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Abstract: We installed 10 continuous Global Positioning System (GPS) stations on the northeast
margin of the Tibetan Plateau at the end of 2012, in order to qualitatively investigate strain
accumulation across the Liupanshan Fault (LPSF). We integrated our newly built stations with
48 other existing GPS stations to provide new insights into three-dimensional tectonic deformation.
We employed white plus flicker noise model as a statistical model to obtain realistic velocities and
corresponding uncertainties in the ITRF2014 and Ordos-fixed reference frame. The total velocity
decrease from northwest to southeast in the Longxi Block (LXB) was 5.3 mm/yr within the range of
200 km west of the LPSF on the horizontal component. The first-order characteristic of the vertical
crustal deformation was uplift for the northeastern margin of the Tibetan Plateau. The uplift rates in
the LXB and the Ordos Block (ORB) were 1.0 and 2.0 mm/yr, respectively. We adopted an improved
spherical wavelet algorithm to invert for multiscale strain rates and rotation rates. Multiscale strain
rates showed a complex crustal deformation pattern. A significant clockwise rotation of about
30 nradians/yr (10−9 radians/year) was identified around the Dingxi. Localized strain accumulation
was determined around the intersectional region between the Haiyuan Fault (HYF) and the LPSF.
The deformation pattern across the LFPS was similar to that of the Longmengshan Fault (LMSF)
before the 2008 Wenchuan MS 8.0 earthquake. Furthermore, according to the distributed second
invariant of strain rates at different spatial scale, strain partitioning has already spatially localized
along the Xiaokou–Liupanshan–Longxian–Baoji fault belt (XLLBF). The tectonic deformation and
localized strain buildup together with seismicity imply a high probability for a potential earthquake
in this zone.

Keywords: northeastern margin of Tibetan Plateau; continuous GPS observations; time series analysis;
three-dimensional velocity field; strain partitioning; crustal uplift

1. Introduction

Since the Middle Miocene, as a response to the India–Eurasia collision [1–3], the northeastern
Tibetan Plateau has been undergoing lateral extrusion, which is partially accommodated by sinistral
strike–slip movement along the HYF zone and crustal shortening toward the Tibet–Ordos transition
zone of the northeastern margin along the Liupanshan area [4–6]. The northeastern part of the Tibetan
Plateau is widely filled with Cenozoic sedimentary rocks [4,7,8]. To the north of the northeastern

Remote Sens. 2019, 11, 34; doi:10.3390/rs11010034 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2814-5709
https://orcid.org/0000-0001-5641-8041
https://orcid.org/0000-0002-6259-1323
http://www.mdpi.com/2072-4292/11/1/34?type=check_update&version=1
http://dx.doi.org/10.3390/rs11010034
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 34 2 of 21

Tibetan Plateau, the Alxa Block (ALB) has undergone significant tectonic deformation since the
Mesozoic and is a key region related not only to the Mesozoic deformation of Central Asia, but also
to the Cenozoic development of the Tibetan Plateau [8,9]. The tectonic deformation west of the
Liupanshan (LPS) is characterized by numerous active strike–slip and thrust faults [10]. The slip on
these faults contributes to continuing uplift and seismic activity on the northeastern margin of the
Tibetan Plateau [11]. East of the Liupanshan is the stable ORB, which tectonically belongs to the North
China Block (NCB), a region that seems to share a common late Precambrian to Cenozoic geological
history, but which has undergone regional extension during the Cenozoic [12–14].

The HYF and LPS are main boundary faults on the northeastern margin of the Tibetan Plateau,
and are part of the most significant seismic hazard zone in the region [15]. Between these two
main faults is the Xiaokou Fault (XKF), a left-lateral strike–slip fault which intersects the HYF
and transfers displacement to the LPS [10,16]. East of the XKF is the Madongshan fold zone
(MDFZ), located in the northern part of the Madongshan [10]. To the northeast of the HYF is the
Xiangshan–Tianjingshan Fault (XTJSF), a left-lateral strike–slip fault with a large thrust component [3].
These two faults have similar slip features but different slip rates, which are 6.5 and 5.0 mm/yr,
respectively, according to the geographical deflection of the Yellow River across the two faults [3].
On the south of the LPS, the Longxian–Baoji fault system (LXBJF) consists of four sub-faults, with
the easternmost Qishan–Mazhao Fault (QSMZF) being the most active one, accommodating regional
strain accumulation through strike–slip movement [17]. In this area, other major faults are the north
fringe fault of the West Qinling Mountains (NWQF) and the East Kunlun Fault (EKF) [6]. Based on
fault distribution, tectonic movement, and crustal deformation from geological and geodetic results,
the study zone can be divided into five relatively rigid blocks, as shown in Figure 1 [18]. Besides the
main boundary faults, there are some secondary faults within the blocks, which play an important
role in the accommodation of strain distribution inside blocks. Three great earthquakes have occurred
in this area with magnitudes larger than or equal to MS 8.0, including the 1654 MS 8.0 Tianshui
earthquake, the 1879 MS 8.0 Wenxian earthquake, and the 1920 MS 8.6 Haiyuan earthquake.

