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Abstract: Studies show that agricultural land requires investment in the habitat management of
non-cropped areas to support healthy beneficial arthropods and the ecosystem services they provide.
In a previous small plot study, we manually counted blooms over the season, and found that plots
providing greater numbers of flowers supported significantly higher pollinator populations over
that of spontaneous weed plots. Here, we examined the potential of deploying an inexpensive small
unmanned aerial vehicle (UAV) as a tool to remotely estimate floral resources and corresponding
pollinator populations. Data were collected from previously established native wildflower plots
in 19 locations on the University of Georgia experimental farms in South Georgia, USA. A UAV
equipped with a lightweight digital camera was deployed to capture images of the flowers during the
months of June and September 2017. Supervised image classification using a geographic information
system (GIS) was carried out on the acquired images, and classified images were used to evaluate
the floral area. The floral area obtained from the images positively correlated with the floral counts
gathered from the quadrat samples. Furthermore, the floral area derived from imagery significantly
predicted pollinator populations, with a positive correlation indicating that plots with greater area of
blooming flowers contained higher numbers of pollinators.

Keywords: UAV floral detection; image classification; floral provisioning; habitat management;
pollinators; agricultural buffers; floral area; long term agroecosystem research (LTAR)

1. Introduction

Agricultural landscape diversification is an important strategy for ameliorating the loss of
biodiversity and boosting ecosystem services, such as biological control and pollination, provided by
beneficial organisms [1,2]. In recent years, the concept of habitat management has been promoted as a
strategy for diversifying agricultural landscapes. Habitat management encompasses several approaches
which may occur within-crop, within-farm, or within-landscape. One form of habitat management is the
utilization of wildflower strips sown at field margins [3,4], or within fields [5] to attract beneficial insects,
or to enhance the pollination and biocontrol of nearby crops. Numerous studies have evaluated and
demonstrated the potential of wildflowers in agricultural systems for providing ecosystem services [3–7].
Evidence shows that the amount of floral resources (quantity of pollen or nectar production) and the type
or diversity of flowering species has a positive effect on pollinator visits [8,9].

Given the potential for wildflowers to improve agricultural sustainability, there is need to develop
monitoring tools to estimate floral resources prior to recommendations for habitat management.
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Apart from the traditional method of quantifying flowers through manual counts, recent advances
have utilized digital imagery to quantify floral counts. The segmentation and classification of
remotely sensed imagery offers a potentially efficient method to measure floral resources [10].
Until recently, remote sensing for vegetation mapping in agriculture has relied extensively on satellite
imagery or low-resolution aerial imagery. These images are very effective for monitoring crop
production over the season, and for understanding critical information about regional, national
and global cropland trends [11]. However, optical satellite imagery is limited in some regions due
to cloud cover [12], and neither low-frequency, fine-resolution aerial imagery, nor high-frequency,
coarse-resolution satellite imagery allows for monitoring of the more rapid, fine scale changes
in agricultural environments. Over the past fifteen years, the commercial development of small
unmanned aerial systems (or unmanned aerial vehicles; i.e., UAVs) consisting of light-weight sensors
and wireless receivers, combined with small on-board global navigational satellite system (GNSS)
receivers, internal measurement units (IMUs), and navigational software, have operationalized precise
automated and manual flights for high resolution vegetation mapping [13–15], potentially filling this
important data gap.

Sensors borne on UAVs allow for collection of data at very high spatial resolutions (<50 cm ground
sample distance), and with little to no latency [16–18]. Once data from the UAV sensors are collected,
several image segmentation and classification methods are available for analyzing vegetation patterns,
exploiting differences in spectral bands from high resolution color images. For example, Biradar &
Shrikhande [19], achieved an overall accuracy of 92% in classifying marigold flowers in greenhouses
from images captured using a digital camera. Siraj et al. [20] applied neural networks and machine
learning to segment the features of flowers. Because different plants and flowers have distinct colors
and textures, traditional image processing methods such as color and texture analysis can be used to
segment pixels and characterize the vegetation of a given area [19,21].

