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Abstract: A full-polarized facet based scattering model (FPFSM) for investigating the electromagnetic
(EM) scattering by two-dimensional electrically large sea surfaces with high efficiency at high
microwave bands is proposed. For this method, the scattering field over a large sea facet in a diffuse
scattering region is numerically deduced according to the Bragg scattering mechanism. In regard
to near specular directions, a novel approach is proposed to calculate the scattered field from a sea
surface based on the second order small slope approximation (SSA-II), which saves computer memory
considerably and is able to analyze the EM scattering by electrically large sea surfaces. The feasibility
of this method in evaluating the radar returns from the sea surface is proved by comparing the
normalized radar cross sections (NRCS) and the Doppler spectrum with the SSA-II. Then NRCS
results in monostatic and bistatic configurations under different polarization states, scattering angles
and wind speeds are analyzed as well as the Doppler spectrum at Ka-band. Numerical results show
that the FPFSM is a reliable and efficient method to analyze the full-polarized scattering characteristics
from electrically large sea surface within a wide frequency range.
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1. Introduction

Full-polarized echoes from a sea’s surface include more abundant information than
single-polarized ones [1–4]. Thus, the study of the full-polarized scattering characteristics from
sea surfaces is of great value and will be of benefit in the detection and recognition of targets in a
maritime environment.

The electromagnetic (EM) scattering by a rough sea surface has been carefully studied for a long
time [5–22], and many methods have been proposed. Generally, due to the electrically large size of
the sea surface at microwave bands, analytical approximation methods are widely employed, such as
the Kirchhoff approximation (KA), the small perturbation method (SPM) [8], the two-scale model
(TSM) [6] and the small-slope approximation (SSA) [9]. All of these methods have some limitations.
The KA is only valid for sea surfaces with small values for the ratio of wavelength to curvature radius.
Based on KA, a faceted approach is proposed in Reference [17] to simulate the bistatic returns from
the ocean surface which works well in a quasi-specular regime. As for the SPM, it is only valid for
surfaces with small values for the ratio of roughness to the incident wavelength. Based on the theory
of composite surface, the famous TSM is presented to deal with the scattering by rough sea surfaces.
However, the TSM mainly suffers from the problem of how to distinguish between gravity waves and
capillary waves. Based on the idea of TSM, several extended methods [18–21] have been proposed
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according to the Bragg scattering mechanism. In References [18,19], the Bragg-scattering is used to
explain most features of sea surface backscatter at moderate incident angles. The non-Bragg component
of backscatter is also considered at higher incident angles. In Franceschetti et al. [20], the synthetic
aperture radar (SAR) echoes from the sea surface at moderate incidence angles are simulated based on
the Bragg-scattering mechanism. Then a facet-based method is derived in Li et al. [21], which works
well at small to moderate incident angles because different scattering mechanisms are considered.
However, if only Bragg scattering is used, it can only be applied at moderate incident angles. Unlike the
TSM, the SSA is a unifying theory that is able to deal with small roughness as well as large curvatures.
Moreover, it has a wider application range [9]. However, the SSA method requires that the sampling
interval of rough surfaces must be less than one-eighth of the incident wavelength. Thus, it suffers
from the problem of heavy consumption of computer memory. Based on the SSA, some efforts have
been made to reduce the computational complexity. In Guérin et al. [23], the high-frequency limit of the
second order SSA (SSA-II) is proposed, and it is able to calculate the co-polarized scattering coefficient
at high microwave bands efficiently in both monostatic and bistatic configurations. Then in Guérin
et al. [1], a simplified formulation for rough surface cross-polarized backscattering radar cross sections
(RCS) was proposed, which makes a significant contribution. In Voronovich et al. [24], a theoretical
model to predicate the scattering from sea surface at Ku and C bands is proposed based on the sea
spectrum, which has good accuracy when compared with measured data. Then the simplified forms
for the first three terms in the SSA series for incoherent scattering from a Gaussian correlation function
surface were presented in Gilbert et al. [25]. All these studies mainly focus on the prediction of the
scattering coefficient from rough surfaces.