Previous studies have shown that the velocity field derived from geodetic observations could
be explained by the elastic block model, indicating gradually declining slip rates from west to east
on the HYF, with an average slip rate being about 5.0 mm/yr [11,18–21]. However, due to the sparse
distribution of GPS stations, slip rates on the LPS and LXBJF are poorly constrained. The slip rate
gradually declines from west to east on the north fringe fault of the West Qinling Mountains, and tends
to be almost zero on the eastern margin [22,23]. Previous studies were mostly based on campaign GPS
observations, with a very limited amount of continuous GPS (cGPS) data.

Since 2012, with financial support from the China Earthquake Administration, more cGPS stations
have been deployed in some key areas, such as the LPSF zone and the XKF zone. We collected the data
from all 58 cGPS sites on the northeastern Tibetan Plateau margin. In this study, we calculated a new
velocity field and then calculated the strain field based on an improved multiscale spherical wavelet
algorithm. In Section 2, we elaborated the details of the cGPS data processing, the fitting of GPS time
series. In Section 3, we described an improved algorithm for strain rate estimation based on wavelet
analysis. In Sections 4 and 5, we presented the results of the estimated velocity and strain rate fields
and analyzed their tectonic implications, respectively. In Section 6, we analyzed strain accumulation
on different spatial scales and discussed the relationship between horizontal and vertical movements.
In Section 7, we presented a concise conclusion.
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Figure 1. Map of the study area, showing topographic relief, major active faults, earthquake epicenters 
with Mw > 3.0 (after the China Earthquake Networks Center catalog over 1976–2018), and focal 
mechanisms of Mw > 5.0 earthquakes (after the Centroid Moment Tensor catalog over 1976–2018). 
The black lines denote major active faults. The upper right inset map shows the location of the study 
area. Capital letters are abbreviations of the cities, the block, and the regional active faults. XN denotes 
Xining city, LZ denotes Lanzhou city, LX denotes Linxia city, DX denotes Dingxi city, XA denotes 
Xi’an city, and YC denotes Yinchuan city. ALB denotes Alxa block, LXB denotes Longxi block, QLB 
denotes Qinling block, BHB denotes Bayan Har block, and ORB denotes Ordos block. XTJSF denotes 
Xiangshan–Tianjingshan Fault, HYF denotes Haiyuan Fault, ZLMXF denotes Zhuanglanghe–
Maxianshan Fault, NWQF denotes north fringe fault of the West Qinling Mountains, EKF denotes 
East Kunlun Fault, LXBJF denotes Longxian–Baoji fault system, XKF denotes Xiaokou Fault, and LPSF 
denotes Liupanshan Fault. The same abbreviations of the cities, the block, and the regional active 
faults were adopted in the following figures. 

2. GPS Data and Data Processing  

2.1. GPS Observations 

To investigate the slip rate of the LPSF and analyze the seismic hazard of the fault, we installed 
eight continuously recording GPS stations across this fault. We installed the cGPS profile according 
to the principle that the inter-site distance gradually increases with the distance from the fault trace, 
with an average inter-site distance of 20 km, in order to capture fault activity and strain accumulation 
as precisely as possible. Five stations, LP01 to LP05, are located in the west of the fault, and three 
stations, LP06 to LP08, are located in the east. We also established two cGPS stations across the XKF, 
with an inter-station distance of 10 km, in order to determine its slip rate and study the transformation 
of the slip pattern between the HYF and LPSF. These 10 stations formed a new regional network, 
named the Institute of Earthquake Forecasting Network (IEFNET), which was established on October 
2012, following the Crustal Movement Observation Network of China (CMONOC) reference station 
standards, and has been operating since April 2013 [24]. Additionally, we collected 48 other cGPS 
observations in this region, from two networks. Twenty-two of them belong to CMONOC, a high-

Figure 1. Map of the study area, showing topographic relief, major active faults, earthquake epicenters
with Mw > 3.0 (after the China Earthquake Networks Center catalog over 1976–2018), and focal
mechanisms of Mw > 5.0 earthquakes (after the Centroid Moment Tensor catalog over 1976–2018).
The black lines denote major active faults. The upper right inset map shows the location of the
study area. Capital letters are abbreviations of the cities, the block, and the regional active faults.
XN denotes Xining city, LZ denotes Lanzhou city, LX denotes Linxia city, DX denotes Dingxi city,
XA denotes Xi’an city, and YC denotes Yinchuan city. ALB denotes Alxa block, LXB denotes
Longxi block, QLB denotes Qinling block, BHB denotes Bayan Har block, and ORB denotes Ordos
block. XTJSF denotes Xiangshan–Tianjingshan Fault, HYF denotes Haiyuan Fault, ZLMXF denotes
Zhuanglanghe–Maxianshan Fault, NWQF denotes north fringe fault of the West Qinling Mountains,
EKF denotes East Kunlun Fault, LXBJF denotes Longxian–Baoji fault system, XKF denotes Xiaokou
Fault, and LPSF denotes Liupanshan Fault. The same abbreviations of the cities, the block, and the
regional active faults were adopted in the following figures.