While commercially available UAVs for crop monitoring are becoming a mainstay of the precision
agriculture toolbox, UAV use in agricultural and natural systems research is still being tested in a
diversity of situations. Data from UAV-borne sensors have been used to provide indirect estimates
of biomass, grain yield [22], and nitrogen status [23], and the output of multi-spectral sensors
can produce an array of vegetation indices, including the normalized difference of the vegetation
index (NDVI) [24]. UAVs are employed to detect and monitor pest infestations [25,26], analyze the
structure of vegetation [27], detect nutrient deficiencies, and monitor weed and flower density in
crop fields [28–30]. Müllerová et al. [31] recently demonstrated that UAV imagery could be used to
successfully differentiate between flowers of different invasive species. Michez et al. [32] detected
and classified flowers of Heracleum mantegazzianum (giant hogweed) with high accuracy. Importantly,
analysis of UAV images yielded higher accuracy in detection of black locust (Robinia pseudoaccacia)
blooms when compared to satellite imagery [31], and yellow flag iris (Iris psedacorus) in contrast with
field surveys [33]. UAV data are beginning to be used to estimate arthropod populations, as shown by
Carl et al. [34], wherein they linked black locust flower density to nectar production as a food source
for the honey bee, Apis mellifera.

These developments suggest that the application of a UAV-borne sensor coupled with image
processing techniques for the classification of floral resources [35] could act as important tools for
monitoring and predicting the populations of beneficial arthropods such as pollinators. While the
use of customized UAVs with expensive calibrated sensors may work best for research applications,
operationalizing commercially available UAVs with low-cost cameras is more practical for agricultural
producers and consultants.

In this study we: (1) compared flower areas derived from high-resolution UAV imagery with
flower counts from traditional plant ecology methods; (2) developed a method to analyze and classify
flowers from UAV images; and (3) predicted patterns of beneficial arthropod populations from the
floral area obtained in the classification process. In so doing, we demonstrate the use of a low-cost
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commercial UAVs for indirectly monitoring floral resources and estimating pollinator density in
agricultural landscapes.

2. Materials and Methods

2.1. Field Sites

Nineteen conservation buffer sites on marginal land distributed across University of Georgia
experimental farms in Tifton, GA, were observed for this study (Figure 1). Each experimental buffer
plot was 34 m × 10 m (340 m2). Plots contained a 2 m × 30 m (60 m2) strip of Napier grass separated
by a 2 m vegetation-free alley on all sides and eight subplots, with dimensions of 1.75 m × 2.6 m
(~4.55 m2), of which seven were sown with wildflower mixes and one subplot had spontaneous
vegetation growth as the control. Buffer plots were a minimum of 150 m apart. Ten plots were located
adjacent to woodland and nine were adjacent to agricultural fields. For the purpose of this study,
we analyzed data from subplots sown with the three commercial wildflower mixes, purchased in
fall of 2015. The commercial seed mixes were specific to southeastern USA, and included: Southeast
wildflower Seed Mix: “eden”-Eden Brothers® (Arden, NC, USA), “ameri”-American Meadows®

(Shelburne, VT, USA), and “high”-High Country Gardens® [36] (Table 1).
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Figure 1. Location map. The distribution of buffer plots across the experimental farm stations of
University of Georgia near Tifton, Georgia (A), and one of the experimental plots showing three
subplots (outlined in black) sown with wildflower mixes (B).

2.2. UAV Mission Preparation

Prior to data collection, high-resolution orthomosaics were created for each plot to serve as
reference maps against which later imagery could be georeferenced. We established six ground control
points (GCPs) per plot using a Trimble® Geo7x GPS system (DOP < 2 cm) and placed a highly visible
whisker and nail marker at each of these points to serve as temporary geo-located monuments for the
duration of the study. Black and white 18 cm square laminated targets were centered on the GCPs
prior to every UAV flight. On 2–3 May 2017, a DJI® Matrice M100 drone with a ZenmuseX3 camera
was flown over each plot at a height of 9.14 m, and overlapping imagery of each plot was collected.
The imagery was processed using Pix4D®Pro with GCPs and produced a very high-resolution (0.004 m)
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orthomosaic reference image for each plot (average root mean square [RMS] error ~0.009), which was
used to georeference the image mosaics of the plots in bloom.