Nowadays, with the development of high-resolution radar, the averaged RCS results are not
enough to address remote sensing problems. Faced with this problem, this paper proposed the
full-polarized facet based scattering model (FPFSM), which is not only able to give the averaged RCS
results but also able to give the full-polarized plural scattered field including amplitude and phase
information. As for this method, the scattered field from a large sea facet in diffuse scattering directions
was numerically calculated according to the Bragg scattering mechanism. Then in the near specular
direction, a different way based on SSA-II is proposed to calculate the scattered field, which saves
memory consumption to a large extent and makes it possible to analyze the full-polarized scattering by
electrically large sea surfaces. In conclusion, the main contribution is that we proposed a facet-based
method to investigate the EM scattering characteristic of electrically large sea surfaces. This method
works well from L-band to Ka-band and also has good accuracy, much higher computational efficiency,
and much lower memory consumption compared with the original SSA-II method. In addition,
it is able to give the plural scattering field information (i.e., containing both amplitude and phase
information) of each facet, which means it can be further applied to analyze the scattering from targets
over sea surfaces and to the high-resolution of SAR imaging simulators.

2. Description of FPFSM

2.1. Near Specular Reflection Direction

In this section, the method to predict the scattered field in near specular reflection directions is
proposed based on the SSA-II. Assuming that the incident wave vector and the scattering wave vector
are respectively ki = kixx̂ + kiyŷ− q0ẑ and ks = ksxx̂ + ksyŷ + q1ẑ, then the scattering amplitude (SA)
is [9]

SPQ(k, k0) =
2
√

q1q0
q1+q0

∫ dr
4π2 exp[−j(k− k0) · r + j(q1 + q0)h(r)]

×
[
BPQ(k, k0)− j

4

∫
MPQ(k, k0; ξ)h(ξ) exp(jξ · r)dξ

] (1)

where PQ= HH, VV, HV, VH represents the polarization mode, k0 = kixx̂ + kiyŷ and k = ksxx̂ + ksyŷ
are the horizontal projections of the incident wave vector ki and the scattered wave vector ks,
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respectively; ξ = (ξx, ξy), ξx, ξy are the wavenumbers along x and y directions; h(ξ) is the Fourier
transform of the sea surface height h(r) with the expression

h(ξ) = a(ξ) exp
(
−jωξ t

)
+ a∗(ξ) exp

(
jωξ t

)
(2)

where a(ξ) is the complex amplitude of the wave, which is related to the ocean spectrum; ωξ is the
gravity–capillarity dispersion relationship. The expressions for B(k, k0) at different polarization modes
are [9,24]

BVV(k, k0) =
ε− 1

(εq1 + q2)(εq01 + q02)

(
q2q02

k · k0

kk0
− εkk0

)
(3)

BVH(k, k0) =
ε− 1

(εq1 + q2)(q01 + q02)
kiq2

N · (k× k0)

kk0
(4)

BHV(k, k0) =
ε− 1

(q1 + q2)(εq01 + q02)
kiq02

N · (k× k0)

kk0
(5)

BHH(k, k0) = −
ε− 1

(q1 + q2)(q01 + q02)
k2

i
k · k0

kk0
(6)

where ε is the dielectric constant of sea water, which can be calculated with the method in Klein
et al. [26]; q1 =

√
k2

i − k2
0, q01 =

√
k2

i − k2 are the vertical components of the incident waves in the air

and sea water, respectively and q2 =
√

εk2
i − k2

0, q02 =
√

εk2
i − k2 are the vertical components of the

scattered waves in the air and the sea water, respectively; k = |k|, k0 = |k0|, N = (0, 0, 1) is the unit
vertical vector. Then, the expression of MPQ(k, k0; ξ) is

MPQ(k, k0; ξ) = B2,PQ(k, k0; k− ξ) + B2,PQ(k, k0; k0 + ξ) + 2(q0 + q1)BPQ(k, k0) (7)

the expressions for B2,PQ are [9,24]

B2,VV(k, k0; ξ) = ε−1
(εq1+q2)(εq01+q02)

{
−2 ε−1

εqξ1+qξ2

(
q2q02

k·ξ
k

ξ·k0
k0

+ εkk0|ξ|2
)

+ 2ε
qξ1+qξ2

(εqξ1+qξ2)