2. GPS Data and Data Processing

2.1. GPS Observations

To investigate the slip rate of the LPSF and analyze the seismic hazard of the fault, we installed
eight continuously recording GPS stations across this fault. We installed the cGPS profile according
to the principle that the inter-site distance gradually increases with the distance from the fault trace,
with an average inter-site distance of 20 km, in order to capture fault activity and strain accumulation
as precisely as possible. Five stations, LP01 to LP05, are located in the west of the fault, and three
stations, LP06 to LP08, are located in the east. We also established two cGPS stations across the
XKF, with an inter-station distance of 10 km, in order to determine its slip rate and study the
transformation of the slip pattern between the HYF and LPSF. These 10 stations formed a new regional
network, named the Institute of Earthquake Forecasting Network (IEFNET), which was established on
October 2012, following the Crustal Movement Observation Network of China (CMONOC) reference
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station standards, and has been operating since April 2013 [24]. Additionally, we collected 48 other
cGPS observations in this region, from two networks. Twenty-two of them belong to CMONOC,
a high-rate GPS network with sampling rates of up to 50 Hz which consists of 260 continuous
stations and 2000 campaign stations installed by the China Earthquake Administration. This network
was established in 2009 to benefit the monitoring and investigation of tectonic movement and
environmental change in China. The remaining 26 stations belong to a regional network (REGENT)
which was installed by local agencies with earthquake, meteorology, and surveying and mapping,
in order to increase the spatial density of GPS sites in key tectonic areas and provide positioning
services [24]. This regional network has been operational since January 2010, following the CMONOC
reference station standards. These stations played an important role in supplying local positioning
service. However, they were not employed for the study of tectonic movement. The distribution of the
58 cGPS stations used in this study covers the main tectonic area with a mean inter-site distance of
about 110 km, and most GPS stations are located close to major seismogenic zones (Figure 2).
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In the following, we obtained 58 cGPS observations over the period of 2010–2018. The velocities
of the 10 newly installed cGPS stations are firstly reported. Then, the application of 26 cGPS stations of
REGENT and the 22 cGPS stations, which have longer observational time span compared with previous
study, of CMONOC to the study of crustal and tectonic deformation is described. Newer and denser cGPS
observations are adopted to acquire a three-dimensional velocity field in order to elaborate regional tectonic
deformation. The data from the analyzed continuously recording stations spans more than 2.5 years, with
majority of them covering more than 5.0 years, which is long enough to reliably estimate crustal velocities.

2.2. GPS Data Processing

The GAMIT/GLOBK package (version 10.6) was employed to estimate the daily solutions of
station coordinates in a two-step approach [25,26]. In the first step, we analyzed doubly differenced GPS
phase observations in daily session to estimate loosely constrained station coordinates together with
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orbital and Earth orientation parameters and their associated covariance matrices [27,28]. The sampling
frequency was set to 30 s, and the cutoff of the elevation angle was 10◦ for the GPS raw data.
The estimated orbital parameters included 15 elements for each satellite, while the Earth orientation
parameters included pole position and rate along with the UT1 and its rate. The ionosphere-free
combination was introduced in forming observation equations to eliminate the first-order ionosphere
delay effects; however, the high-order ionosphere delay effects remained as errors in the observation
equations, which can result in positioning errors of up to 15 mm in some areas with high electron
density and taken into account in the precise positioning [29]. The second-order ionosphere effects
were correlated with the total electron content and geomagnetic field [28]. Vertical Total Electron
Content (VTEC) maps, from the Center for Orbit Determination in Europe (CODE), and the newly
updated geomagnetic field model IGRF12 [30,31], from the international geomagnetic reference, were
applied in order to mitigate their influences [24]. An automatic cleaning algorithm was applied to check
raw data for better handling of poor data by repairing cycle slips and removing outliers [27]. IGS final
satellite ephemeris was applied to calculate the position of GPS satellites [32]. The International Earth
Rotation and Reference System Service (IERS) Bulletin B value was adopted for determining the initial
values of the Earth orientation parameters. The IGS14 absolute phase center model was applied to
correct the variation of phase center for satellites and receivers. The Vienna Mapping Function 1
(VMF1) mapping function was employed to model the troposphere delay effects by means of the dry
and wet parts [33], with atmosphere pressure and temperature parameters extracted from station
meteorological files or GPT2 grid files, to improve the precision of estimated station position on the
vertical component [34]. The wet part of the troposphere delay effects was set as unknown hourly
parameters in the final estimate of position coordinates, together with two daily gradient parameters in
the east and north components, respectively. The ocean tidal loading correction was taken into account
according to the FES2004 model [35], and the effects of polar tides and solid Earth tides were corrected
according to the IERS2003 model [36]. The atmospheric loading correction was applied in the CM
reference frame (center of mass of the solid Earth plus fluid loads) according to the IRES 2003 model.
The solar radiation pressure was estimated using the Berne model [37]. In this step, we obtained the
variance-covariance matrix, which includes bias-free and bias-fixed solutions. We also collected data
from other CMONOC cGPS stations and about 80 ITRF2014 reference stations distributed all over the
world to realize the reasonable reference frame [38]. The position time series plots of 58 cGPS stations
relative to the ITRF2014 reference frame (Figure S1) are listed in the supplementary materials.