2.3. Image Acquisition

Images were captured from the 19 plots to provide data on each of the three commercial mix
subplots on two dates, in June and September 2017. Sampling dates represented the peak bloom period
in June, observed in a prior study of the same wildflower mixes, and a contrasting date in September,
where previously we also observed very low numbers and diversity of flowers blooming [36] (Table 1).
While radiometric correction and calibration is usually performed with multi- and hyper-spectral
remotely sensed imagery [37], neither the measurement of changes in reflectance, nor absolute radiance
were goals of this research. Rather, we were interested in comparing basic imagery from a UAV using
limited processing, with field measurements of organisms, although we purposefully planned our
image acquisition to minimize the variability in illumination from one flight to the next. To reduce the
relative differences in reflectance due to changing illumination, plots were flown in rapid succession,
within a 2-day window, during periods of low cloud cover, which was commonly between 0900 and
1400 local time. Lighting conditions were further controlled by sequencing flights to avoid any shading
of the plots from nearby trees or structures; the very low altitude of the flights reduced potential effects
of light attenuation by haze. The commercially available UAV, Solo-3DR® equipped with a GoPro
Hero4® was used to capture images of each plot. The GoPro Hero4® is a small 12-megapixel camera
with a red, green and blue (RGB) filter array. No additional filters were used, and the camera was
set to a nadir viewing angle throughout the flights. Prior to each flight, the ground control targets
were placed over the GCP monuments located in the plot. The UAV was manually controlled using a
navigation controller interfaced with a tablet computer and flown at a low altitude of 9.14 m above the
plot to capture images of the subplots. The images were captured with 70% overlap between images to
allow for co-registration.

2.4. Image Processing and Analysis

For each plot, imagery from the UAV flights was mosaicked using Photoscan professional
(Agisoft® LLC) [38]. Using ArcGIS ArcMap (advanced, v. 10.5; Esri®) geographic information system
(GIS) software, the image mosaics were then related to the reference images at the coordinates of the six
GCPs, visible as the black and white targets in the imagery. A first-order polynomial transformation
was used to georeferenced the images, and a nearest neighbor technique was used to resample the
raster datasets to produce the final georeferenced images. The georeferenced images were then
classified into three classes (flowers, non-flowering vegetation, and bare earth) using a supervised
maximum likelihood classification algorithm [39]. To do this, polygons outlining pixels of similar
values in each class type, i.e., training samples, were used to produce definitions of classes for June and
September images respectively. Classifier definitions were then used to segment the UAV imagery and
produce classified images of each plot for each date. Classified imagery was subsequently validated
by visually comparing 70 points, distributed using a random stratified approach with a minimum of
10 points per class, with the UAV imagery. A confusion matrix was computed using the Segmentation
and Classification toolset of ArcGIS [40], producing values for errors of commission and omission,
an overall classification accuracy, and a Kappa coefficient [41]. The accuracy of each classification was
evaluated based on raw accuracy assessments and the Kappa coefficient, considering values of >80%
accuracy and >0.8 Kappa as acceptable. The resolution of the raw UAV image pixels averaged 0.009
m, and varied slightly from plot to plot (±0.001 m std. dev.) due to small differences in the flight
plans, terrain and wind conditions of individual flights. To create a more uniform data set across all
plots for both times, the classified images were resampled to a pixel resolution of 0.01 × 0.01 m using
a nearest neighbor resampling technique, and clipped to the boundaries of the subplots. From the
final classified image, we summarized the floral area occurring within a quadrat area identical to the
quadrats, described below, that were used for manual vegetation and arthropod sampling.
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Table 1. Summary of total counts of flower species observed in subplots containing one of three southeast specific wildflower mixes: “eden”—Eden Brothers®

(Arden, NC, USA), “ameri”—American Meadows®, (Shelburne, VT, USA), and “high”—High Country Gardens®. Values represent total counts for each time period,
and final total column represents seasonal totals observed. Flower species are ranked by total seasonal floral production.

Flower Description
8 May 2017 8 June 2017 10 July 2017 7 August 2017 18 September 2017

Eden Ameri High Eden Ameri High Eden Ameri High Eden Ameri High Eden Ameri High Total

Gaillardia pulchella 83 121 106 122 119 151 148 182 152 223 289 249 161 202 160 2468
Rudbeckia hirta 0 1 0 127 160 103 111 131 59 37 28 15 20 23 20 835