(
k0q2

k·ξ
k + kq02

ξ·k0
k0

)
−
[
εk2

i (q2 + q02) + 2q2q02
(
qξ1 − qξ2

)] k·k0
kk0

} (8)

B2,VH(k, k0; ξ) = (ε−1)ki
(εq1+q2)(q01+q02)

{
−2 ε−1

εqξ1+qξ2
q2

k·ξ
k

N·(ξ×k0)
k0

+ 2ε
qξ1+qξ2

(εqξ1+qξ2)
k N·(ξ×k0)

k0

−
[
εk2

i + q2q02 + 2q2
(
qξ1 − qξ2

)]N·(k×k0)
kk0

} (9)

B2,HV(k, k0; ξ) = (ε−1)ki
(q1+q2)(εq01+q02)

{
2 ε−1

εqξ1+qξ2
q02

k0·ξ
k0

N·(ξ×k)
k

− 2ε
qξ1+qξ2

(εqξ1+qξ2)
k0

N·(ξ×k)
k

−
[
εk2

i + q2q02 + 2q02
(
qξ1 − qξ2

)]N·(k×k0)
kk0

} (10)

B2,HH(k, k0; ξ) = (ε−1)
(q1+q2)(q01+q02)

k2
i

{
−2 ε−1

εqξ1+qξ2

(
k·ξ
k

ξ·k0
k0
− ε2 k·k0

kk0

)
+
[
q2 + q02 + 2

(
qξ1 − qξ2

)] k·k0
kk0

} (11)

where qξ1 =
√

k2
i − |ξ|

2, qξ2 =
√

εk2
i − |ξ|

2. Note that the imaginary parts of q1, q01 q2, q02, qξ1, qξ2 are
all non-negative.

In fact, when generating a sea surface with M × N intervals, h(ξ) should be generated first,
then the two-dimensional (2D) inverse fast Fourier transformation (IFFT) is applied to generate
the sea height. For the SSA-II, the whole sea surface of interest is generally generated with an
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interval less than one-eighth of the incident wavelength, which requires very large computer memory
availability at higher microwave bands. On the other hand, the second order scattering term∫
M(k, k0; ξ)h(ξ) exp(jξ · r)dξ enhances the computational complexity even further.

As for the near specular direction, large-scale waves are the main contribution to the scattering
field [27–29]. Thus, an approximated h′(ξ) is used to replace h(ξ), and the relationship between them is

h′(ξ) =

{
0 if |ξ| > kcut

h(ξ) else.
(12)

where kcut is the cut-off wave number. Based on the analyses above, when analysing the scattering
from a sea surface in near nadir direction, the surface can be generated by applying 2D IFFT to h′(ξ).
In this process, according to Equation (12), the 2D matrix h′(ξ) has the following form, i.e.,

h′(ξ) =



0 0 · · · 0 0

0 0
... 0 0

0 0 A 0 0

0 0
... 0 0

0 0 · · · 0 0


(13)

where A is the matrix that contains the non-zero elements of h′(ξ) with the size of M1 × N1. Then the
2D IFFT of h′(ξ) can be obtained by Equation (14)

F 2[h′(ξ)] = F col



0
...
B
...
0


(14)

where B = F row
[

0 0 A 0 0
]
; F 2,F row,F col represent the 2D IFFT, the 1D IFFT along row

and column directions, respectively. The consumed memory for the F row operation is O(M1 · N).
Then for the F col operation, the consumed memory can be as small as O(M). Thus, the proposed
method decreases the consumed memory significantly compared with the original 2D IFFT operation,
of which the consumed memory is O(M · N). That is to say, the proposed method has the ability
to generate the electrically large sea surface. Then in regards to the calculation of the second order
scattered field in Equation (2), a similar method can be used to replace the 2D IFFT operation.