In the second step, we used the daily bias-fixed loosely constrained solutions of the estimated
parameters and their covariance matrices as quasi-observation in GLOBK, which is a smoothing
Kalman filter, to resolve position time series in the ITRF2014 by means of network adjustments.
We constrained all the priori coordinates to 0.1 m to minimize the effects of unmodeled site position
biases. The ITRF2014 reference frame was realized by minimal constraining of the 80 ITRF2014 core
stations by a seven-parameter Helmert transformation, which used three orientation parameters, three
translation parameters, and one scale parameter. We adopted four iterations to eliminate bad sites and
to compute station weights for the reference frame stabilization.

2.3. Time Series Analysis

In order to fit coordinate time series, we employed a functional model that encompasses a constant
velocity, an annual and a semiannual sinusoidal variation term, and possible offset parameters for
each component of each station. The functional model can be written, after [39], as:

Dk(ti) = Dk(t0) + vkti + ∑2
m=1[amsin(2mπti) + bmcos(2mπti)] + ∑j0

j=0 ojH
(
ti − tj

)
+ ei (1)

where k = e, n, u for the east, north, and up components, respectively, Dk(t0) is the station position at
time t0, vk is the linear rate of component k, a1 and b1 are the sine and cosine amplitudes at annual
period, a2 and b2 are the sine and cosine amplitudes at semi-annual period, H

(
ti − tj

)
is the Heaviside
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step function which is equal to 1 for ti ≥ tj and 0 otherwise, oj is the offset value at time tj, and ei is the
corresponding noise in the position time series.

Outliers were removed by using the interquartile range algorithm described by [40]. A noise
model of time series can affect the estimation of the velocity field, especially the uncertainty of the
estimated trend [41]. The white noise assumption that measurement error is random and uncorrelated
from one epoch to its neighbor is improper for time series analysis. Time-correlated noise was
confirmed to be present in the GPS position time series [42]. We employed the Hector software to
estimate the power index of the noise model, which includes both white and power index models [43].
The results of the noise analysis show that the corresponding noise model is the white plus flicker noise
model [41]. Therefore, to precisely estimate the velocity field, we applied a white plus flicker noise
model to form the covariance matrix for the least squares adjustment of secular trends and acquired
realistic uncertainties for the velocity estimates.

3. Strain Rate Calculation

Strain rate is independent of GPS reference frame, and provides a better way to characterize crustal
deformation and fault strain accumulation [27]. We employed an improved spherical wavelet method,
which can decompose total strain into various spatial scales compared to the method of Tape et al. [44],
to acquire multiscale strain rates for an irregular distribution of GPS stations. The spherical wavelet
theorem is evolved from infinite plane space to finite spherical space. The spherical wavelet basis function
is derived from their mother function by means of the translation and scaling. We employed the difference
of Gaussian (DOG) function to construct the wavelet basic function. The spatial distribution of the wavelet
basic function was heterogeneous due to the spatial irregularity of the GPS stations. Figure 3 shows the
shape of the normalized DOG wavelet basis function on different decomposition scales against the distance
between the observational point and the location of the wavelet base function.
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We determined the minimum decomposition scale 3 according to the radius of the study area.
The maximum decomposition scale was determined by the density of the cGPS stations. We obtained
the maximum decomposition scale by searching for the area with the smallest radius, which included
three cGPS stations, at the location of the wavelet basic function. The decomposition scales 6, 7,
and 8 correspond to spatial resolutions of 174.4, 87.2, and 43.6 km, respectively. Figure 4 displays
the distribution of spatial resolution; most of the area attained a spatial resolution of 87.2 km.
Therefore, we determined scales 3–7 as the decomposition scales to estimate the strain rates.
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When we constructed the spherical wavelet basic function at various scales, we were able to build
the relationship between the GPS-derived velocities and the coefficients of the wavelet basic function,
which can be written as

v(θ, ϕ) = ∑M
k=1

[
fkew ·gk(θ, ϕ)·θ̂ + fkns ·gk(θ, ϕ)·ϕ̂

]
(2)