Coreopsis lanceolata 75 49 145 1 0 21 21 10 37 0 0 1 0 1 0 361
Coreopsis tinctoria 61 7 0 42 24 30 0 0 0 0 0 0 0 0 0 164
Centaurea cyanus 69 0 0 27 0 0 0 0 0 0 0 0 0 0 0 96
Rudbeckia gloriosa 0 0 0 0 0 0 19 32 0 0 21 0 1 0 0 73
Phlox drummondi 12 0 0 9 0 0 0 0 0 13 0 0 0 0 0 34

Linum grandiflorum 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33
Cosmos sulphureus 0 0 0 0 0 0 0 0 0 11 0 0 4 0 0 15
Linaria maroccana 0 12 2 0 0 0 0 0 0 0 0 0 0 0 0 14
Monarda citriodora 0 0 0 3 0 6 0 0 1 0 0 0 0 0 0 10
Cosmos bipinnatus 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Oenothera lamarckiana 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

Total 336 190 253 331 303 311 299 355 249 284 339 265 186 226 180 4107
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2.5. Vegetation and Arthropod Sampling

Vegetation sampling and arthropod sampling were carried out within the same week as image
acquisition. Within each subplot, five 0.25 m2 quadrats were established for the sampling of vegetation
and arthropods. During each collection event, we randomly selected one of the five 0.25 m2 quadrats,
and the numbers of flowers occurring were counted for each species of wildflower. For compound
flowers, such as those in Asteraceae, we counted the flower head as one flower. Pollinator visits
were quantified by visually observing the flowers within the same quadrat for 3 min. All bees and
syrphid flies visiting the flowers were pooled as pollinators. Natural enemies were collected by
suction sampling from the same quadrat using a reverse flow leaf blower for 30 s. Spiders and
several groups of insect predators (Reduviidae, Geocoridae, Carabidae, Coccinellidae, Dermaptera,
and hymenopteran parasitoid wasps) were counted and pooled together to estimate natural enemy
density and diversity. The Shannon index (H) was used to estimate diversity based on counts of the
families of arthropods observed.

2.6. Statistical Analysis

Linear mixed-effects models with nested random effects for sampling date within site were
conducted using the ‘lme{nlme}’ function in R [42]. Response variables were natural log-transformed to
satisfy the model adequacy assumptions of linear regression, which greatly improved the distribution
of residuals. The package r.squaredglmm{MuMIn} was used to extract adjusted r2 values from the
prediction model [42]. Of the 19 plot images, one September image was excluded due to distortions
from poor image registration, and the image data were excluded from further statistical analyses.
During model fitting we also observed a few data points that appeared to be extreme values. We ran a
sensitivity analysis on regressions to assess the leverage of a few extreme outliers (i.e., floral count
value at 50, UAV area at greater than 0.12, and two natural enemy samples). Excluding these four
outliers had no effect on the significance of models or qualitative interpretation, but model adequacy
was improved.

3. Results

The image classification protocol was more successful in detecting flowers in June than in
September. Georeferencing of the image mosaics resulted in average RMS errors of 0.05 m, with one
September image excluded, as noted. The overall classification accuracy for each of the 19 plots ranged
between 89% and 97% in June and between 80% and 95% in September after removing a single plot
with low values of 77% and 76% in June and September, respectively. The Kappa index in June ranged
from 0.84 to 0.96, except for the outlier mentioned above with a low Kappa index of 0.65. The floral area
obtained from deploying this low-cost drone was significantly correlated with the visually counted
estimates of flowers within the 0.25 m2 quadrats (Table 2; Figure 2). UAV-derived estimates of the
floral area explained 26% of the variation in floral counts obtained from visually counting all flowers
in the quadrats.

Table 2. Results from fitting linear mixed-effects models using the unmanned aerial vehicle
(UAV)-estimated floral area within a quadrat to predict visual estimates of floral counts. UAV-estimated
floral area and floral counts were used to explain pollinator visits, and natural enemies observed within
quadrats. Response variables were natural logarithm-transformed prior to analysis. Natural enemy
diversity was estimated using the Shannon index (H). R2c represents the conditional R2, which describes
the proportion of variance explained by the fixed and random factors of the regression with df = 95 for
each model.

Predictor Variable Response Variable Estimate (±SE) t-Value R2c p-Value

UAV floral area Floral counts 13.127 (±2.53) 5.192 0.26 <0.001
Floral counts Pollinator counts 0.031 (±0.01) 5.875 0.64 <0.001

UAV floral area Pollinator counts 6.340 (±1.81) 3.502 0.51 0.0007
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Table 2. Cont.