With the method above, the normalized radar cross sections (NRCS) results in near
specular directions are calculated by the proposed method with different cut-off wavenumbers
kcut = k/3, k/4, k/5 and are compared with that calculated by the original SSA-II in Figure 1. Here,
k is the incident wavenumber. In this simulation, M = N = 1024, the wind speed is 5 m/s, the incident
frequency is 1 GHz. One can observe that the error increases with incident angles, i.e., the contribution
to the total scattered field from small-scale waves increases with a larger incident angle. In addition,
good agreement is shown within a wider numerical range of incident angles when a larger cut-off
wavenumber is employed. If we imagine that it is infinite, the simplification effect will disappear
and the method will be the same as the original SSA-II. Moreover, by comparing Figure 1a–c, it is
observed that with the same cut-off wavenumber, good agreement is shown within a wider numerical
range of incident angles for co-polarized modes. Thus, we can conclude that for a fixed incident angle,
the cross-polarized scattered field comes from many more wave components than the co-polarized
scattered field. Moreover, from these comparisons, we can observe that kcut = k/3 is appropriate
because it works well in both co-polarization and cross-polarization modes in near specular directions.
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In fact, a larger cut-off wavenumber will work better; however, the consumed memory increases
simultaneously. Thus, considering the calculation accuracy and memory consumption, kcut = k/3
is selected.
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Figure 1. Comparison of normalized radar cross sections (NRCS) results between the proposed
method and the original second order small slope approximation (SSA-II) method under monostatic
configuration in near specular direction. (a) horizontal-transmit-horizontal-receive (HH) polarization;
(b) vertical-transmit-vertical-receive (VV) polarization; (c) vertical-transmit-horizontal-receive
(HV) polarization.

Then in Figure 2, the bistatic NRCS results calculated by the proposed method in near specular
directions are compared with that calculated by the original SSA-II as well. The sampling numbers,
the wind speed and direction, and the radar parameters are the same as Figure 1. The cut-off
wavenumber is selected as k/3. The incident angle is θi = 40◦, the azimuth angle is ϕi = 0◦,
the scattering azimuth angle is ϕs = 0◦ and the scattering angle θs varies from −80◦ to 80◦,
and particularly, θs = θi is the specular direction and θs = −θi is the backward scattering direction.
The definition of the angles is shown in Figure 3, and for such a coordinate, the relation between k̂i, k̂s

and the four angles are

k̂i = x̂ sin θi cos φi + ŷ sin θi sin φi − ẑ cos θi

k̂s = x̂ sin θs cos φs + ŷ sin θs sin φs + ẑ cos θs
(15)
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Figure 2. Comparison of NRCS results between the proposed method and the original SSA-II method
under bistatic configuration in the near specular regime.
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From the comparison result in Figures 1 and 2, it is obvious that the method shown in this section
has a good agreement with the original SSA-II in near specular directions. This good agreement
also proves that even for cross-polarizations, the scattered field from the large-scale waves is the
main contribution to the total field in near specular directions. Moreover, considering the method
in this subsection, it significantly saves computer memory compared with the original SSA-II. Thus,
the proposed method makes it possible to analyze the scattered field from very electrically-large rough
sea surfaces on personal computers.
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2.2. Diffuse Scattering Region

In the off-nadir region, first order Bragg scattering is the main contribution to the co-polarized
scattered field [18–20]. However, both the tilt modulation and the second order Bragg scattering
contribute to the depolarization. Even though the second order Bragg scattering mechanism
contributed to the cross-polarization scattering field, there was only about a 2~4 dB difference if
it is neglected when u10 < 15 m/s [2]. Thus, for the sake of computational efficiency, the two-scale
model is modified with the first order Bragg scattering mechanism and the tilt modulation effect.
In this way, both the effects of tilting modulation and local small-scale capillary waves are taken into
consideration, which is reasonable [30].

In the following, the right-handed global and local coordinate systems are adopted and shown in
Figure 3. For global one, the z-axis points vertically upward and the x̂Oŷ plane lies on the mean sea
level plane. The local coordinate system is O′ − x̂′ŷ′n̂. O′ and n̂ are the center and the normal vector of
a sea facet, respectively. Then based on Fuks’ formula, the scattered field from an arbitrary facet can be
written as [31,32]

Es
PQ = Ei k2 exp(jkR)

πR
F̃P,Q

x

∆Sl

ζ(r) exp(−jq⊥ · r)dr (16)

where Ei is the incident wave, ζ(r) is the small-scale capillary wave riding on the tilt facet at position r;
F̃PQ is the polarization factors which is related to the relative dielectric constant ε of sea water and
Fresnel reflection coefficients; P = H, V and Q = H, V are the polarization of incident and scattered
waves, respectively; q⊥ is the projection of the q = k(ks − ki) on the tilted plane, and k is the wave
number of electromagnetic wave.

