such as stand density and DBH using 
simple vegetation indices. It also shows that burn severity mapping may be conducted using Planet 
images in the complex WUI area. Using a simple economic model that evaluates the annual cost of a 
tree in conjunction with Planet derived tree-parameters and burn severity maps, we were able to 
estimate spatially distributed and total economic loss to the urban forest in the WUI of Haifa caused 
by the fire of 2016. This methodology may be applied elsewhere, enhancing pre- and post-fire 
monitoring in WUI areas, for a better allocation priority of economic resources and specific treatment 
actions directed towards minimizing economic losses due to potential future WUI fires. 
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Appendix 

Table A1. Tree species distribution in urban (UR; top) and wildland (WLD; bottom) domains. 

Tree Species Trees 
per Plot 

From Total 
(%) 

DBH 
(cm) 

Density  
(103 trees ha−1) 

Acer obtusifolium Sm. 2 0.30 10.0 14.9 
Ailanthus altissima (Mill.) Swingle 15 2.3 15.3 111.2 

Albizia lebbeck (L.) Benth 2 0.3 17.5 14.9 
Arbutus andrachne L. 4 5.6 10.0 37.1 

Casuarina equisetifolia L. 34 5.1 28.1 251.9 
Ceratonia siliqua L. 1 0.2 26.0 7.5 

Cercis siliquastrum L. 5 0.8 19.4 37.1 
Crataegus azarolus L. 4 0.6 12.8 29.0 

Cupressus sempervirens L. 108 16.3 19.4 800.0 
Dalbergia sissoo Roxb. 2 0.3 32.5 14.8 

Eucalyptus camaldulensis Dehn. 34 5.1 36.7 251.9 
Euphorbia tirucalli L. 2 0.3 19.5 14.9 

Laurus nobilis L. 15 2.3 10.6 112.0 
Melia azedarach L. 5 0.8 15.2 37.0 
Olea europaea L. 4 0.6 13.5 29.7 

Phoenix dactylifera L. 1 0.2  7.5 
Pinus brutia Ten. 31 4.2 26.7 229.7 

Pinus halepensis Mill. 172 25.9 27.4 127.4 
Pinus pinea L. 6 0.9 28.3 44.5 

Pistacia palaestina Boiss. 28 25.9 9.7 207.5 
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Quercus calliprinos Webb. 138 20.8 12.7 1022.3 
Rhamnus alaternus L. 36 5.4 7.8 266.7 
Rhamnus lycioides L. 3 0.5 9.0 22.9 
Ulmus minor Mill. 5 0.8 13.4 37.0 

Washingtonia robusta H.Wendl  2 0.3 32.5 14.9 
Ailanthus altissima (Mill.) Swingle 7 3.1 12.4 91.0 

Casuarina equisetifolia L. 4 1.8 53.8 52.0 
Ceratonia siliqua L. 10 4.4 24.4 12.9 

Cupressus sempervirens L. 4 1.8 19.5 52.0 
Laurus nobilis L. 10 4.4 20.3 12.9 
Olea europaea L. 2 0.9 15.0 26.0 

Pinus canariensis C. Smith 1 0.4 35.0 13.0 
Pinus halepensis Mill. 87 38.5 23.1 1129.9 

Pinus pinea L. 48 21.2 24.4 623.4 
Pistacia palaestina Boiss. 1 0.4 32.0 13.0 

Quercus calliprinos Webb. 51 22.6 14.4 624.2 
Rhamnus alaternus L. 1 0.4 12.0 13.0 

Trees per plot refers to the number of trees in each 100 m2 plot; Percentage from total is % of trees 
from total number of trees in all plots; DBH is the mean stem diameter at breast height in cm; Density 
is the tree stand density in 103 trees per ha. 

 

 
Figure A1. Tree age distribution in (a) WLD and (b) UR domains. 

(a) WLD

(b) UR
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Figure A2. The 212 Thiessen polygons in the WUI burnt area used to map the environmental factors 
used in i-Tree model for the spatially distributed economic loss calculations. 

 

 
Figure A3. Maps of low-to-high estimates of stand density (trees ha−1) in the WUI derived from Planet: 
using the calibration equation minus the MAE (upper map); using only the calibration equation 
(middle map); and using the calibration equation plus the MAE (bottom map). 
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Figure A4. Maps of woody biomass loss derived using different assigned levels of consumed biomass 
for low, moderate and high burn severity from Meigs et al. [57]. 

 
Figure A5. Maps of low-to-high estimates of the environmental economic loss due to burned trees (in 
USD) in the WUI: using low stand density estimates (upper map); using mean estimates of stand 
density (middle map); and using high stand density estimates (bottom map). 
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