Predictor Variable Response Variable Estimate (±SE) t-Value R2c p-Value

Floral counts Natural enemy counts 0.019(±0.01) 2.038 0.21 0.0443
UAV floral area Natural enemy counts 2.785 (±2.71) 1.025 na 0.3079

Floral counts Natural diversity −0.000 (±0.002) −0.072 na 0.9422
UAV floral area Natural diversity 0.977 (±0.93) 1.055 na 0.2939
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A total of 196 and 36 pollinators made up of bees, and syrphid flies were observed visiting flowers
in June and September, respectively. The floral counts from within the quadrats and UAV-estimated floral
area were significantly correlated with number of pollinator visits (Table 2; Figure 3). Similar results
were obtained using these estimates of floral resources, and both showed increases in pollinator visits,
with greater numbers of flowers or UAV-estimated floral area (Figure 3).
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Figure 3. Visual estimates of pollinator activity in 0.25 m2 quadrats in relation to (A) visual counts
of flowers within quadrats, and (B) UAV-estimated floral area within the quadrats. For ease of
interpretation, lines represent the linear relationship between untransformed floral counts, with shaded
areas indicating 95% confidence intervals (see Table 2).
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A diverse mixture of natural enemies was collected from suction samples in June and September
(Table 3). Over the entire season, Araneae, true spiders were the most common, followed by
Staphylinidae. The effects of floral counts and UAV-estimated floral area on natural enemy density
and diversity were less defined as compared to the pollinators (Figure 4). Natural enemies were very
slightly positively correlated with flower counts (Table 2). However, neither natural enemy density
nor diversity (H) were correlated with UAV-estimated floral area.

Table 3. Summary of natural enemies observed in wildflower plots collected by suction sampling.
Arthropod taxa are organized by seasonal total rank abundance. For each sampling date, values represent:
total, mean (±1SE). Araneae represent all true spiders, and Parasitica represents other parasitoids (i.e., not
Braconidae or Ichneumonidae).

Date Total June September

Araneae 560 201, 3.72 (0.43) 359, 6.65 (0.71)
Staphylinidae 459 20, 0.37 (0.16) 439, 8.13 (2.11)

Parasitica 82 28, 0.52 (0.16) 54, 1.00 (0.22)
Carabidae 39 36, 0.67 (0.18) 3, 0.06 (0.04)

Anthocoridae 26 18, 0.33 (0.11) 8, 0.15 (0.07)
Reduviidae 23 15, 0.28 (0.09) 8, 0.15 (0.06)

Coccinellidae 17 5, 0.09 (0.05) 12, 0.22 (0.09)
Braconidae 10 1, 0.02 (0.02) 9, 0.17 (0.05)

Ichneumonidae 10 4, 0.07 (0.04) 6, 0.11 (0.07)
Nabidae 8 1, 0.02 (0.02) 7, 0.13 (0.05)
Scoliidae 3 3, 0.06 (0.03) 0, 0 (0)
Tiphiidae 3 3, 0.06 (0.04) 0, 0 (0)
Sphecidae 1 0, 0.00 (0.00) 1, 0.02 (0.02)

Totals 1241 335 906
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Figure 4. Suction sample estimates of natural enemy density and diversity in relation to visual floral
counts within 0.25 m2 quadrats (A,B), and UAV—estimated floral area within the quadrats (C,D).
For ease of interpretation, the line represents the linear relationship between untransformed floral
counts, with the shaded area indicating 95% confidence intervals (see Table 2).
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4. Discussion

Habitat management to improve beneficial arthropod populations, especially by incorporating
native floral resources in agricultural landscapes, has gained momentum in recent years. Consequently,
several commercial seed mixes have been designed and are available to support and enhance beneficial
arthropod communities. Although floral resources are being implemented, there exist few quantifiable
measurements of how much area to plant in a landscape, and what will be the resulting effect of
different quantities of floral resources for promoting beneficial arthropod populations [43]. The use
of UAVs has increased dramatically in recent years, and they appear to be a feasible approach for
assessing floral resources in agricultural landscapes. This study demonstrates the effectiveness of
utilizing a low-cost commercial UAVs to quantify floral resources in agricultural landscapes. The UAV
data collection, coupled with the image classification system, successfully detected and estimated the
floral surface area, and provided a new indirect metric to estimate pollinator populations.