It was generally accepted that the main contribution of these types of short waves (tilted by the
large-scale profiles) to the microwave radar return depends on the Bragg resonant mechanism between
the EM waves and sea surface components of Bragg wavelength [33,34]. Thus, it is reasonable to
suppose that only the ripples traveling along the line of the incident-scatter vector q are visible to the
radar sensor. Then, the high-frequency microstructure of each facet can be represented by a single
cosinoidal ripple that has the Bragg resonant wavelength, as

ζ(r) = B(κ) cos[κ · (r− r0)] (17)
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where r0 is the center of the large facet, B(κ) =
√

2πS(κ) represents the amplitude of the short
waves, wherein S(κ) is the anisotropy capillary spectrum located in the higher part of the sea spectrum.
The direction of κ is the same with q⊥ and its amplitude can be obtained based on the Bragg wavelength
λb = λ/sin θq, wherein λ is the incident wavelength, θq is the angle between q and the normal vector
n̂ of the facet. In addition, in Figure 3, κx and κy are the projections of the Bragg wave vector κ along
the x̂′ and ŷ′ directions, respectively. Then the integration term in Equation (16) over a tilt facet is

s
∆Sl

ζ(r) exp(−jq⊥ · r)dr

= exp(−jq⊥ · r0) ·
∫ δx/2
−δx/2

∫ δy/2
−δy/2 B(κ) cos(κxx′ + κyy′) · exp[−j(q1x′ + q2y′)]dx′dy′

(18)

where (x′, y′) is the local coordinate of a point r on the tilt facet referring to its center; q1, q2 are the

projections of q⊥ along x̂′ and ŷ′ directions, respectively; δx =
√

1 + z2
x∆x, δy =

√
1 + z2

y∆y, ∆x and
∆y are the sampling intervals of the sea surface along x and y directions in the x̂oŷ plane, respectively,
and zx and zy are the slopes of the tilt facet along x and y directions, respectively. The integration in
Equation (18) can be further simplified as

B(κ)
2
[
sin c[(κx − q1)δx/2]sin c

[(
κy − q2

)
δy/2

]
+ sin c[(κx + q1)δx/2]sin c

[(
κy + q2

)
δy/2

]] (19)

Up to now, the scattered field from a facet is numerically derived based on the Bragg scattering
mechanism and it can be calculated with Equations (16), (18), and (19), which depend on the slopes of
the facet and the wind speed, wind direction, and the radar configuration. In addition, the capillary
wave tilted by the large-scale gravity waves are assumed as cosinoidal ripples with specific Bragg
resonant wavelength, thus, the sea surface can be generated with an interval of ∆x = ∆y = γλ(γ > 1),
which greatly decreases memory consumption and enhances the computational efficiency. It needs to
be noted that this method can only be employed in diffuse scattering directions.

2.3. The Complete Full-Polarized Facet Based Scattering Model

Then for a sea surface generated with an interval of λ/8, which is mentioned as sea-1, the total
scattered field can be calculated with the method in Section 2.1 by summing the vector field from
different small facets. Then, we can also obtain a sea surface with an interval of γλ(γ > 1) on the basis
of sea-1, and this one is named as sea-2. Assuming two matrixes η1 and η2 represent the height of sea-1
and sea-2, respectively. Then the relationship between them is

η2

(
1 :

M
8γ

, 1 :
N
8γ

)
= η1(1 : 8γ : M, 1 : 8γ : N) (20)

where γ is an integer, M, N are the sampling points of sea-1 along x and y directions. Then the scattered
field from sea-2 can be calculated with the method in Section 2.2. Up to now, the total field from a sea
surface can be obtained by the summation of the fields from all the facets on the sea surface,

Es
PQ = Esea-1 + Esea-2 (21)

Esea-1 =
M,N

∑
i=1,j=1

√
16π3qq0Sij (22)

Esea-2 =
M/8γ,N/8γ

∑
i=1,j=1

Eij
PQ (23)
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Finally, the NRCS σFPFSM can be obtained by

σFPFSM =
4πR2

As

[
Es

PQEs
PQ
∗
]

(24)

where As is the area of the sea surface. In fact, Esea-1 can be regarded as 0 in diffuse specular
directions, which means that in most radar configurations, Esea-1 is no longer needs to be calculated
and computational efficiency will be greatly enhanced by only calculating Esea-2.