where θ and ϕ are the colatitude and longitude of the specified GPS site, respectively, θ̂ is the unit vector
of the north component and ϕ̂ is the unit vector of the east component, v(θ, ϕ) is the observational
velocity vector of the GPS site at (θ, ϕ), M is the total number of wavelet basis functions, gk(θ, ϕ) is the
k-th DOG wavelet basis function, and fkew and fkns are the k-th estimated parameters on the east and
north components, respectively. As the DOG wavelet basis functions are derived from the translation
and scaling of their mother functions, they are non-orthogonal, which results in rank deficiency for the
coefficient matrix of the normal equation obtained from the observed equation. The Tikhonov criterion
was employed to balance residual and smoothness to address this issue. Figure 5 shows regularization
parameter curves in the fitting of the GPS observational velocities. The optimal regularization can be
obtained with the minimum value of the ordinary cross-validation (OCV) function for the north and
east components, respectively. Figure 6 displays the observed and modeled velocities with arrows
of different colors. Our spherical wavelet model reconciles the observed GPS velocities well: 86%
(50 of 58) of the residual velocity components are less than 1.0 mm/yr, indicating that our model can
effectively reconstruct observed velocities.
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The first derivatives are calculated for the wavelet basis functions, and the velocity gradient tensor
at a specified point can be expressed as


εθ

εθϕ

εϕ

εϕθ

 =


∂G(θ,ϕ)

∂θ 0
0

∂G(θ,ϕ)
∂ϕ

0

∂G(θ,ϕ)
∂θ

0
∂G(θ,ϕ)

∂ϕ

·
[

fns

few

]
(3)

where εθ , εθϕ, εϕ, and εϕθ are the components of the velocity gradient tensor, ∂G(θ,ϕ)
∂θ and ∂G(θ,ϕ)

∂ϕ

are first-order partial differentials of the wavelet basis functions in the north and east components,
respectively, fns and few are estimated parameters for the north and east components, respectively.
We constructed a uniform grid and used the wavelet basic function to calculate the two-dimensional
velocity gradient tensor. The strain rate tensor and rotation rate tensor at a specified site can be
obtained with the velocity gradient tensor. The strain rate tensor can be further used to calculate
various strain components, such as second invariant, principal strain, dilatation, and maximum shear
strain [45].

4. GPS-Derived Three-Dimensional Velocities

The ITRF2014 velocity solution, accounting for annual periodical signal, semi-annual periodical
signal, offsets, and time-correlated noise contents, was derived through the combination of individual
daily solutions. In order to highlight crustal deformation, we transformed the ITRF2014-fixed velocity
field into a local reference frame by the Euler angular vector. We defined the Ordos-fixed reference
frame through the Euler angular vector from five stations (YANC, QYSC, QYTQ, QYNX, and SNXY)
over the interior of the ORB. The estimated angular rotation rate of the ORB relative to ITRF2014 was
0.3980 ± 0.0319◦/Myr (Million year), with a pole at 77.4059 ± 0.7839◦N and 179.6720 ± 1.5001◦W.
To validate the applicability of the estimated Euler angular parameters, we performed a comparison
between the predicted velocities and the observed velocities. The mean discrepancy between the two
was 0.9 mm/yr, which is on the same level as the uncertainties in the GPS velocities. The station
velocities and their uncertainties, both relative to the ITRF2014 and to the Ordos-fixed reference frame
(Table S1), are listed in the supplementary materials.

The lateral expansion in the northeastern Tibetan Plateau was obstructed by the ORB, resulting in
large-scale crustal shortening, as can be seen from the velocity field shown in Figure 6. The pattern
and magnitude of our velocities are in general agreement with previous results derived from both
campaign-mode and cGPS stations [18]. However, our cGPS station profile across the LPSF provided
a higher resolution kinematic pattern. The determined horizontal movement on the northeastern
margin of the Tibetan Plateau was about 8.8 ± 0.7 mm/yr in the northeastern direction, which was
an average from three stations in the southwestern corner (stations QHMQ, GSMA, and QHTR).
The magnitude of the horizontal movement gradually decreased to 3.2 ± 0.6 mm/yr with an azimuth
of 38◦ at station GSDX which was located at the center of the LXB and far away from the boundary
faults. Furthermore, the closer to the LPS the GPS stations were, the smaller their velocities were.
This indicates that the deformation was localized near the LPS because of the resistance of the relatively
stable ORB [10]. From the LXB to the ALB, the magnitude of velocities decreased significantly, and the
direction of velocities changed from northeast to north, indicating that the two boundary faults (the
HYF and the XTJSF) are both presently active.