In this study, we achieved moderate to high accuracy in classifying imagery from the UAV by
using the supervised maximum likelihood image classification approach. The overall accuracy of
the classification was more efficient in June, but still measurable in September, leading to a stronger
overall correlation between the floral counts and the floral area, as obtained through the UAV imagery.
Müllerová et al. [31] reported that the accuracy of image classification of vegetation depends on
spatially registered imagery, coinciding with the period at which the phenological phase of the
vegetation is most recognizable, which in this study are the flowers. All the plots in this study had peak
bloom periods in June, as opposed to September, and hence the best images were obtained in June,
supported also by the acceptable accuracy values and Kappa coefficients. The slightly lower overall
accuracy of flower detection in September was likely a result of a major weather event (i.e., Hurricane
Irma on 10–11 September 2017 when storm debris in the plots contributed to the misclassification
of certain pixels. This study did not examine the spectral characteristics of flower blooms and how
well the UAV-borne camera was able to detect blooms under varying conditions of illumination.
Furthermore, most blooms in the study happened to be red and yellow, which were easily detected
with the RGB camera, so it is unknown how well such a system would function with the detection of
blooms emitting in higher frequency ranges of the visible spectrum, e.g., blue and violet, especially in
the absence of radiometric and atmospheric corrections. This is a potential area for further research,
and it could be of importance to arthropod monitoring, given the importance of ultraviolet floral
pattern cues in pollinator behavior [44].

Research increasingly shows that native wildflower plantings support higher native pollinator
populations [6,45,46]. We used two methods to quantify floral resource availability for pollinators,
manual floral counts and estimated floral area using a remote sensing UAV approach. Both approaches
provided significant positive correlations with pollinator populations. However, this was not perfect,
and UAV-estimated floral area displayed variability in the prediction of floral counts and in the
prediction of pollinators. One of the explanations for the variability is that pollinator groups respond to
characteristics other than the area of flowers or the numbers of flowers [8,9], and floral characteristics
such as corolla length and the amount of pollen and available nectar will not be captured with this
UAV approach. Over larger areas, the UAV estimates of floral area should capture a generalized view
of the floral resources available to pollinators, and estimates of pollinator visitation, because counting
all flowers and floral trait distributions in the landscape is not feasible. Therefore, extracting random
samples of an area to estimate floral resources available would be the preferred method for large scale
implementation. For manual counts, observer bias [43,47] is an issue, especially with the large teams
that would be needed to document floral resource availability at large spatial extents. Results suggested
that the number of pollinators in a given area can be indirectly predicted by the amount of floral
area estimated in a landscape, and sampled using a UAV with a simple RGB camera. For the current
dataset, small increases of even 0.12 m2 of floral area to a landscape should correspond to an increase
in 6–8 pollinator visits in that area (Figure 4).
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In contrast to the pollinators, observed natural enemy populations were variable and abundances
were very slightly correlated with floral counts (Figure 4A). We also found no significant correlations
of floral area or counts with natural enemy diversity. In our study, we attempted to predict the
response of natural enemy abundance with one floral resource character, the surface area of the flowers;
however, natural enemies respond to multiple factors in addition to the presence of floral resources [48].
The importance of a complex natural habitat for natural enemies can vary widely depending on the type
of crop, the predator identity, or the functional role, land management, and habitat structure [49]. As a
first step in using the UAV approach, we pooled all of the natural enemies as one group and analyzed
counts from vacuum samples. This approach may limit our ability to detect responses to diverse
habitats [50], where responses may depend on predator functional groups. For instance, spiders may be
very attracted to flowers, and carabid beetles may not respond to these resources [51]. Community and
functional group analyses were beyond the scope of this initial study. We were primarily interested
in developing and testing a UAV approach to indirectly predict arthropod populations, and we used
estimates of diversity to represent the community response. Future research will assess the use of UAV
technology for characterizing community responses to landscapes and floral resources.