3. Performance of Full-Polarized Facet Based Scattering Model

In this section, the validity of the proposed FPFSM is verified by comparing the NRCS results
calculated by the proposed method and the original SSA-II for different radar configurations,
incident frequencies, and polarizations. It should be noted that for low grazing angles, the shading
effect and the existence of irregular waves (such as breaking waves) have an effect on the NRCS
results. The proposed method does not consider these effects because the main purpose of this
paper is not to solve the problems at low grazing angles but to propose a facet-based method to
investigate the full-polarized EM scattering characteristic of electrically large sea surfaces efficiently.
Therefore, the numerical range of the incident angle is 0◦ to 80◦ in monostatic configuration, and the
scattering angle varies from −80◦ to 80◦ in bistatic configuration. In addition, the calculation time
and the memory consumption are also compared to show the higher efficiency and much lower
memory consumption of FPFSM. Furthermore, the Doppler spectrum results are also shown to further
demonstrate its good performance.

3.1. Normalized Radar Cross Section Results for Different Wave Bands

In this paper, the two-dimensional sea surfaces are all generated using the Elfouhaily spectrum [35]
accompanied by Longuet-Higgins’ directional function [36]. First, Figure 4a–c shows the averaged
NRCS results calculated by FPFSM with different samples. The tapered incident wave [37] is employed,
and the tapering parameter is selected as L/4 with L the dimension of the sea surface, the incident
frequency is 1 GHz. The size of the sea surface is 40 m× 40 m, the wind speed is u10 = 5 m/s at 10 m
height above the mean sea level in the upwind direction, and the Elfouhaily spectrum as a function of
wavenumber for such a wind speed is shown in Figure 4d. It can be observed that the NRCS results
from one sample show obvious differences with the averaged results, and the averaged NRCS results
tend to be stable for a fixed incident angle with the increasing samples. Thus, the averaged NRCS
results from 50 samples are used in this paper to do the comparison with the SSA-II method.
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Figure 4. The NRCS results calculated by full-polarized facet based scattering model (FPFSM) with
different samples for u10 = 5 m/s and the Elfouhaily spectrum as a function of the wavenumber.
(a) NRCS results at HH polarization mode; (b) NRCS results at VV polarization mode; (c) NRCS results
at HV and horizontal-transmit-vertical-receive (VH) polarization modes; (d) Elfouhaily spectrum.

Then, Figures 5–7 illustrate the comparisons of NRCS results that calculated by FPFSM and SSA-II
at ultra high frequency (UHF) band (300 MHz), L-band (1 GHz), and C-band (8 GHz) for monostatic
and bistatic configurations, and the NRCS results are averaged over 50 samples of sea surfaces. The size
of the sea surface is 40 m× 40 m, the wind speed is u10 = 5 m/s in upwind direction. Then in Figure 8,
the NRCS results for higher wind speeds (u10 = 8 m/s, 10 m/s) are calculated and compared with the
SSA-II as well. The good agreement of the results calculated by the two methods indicates that the
good performance of the proposed method.

Moreover, the NRCS results as a function of incident angle at C band are calculated with FPFSM
and SSA-II and are compared with real SAR data in Figure 6a. The real SAR data are obtained with
the CMOD-5 model [38] for horizontal-transmit–horizontal-receive (HH) polarization mode. Then,
one can calculate the vertical-transmit–vertical -receive (VV) polarized results based on the polarization
ratio [39]. As for cross-polarized case, the real SAR data are calculated with the cross-polarization
geophysical model function for C-band radar backscattering [40]. From the simulated results, we can
observe that the co-polarized NRCS results calculated by the FPFSM and the SSA-II agree well with
the measured data. However, a discrepancy occurs of about 2~5 dB for the cross-polarization mode.
The obvious difference appears in other researches as well the reason for which is the measurement of
cross-polarized radar return from the ocean surface is always a challenge due to the weakness of this
component [41].