The vertical movement at most GPS sites was characterized by uplift, except for several sites
which were situated on localized sedimentation layer (Figure 7). The average uplift rate (relative to
the ITRF2014 reference frame) was 1.6 mm/yr in the northeastern Tibetan Plateau. Using the leveling
data which have been observed repeatedly between 1970 and 2012, Li et al. [18] estimated the vertical
motion in the northeastern Tibetan Plateau with a maximum uplift rate of 7.0 mm/yr. Using the same
data as Li et al. [18], we obtained the average uplift rate of 3.7 mm/yr in this area. The discrepancy
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between our GPS and leveling results was about 2.0 mm/yr, which may be attributed partly to the
different time spans of observation. The change in vertical velocities across the HYF and the NWQF
was small, while significant change was observed across the LPS. The two faults were both dominated
by lateral slip, which generated horizontal crustal movement. However the latter was dominated by
extrusion slip, which generated deformation horizontally and vertically [46]. There were a few stations
in the ALB, showing small but consistent uplift which is insignificant relative to their uncertainties.
The vertical movements in the Qinling Block (QLB) were quite diffuse, indicating a heterogeneous
tectonic deformation pattern. The vertical movements of the LXB was characterized by uplift, with an
average rate of 1.0 ± 0.9 mm/yr, and a gradual increase from northwest to southeast. Although the
average rate was insignificant relative to its uncertainty, the uniform uplift feature at the majority of
GPS stations can be observed at the interior of LXB. Five stations in the ORB were uplifting, with an
average rate of 2.0 ± 1.1 mm/yr and a maximum rate of 3.7 ± 1.5 mm/yr, which is a larger than that
of LXB.
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To qualitatively analyze the deformation process from the LXB to the ORB, we incorporated
our velocities with the campaign-mode GPS velocities of Ye et al. [47], which adopted the same data
processing strategy with this study and the observational period being 1999–2017. We took a velocity
profile to identify the change of velocities (Figure 8). A noticeable velocity decrease from northwest to
southeast interior of the LXB was identified on the horizontal component. We estimated a reduced
velocity of 5.3 ± 0.7 mm/yr within the range of 200 km west of the LPSF. However, no significant
differential motions were identified in the ORB. This deformation pattern across the LPS is similar
with that observed across the LMSF before the 2008 Wenchuan MS 8.0 earthquake [48,49].
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Figure 8. GPS-derived velocity profile across the Liupanshan Fault (LPSF). The rectangle in the upper
right inset map shows the location of the profile. GPS-derived velocities within the rectangle were used
to form the velocity profile.

5. GPS-Derived Strain Rates

By performing a multiscale spherical wavelet strain calculation, we obtained a two-dimensional
strain rate tensor and rotation rate tensor. Dilatation rate is the first invariant of the strain tensor,
which is equal to the sum of the maximum and minimum strain rate vectors, and is independent of
coordinate system, indicating the areal change of the tiny deformation unit. The formula of the second
invariant is

√
e2

ee + e2
nn + 2e2

ne, which reflects the magnitude of total strain rates. Maximum shear
strain rate is equal to the difference between the maximum and minimum strain rate and is related to
regional tectonic shear deformation. By these strain rate components, we can determine comprehensive
horizontal surface deformation. The rotation rate is the antisymmetric part of the velocity gradient
tensor, representing the rotation feature of the very small deformation unit.

Figure 9 shows the second invariant and corresponding uncertainties. The maximum magnitude
of the uncertainties is about 8 nstrain/yr (10−9/year), much smaller than the second invariant at the
significant strain partitioning area. The remarkable strain rates were located in the main fault zone
and tectonic transformation area. In the intersection area between the HYF and Lenglongling Fault
(LLLF), a wide region of strain rates were obtained with a maximum magnitude of about 45 nstrain/yr.
Along the XKF, located at the intersection region between the HYF and LPSF, localized strain rates were
obtained with a magnitude of about 50 nstrain/yr. Along the NWQF and the EKF, significant strain
rates were also obtained with various magnitudes. Additionally, a large strain rate (about 70 nstrain/yr)
was obtained in the Weihe Basin (WHB), possibly due to the shortening between stations SNHX and
XIAA. However, these two stations are undergoing significant subsidence, which may have affected
the estimation of the horizontal velocities.
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Figure 9. Principal strain rates and magnitudes of the second invariant (a) and the uncertainties of
the second invariant (b). For the principal strain rates, red and blue arrows show extension and
compression, respectively.

The principal strain rates showed a wide range of crustal deformation behaviors in the
northeastern margin of the Tibetan Plateau (Figure 10). Across the HYF, XTJSF, and LPSF, the magnitude
of the strain rate vectors gradually decreased, and tended to zero in the ALB and the ORB. Li et al. [18]
also obtained negligible strain at the interior of the ALB and the ORB using combined cGPS and
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campaign-mode observation on the period of 1999–2017. The HYF and LPSF, as the main boundary
faults in this region, played an important role in the adjustment of the strain distribution [6].
Several great earthquakes have occurred along these two boundary faults, including the 1622 Guyuan
MS 7.0 earthquake and the 1920 Haiyuan MS 8.6 earthquake.
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Figure 10. Principal strain rates and magnitudes of the dilatational strain rates. For the principal strain
rates, red and blue arrows show extension and compression, respectively. For dilatation rates, red is
positive and blue is negative.