5. Conclusions

The approach that we developed and tested using a UAV to quantify floral resources has potential
as an efficient method for predicting pollinator populations over large spatial scales. In our study,
we found that small increases of floral area (0.12 m2), detected using a low-cost UAV with an RGB
camera, corresponded with increases in pollinator visits (6–8 pollinators). Therefore, this metric has
potential as an indicator for decision-making in designing pollinator landscapes for crops or home
gardeners. Although our study demonstrated that UAV data are well-suited for detection of floral
resources, the processing of the data can still be technically difficult. For instance, images from one
plot in September were not usable because of the geometric distortions caused while orthomosaicking
the images. The workflow that we implemented could be further refined by automating certain
steps, such as classifying referenced imagery in batch processes. Nevertheless, our study provides
insights for the practical application of UAVs as efficient tools for quantifying floral resources.
Future research should be aimed at integrating the floral resource estimates with decision-making tools
for improving habitat structure in landscapes. By this means, rapid assessments of floral resources can
be integrated with cropping system plans that promote beneficial arthropod populations and their
associated services.
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31. Müllerová, J.; Bartaloš, T.; Brůna, J.; Dvořák, P.; Vítková, M. Unmanned aircraft in nature conservation:
An example from plant invasions. Int. J. Remote Sens. 2017, 38, 2177–2198. [CrossRef]

32. Michez, A.; Piégay, H.; Jonathan, L.; Claessens, H.; Lejeune, P. Mapping of riparian invasive species with
supervised classification of unmanned aerial system (UAS) imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 44,
88–94. [CrossRef]

33. Hill, D.J.; Tarasoff, C.; Whitworth, G.E.; Baron, J.; Bradshaw, J.L.; Church, J.S. Utility of unmanned aerial
vehicles for mapping invasive plant species: A case study on yellow flag Iris (Iris pseudacorus L.). Int. J.
Remote Sens. 2017, 38, 2083–2105. [CrossRef]

34. Carl, C.; Landgraf, D.; van der Maaten-Theunissen, M.; Biber, P.; Pretzsch, H. Robinia pseudoacacia L. flowers
analyzed by using Unmanned Aerial Vehicle (UAV). Remote Sens. 2017, 9, 1091. [CrossRef]

35. Lino, A.C.L.; Sanches, J.; Moraes, G.; Dias-Tagliacozzo, I.; Augusto, F.; LIMA, B.; Nascimento, T.S.
Flower classification supported by digital imaging techniques. J. Inf. Technol. Agric. 2011, 4, 1–6.

36. Xavier, S.S.; Olson, D.M.; Coffin, A.W.; Strickland, T.C.; Schmidt, J.M. Perennial grass and native wildflowers:
A synergistic approach to habitat management. Insects 2017, 8, 104. [CrossRef] [PubMed]

37. Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; Wiley: New York, NY,
USA, 2004; Volume 5.

38. Agisoft. Agisoft Photoscan User Manual: Professional Edition, version 1.1; Agisoft, L.L.C.: St. Petersburg, Russia, 2014.
39. Foody, G.M.; Campbell, N.; Trodd, N.; Wood, T. Derivation and applications of probabilistic measures of

class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58,
1335–1341.

40. Environmental System Research Institute (ESRI). Arcgis Desktop: Release 10.5.1; Environmental System
Research Institute: Redlands, CA, USA, 2017.

41. Fitzgerald, R.; Lees, B. Assessing the classification accuracy of multisource remote sensing data.
Remote Sens. Environ. 1994, 47, 362–368. [CrossRef]

42. RCoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2017.

http://dx.doi.org/10.1016/j.indcrop.2016.03.035
http://dx.doi.org/10.13031/2013.29493
http://dx.doi.org/10.1007/s11119-005-2324-5
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-33-2011
http://dx.doi.org/10.3390/f6030594
http://dx.doi.org/10.3390/rs71115467
http://dx.doi.org/10.1016/j.rse.2016.05.019
http://dx.doi.org/10.3390/s17061411
http://www.ncbi.nlm.nih.gov/pubmed/28621740
http://dx.doi.org/10.3390/rs8050416
http://dx.doi.org/10.1007/s11119-016-9442-0
http://dx.doi.org/10.1080/01431161.2016.1275059
http://dx.doi.org/10.1016/j.jag.2015.06.014
http://dx.doi.org/10.1080/01431161.2016.1264030
http://dx.doi.org/10.3390/rs9111091
http://dx.doi.org/10.3390/insects8040104
http://www.ncbi.nlm.nih.gov/pubmed/28937651
http://dx.doi.org/10.1016/0034-4257(94)90103-1


Remote Sens. 2018, 10, 1485 13 of 13
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