On the other hand, the computation time for calculating the NRCS results in Figures 5–7 with
one sample of sea surface by the two methods with an angle interval of 1◦ are shown in Table 1.
These results are calculated by central processing unit (CPU) under the configuration: Intel(R) Core(TM)
i5-760@3.3 GHz. The comparison of the computation time indicates higher computing efficiency
of FPFSM compared with SSA-II. In addition, the comparison of the peak memory consumption
is given in Table 2. Noting that the memory consumption is the same in monostatic and bistatic
configurations for a fixed frequency and surface size, we only show the comparison in monostatic
configuration. In addition, for the FPFSM, the detailed implementation methods are not the same for
different scattering directions, thus, the consumed memory of FPFSM in the near specular reflection
direction and diffuse scattering direction are shown separately. The comparison result indicates that
the proposed method saves a significant memory when analysing the scattering characteristic from sea
surfaces, which means it is able to be applied to super electrically large sea surfaces.
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Moreover, the mean and the maximum errors between the FPFSM and the SSA-II are shown in
Table 3 to quantify the goodness of fit between the two methods. The mean error and the maximum
error are defined as

∆mean = E[|σFPFSM(dB)− σSSA−II(dB)|], ∆max = max[|σFPFSM(dB)− σSSA−II(dB)|] (25)

where σSSA−II is the NRCS results calculated with SSA-II. It is shown that the maximum errors are
about 2~3 dB and mean errors are only about 1 dB, which indicates the good performance of FPFSM.

Table 1. Comparison of the time consumption (unit: seconds) between FPFSM and SSA-II.

Models Figure 5a Figure 5b Figure 6a Figure 6b Figure 7a Figure 7b

FPFSM 3.27 8.36 9.14 16.73 1902.65 3653.43
SSA-II 14.64 32.54 164.35 317.32 18,934.26 37,246.19

Table 2. Comparison of the peak memory consumption (unit: Mb) between FPFSM and SSA-II.

Models Figure 5a Figure 6a Figure 7a

FPFSM (Near specular reflection direction) 23.2 58.9 4129.3
FPFSM (Diffuse scattering direction) 2.7 3.9 167.6

SSA-II 49.3 514.6 31,527.8

Table 3. Mean errors and maximum errors (unit: dB) between FPFSM and SSA-II.

Models Figure 5a Figure 5b Figure 6a Figure 6b Figure 7a Figure 7b

Mean error

HH 1.34 1.51 1.45 1.22 1.19 0.99
VV 1.10 1.49 1.12 1.02 0.84 0.92
HV 1.20 1.23 1.26 1.45 0.71 1.93
VH 1.20 1.19 1.26 1.72 0.71 1.54

Maximum error

HH 2.88 2.81 2.73 2.45 2.53 2.71
VV 2.53 2.85 2.25 1.93 2.46 2.44
HV 2.84 2.69 2.12 2.97 2.38 2.78
VH 2.84 2. 87 2.12 3.06 2.38 2.89
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Figure 5. Comparison of the NRCS results calculated by FPFSM and SSA-II at ultra high frequency
(UHF) band. (a) Monostatic configuration; (b) Forward–backward configuration.



Remote Sens. 2019, 11, 75 11 of 18

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 18 

 

where SSA-II   is the NRCS results calculated with SSA-II. It is shown that the maximum errors are 
about 2~3 dB and mean errors are only about 1 dB, which indicates the good performance of FPFSM. 

Table 1. Comparison of the time consumption (unit: seconds) between FPFSM and SSA-II. 

Models Figure 5a Figure 5b Figure 6a Figure 6b Figure 7a Figure 7b 
FPFSM 3.27 8.36 9.14 16.73 1902.65 3653.43 
SSA-II 14.64 32.54 164.35 317.32 18,934.26 37,246.19 

Table 2. Comparison of the peak memory consumption (unit: Mb) between FPFSM and SSA-II. 

Models Figure 5a Figure 6a Figure 7a 
FPFSM (Near specular reflection direction) 23.2 58.9 4129.3 

FPFSM (Diffuse scattering direction) 2.7 3.9 167.6 
SSA-II 49.3 514.6 31,527.8 

Table 3. Mean errors and maximum errors (unit: dB) between FPFSM and SSA-II. 