The determined orientation of the principal strain rates along the HYF is consistent with the
pattern of pure strike–slip fault [46], the axes of the strain rates being oriented close to 45◦ to the
fault trace, and even swinging around to maintain that angle as the fault zone changes strike [46].
However, the magnitudes of the strain rates decrease from west to east. Along the XKF, the magnitude
of extension reduces to about 40 nstrain/yr, and the azimuth of extension is different from that of other
segments of the HYF. Along the LPSF, the magnitude of shortening was small, indicating insignificant
strain accumulation near the fault and significant strain accumulation in a large area, quite similar to
what was observed in the LMSF before the 2008 Wenchuan earthquake [48,49].

Significant positive dilatation (about 60 nstrain/yr) was observed around the LXBJF, with the direction
of extension being perpendicular to the fault trace. This indicates that the effective slipping from the
four faults of the fault is a mixture of normal faulting and strike–slip faulting. Using geological data and
earthquake focal mechanism solutions, Li. et al. [17] concluded that the late Quaternary activity of the
QSMZF is left-lateral with normal component, with a strike–slip rate of about 0.5–1.0 mm/yr. In the LXB,
the negative dilatation was the first-order feature, while a positive dilatation belt with a north-northeast
direction was mapped in the central part of LXB. The Zhuanglanghe–Maxianshan Fault (ZLMXF) is the
main active fault in this positive dilatation belt. The Zhuanglanghe Fault (ZLHF) is dominated by thrust
slipping at a rate of 3.9 mm/yr as estimated from previous GPS observations [50]. Strain rates are diffuse
in the QLB, indicating a complicated pattern of regional tectonic deformation.
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Large shear strain rates were obtained at the location of large second invariant (Figure 11).
Along the HYF, the magnitude of the shear rates was varied, indicating spatial differences in the slip
rates and the locking depth [19,20]. Based on a elastic model, the inversion result from geodetic data
showed that on the western part of the HYF, from the Tuolaishan segment (TLS) to the Laohushan
segment (LHS), the locking depth of the fault was 15 km, while on the eastern segment the locking
depth was shallower, at about 5 km [19,20].
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A significant clockwise rotation can be observed around the Dingxi (Figure 12). In this area,
we observed a clockwise rotation of 5–7◦/Myr, which was in agreement with the result of Li et al. [18].
Paleomagnetic data [51] indicated a significant clockwise rotation of 20–30◦/Myr near Lanzhou.
Our estimates of rotation rates based on cGPS data show that this region was still undergoing a
clockwise rotation. However, the magnitude of this rotation was smaller by a factor of four compared
to the paleomagnetically-determined rotation. Along the HYF, we observed an anticlockwise rotation
belt with an average rate of 10 nradians/yr. If we used the absolute value of the rotation rate to map the
magnitude which was adopted by Li et al. [18], we can obtain the similar results with them, indicating
that our rotation rate along the Haiyuan fault agreed with the result of Li et al. [18].
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6. Discussion

6.1. Strain Buildup at Various Spatial Scales

GPS strain rate estimated by multiscale spherical wavelet approach can be decomposed into
different spatial scales which is dominated by scales of structures. We decomposed total strain rates
into scales 3–6 and scale 7, as shown in Figure 13. At scales 3–6, several areas with significant strain
accumulation can be identified. A distinct strain rate belt can be observed along the XLLBF at scale
7. This indicates that strain rate, along the HYF, NWQF, and EKF, was significant at the large spatial
scale. However, the strain rate was spatially localized along the XLLBF. According to the seismicity
and tectonic deformation near the XLLBF, Du et al. [52] concluded this belt has a high probability for a
future earthquake with the magnitude of 7.0. The spatially localized strain suggested a high seismic
probability along the XLLBF.
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6.2. Strain Partitioning at Different Fault Activity Styles

On the northeastern margin of the Tibetan Plateau, except for several main faults, there were numerous
strike and thrust faults, indicating complicated historical tectonic deformation. Geodetic data from GPS and
InSAR has shown that the left-lateral slip gradually decreased from west to east across the Haiyuan Fault,
transformed to shortening on the Liupanshan Fault, and led to multiple thrust fold belts and secondary
strike faults [53]. The heterogeneous distribution on space is related to the active styles of the faults.
The pattern of strain rates was consistent with present-day geological structures.
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6.3. Decoupling between Uplift of the Ordos Block and Horizontal Extrusion on the Northeastern
Tibetan Plateau

GPS-derived horizontal velocities revealed that there was a large area of crustal shortening
deformation on the northeastern margin of the Tibetan Plateau, while the shortening was insignificant
from the LPS to the ORB. Due to the limited distribution of GPS stations, we cannot precisely delineate
the specific boundary of the deformation. However, we can confirm that the LPS was at the forefront
of the deformation zone, and the ORB was quite stable with no relative deformation at its interior.
The structures of the LPS area were characterized by numerous active thrust and strike–slip faults that
suggest thin-skinned deformation there [8,16].

A deep seismic reflection line across the Tibet–Ordos transition zone revealed a complex crustal
structure underlying the transition zone and adjacent areas [14]. The thrust deformation on the
northeastern margin of the Tibetan Plateau appeared to stop just east of the Xiaoguanshan Fault
(XGSF), marking the easternmost edge of the strata [16], indicating that the XGSF is at the frontier of
the thrust deformation of the Tibetan Plateau (Figure 14). The overall movement of the ORB on the
eastern side of the XGSF was decoupled with the deformation mode of the Tibetan Plateau.
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Figure 14. Schematic sketch of the geological setting across LXB to ORB modified from Guo
et al. [8]. LPS denotes Liupanshan mountains, XGS denotes Xiaoguanshan mountains, JNF denotes
Jingning Fault, WLPSF denotes the west fringe fault of the Liupanshan mountains, and XGSF denotes
Xiaoguanshan Fault.

According to previous results of tectonic model across the LPSF [2,54], we could assume that
the northeastern part of the Tibetan Plateau should have a larger uplift rate compared with the ORB.
However, our results indicated an inconsistent pattern. The first-order vertical crustal deformation is
characterized by uplift in the northeastern margin of the Tibetan Plateau. The LXB is uplifting at an average
rate of 1.0 mm/yr, while the ORB is uplifting at a rate of 2.0 mm/yr, indicating that the lateral expansion
of the Tibetan Plateau had insignificant effect on the uplift pattern of the stable ORB. The vertical crustal
deformation derived from GPS observations in NCB (except for the North China Plain area but along the
Yanshan and Taihangshan orogenic belts) was characterized by uplift with a rate of 2.0–3.0 mm/yr, similar
to the value obtained for the ORB. Therefore, we can infer that the uplift pattern of the ORB was coupled
with the NCB but decoupled with the deformation of the northeastern Tibetan Plateau. The similarity of
the stratigraphic sequence present in the ORB to that of the rest of the larger NCB indicated that the entire
region has undergone a common depositional and tectonic evolution [16].

7. Conclusions

Using GPS data from 58 cGPS stations over the period of 2010–2018, we presented an updated
three-dimensional velocity field on the northeastern margin of the Tibetan Plateau and its surrounding
areas. We employed a color noise model to represent the statistical characteristic of coordinate time
series, and solved for reasonable velocity uncertainties. We adopted an improved spherical wavelet
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algorithm to estimate multiscale strain rates and rotation rates and analyzed the characteristic of strain
accumulation. Some conclusions can be drawn as follows:

The GPS-derived velocities showed a noticeable decrease in magnitude and a change in orientation
from the southwestern QLB to the western edge of LPS. The total velocity decrease from the northwest
to southeast in the LXB, on the horizontal component, was 5.3 mm/yr within the range of 200 km west
of the LPSF. The direction and magnitude of the velocities are diffuse near the boundary of the LPSF.
The tectonic deformation and localized strain buildup, together with seismicity jointly imply a high
probability for a potential large earthquake at this belt.

The vertical crustal deformation was characterized by uplift in the northeastern margin of the
Tibetan Plateau. The LXB and the ORB are both uplifting, with rates of 1.0 and 2.0 mm/yr, respectively.
With the new GPS observations, we derived a more rapid uplift rate of the ORB compared to the LXB,
refuting the detached structural model of the northeastern margin of the Tibetan Plateau.

Multiscale components of strain rate tensor show a complex deformation pattern on the
northeastern margin of Tibet Plateau. Positive dilation was observed around the LXBJF. A significant
clockwise rotation was obtained around the Dingxi. The HYF and LPSF played an important role
in controlling regional strain partitioning. The distribution of the principal strain rates along the
HYF is in agreement with the pattern of strike–slip faults. However, along the LPSF, the direction
of principal strain rates is in disorder, indicating that the LPSF is undergoing complicated activities.
Strain partitioning demonstrated various spatial scales in different regions, such as a wide range strain
near the LLLF and a localized strain near the XKF. The strain rate was spatially localized along the
XLLBF. The tectonic deformation and localized strain buildup together with seismicity imply a high
probability for a potential large earthquake at this belt.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/1/34/
s1, Table S1: Three dimensional GPS velocities in ITRF2014 reference frame and horizontal GPS velocities in
Ordos-fixed reference (in mm/yr) together with associated one-sigma uncertainties that have been estimated by
using a combined noise model of white plus flicker noise. Figure S1: the position time series of 58 cGPS stations
relative to ITRF 2014 reference frame.
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