Models Figure 5a Figure 5b Figure 6a Figure 6b Figure 7a Figure 7b 

Mean error 

HH 1.34 1.51 1.45 1.22 1.19 0.99 
VV 1.10 1.49 1.12 1.02 0.84 0.92 
HV 1.20 1.23 1.26 1.45 0.71 1.93 
VH 1.20 1.19 1.26 1.72 0.71 1.54 

Maximum error 

HH 2.88 2.81 2.73 2.45 2.53 2.71 
VV 2.53 2.85 2.25 1.93 2.46 2.44 
HV 2.84 2.69 2.12 2.97 2.38 2.78 
VH 2.84 2. 87 2.12 3.06 2.38 2.89 

  
Figure 5. Comparison of the NRCS results calculated by FPFSM and SSA-II at ultra high frequency 
(UHF) band. (a) Monostatic configuration; (b) Forward–backward configuration. 

  
Figure 6. Comparison of the NRCS results calculated by FPFSM and SSA-II at L-band. (a) Monostatic 
configuration; (b) Forward–backward configuration. 

0 10 20 30 40 50 60 70 80
-80

-60

-40

-20

0

20

SSA-II : 
 HH  VV  HV&VH

FPFSM: 
 HH  VV  HV&VH

N
RC

S 
(d

B)

Incident angle (o)

(a)

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

FPFSM:
 HH  VV
 HV  VH

SSA-II: 
 HH  VV
 HV  VH

N
RC

S 
(d

B)

Scattering angle (o)

(b)

0 10 20 30 40 50 60 70 80

-60

-40

-20

0

20

SSA-II :  HH  VV  HV&VH
FPFSM:  HH  VV  HV&VH

N
RC

S 
(d

B)

Incident angle (o)

(a)

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

FPFSM:
 HH  VV 
 HV  VH

SSA-II: 
 HH  VV
 HV  VH

N
RC

S 
(d

B)

Scattering angle (o)

(b)

Figure 6. Comparison of the NRCS results calculated by FPFSM and SSA-II at L-band. (a) Monostatic
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where  s
PQ tE  is the scattered field calculated with Equation (21) at time t, the angular bracket   

means the average from different samples of sea surfaces, T is the total evolution time for a time-
varying sea surface. 

Figure 9 illustrates the normalized Doppler spectrum averaged over 100 samples of sea surfaces 
for different polarizations and incident angles. In the simulation, the wind speed is 5 m/s in the 
upwind direction, the time step is set as 0.025 s and the total evolution time is 3.2 s. The size of the 
sea surface is 50 m 50 m . The frequency of the incident wave is 1 GHz. As indicated in Figure 8, one 
can observe the good performance of the proposed method on investigating the Doppler spectrum 
for different radar configurations and polarizations. 
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Figure 7. Comparison of the NRCS results calculated by FPFSM, SSA-II and real SAR data at C-band.
(a) Monostatic configuration; (b) Forward–backward configuration.
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Figure 8. Comparison of the NRCS results calculated by FPFSM and SSA-II at L-band with different
wind speeds. (a) The wind speed is 8 m/s; (b) The wind speed is 10 m/s.

3.2. Comparison of Doppler Spectrum

Apart from the NRCS results, the Doppler spectrum of the sea surface is also of great value to
obtain the sea condition information. The Doppler effect is due to the change in frequency of a wave
in relation to an observer who is moving relative to the wave source. In regards to the ocean surface,
it is caused by the change of the sea surface velocity projected along the line-of-sight of the radar.
As two parameters of the Doppler spectrum, the Doppler shift reflects the line-of-sight velocity of the
scatterers weighted by their contribution to the backscattered power [42], and the bandwidth of the
Doppler spectrum is determined by the variance of the velocity distribution of the scattering facets at
the sea surface [43]. In this subsection, the proposed method is used to analyze the Doppler spectrum
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of the time-varying sea surface at L-band with a standard spectral estimation technique [44,45]. It can
be given as

SDoppler =

〈
1
T

∣∣∣∣∣∣
T∫

0

Es
PQ(t) exp(j2π f t)dt

∣∣∣∣∣∣
2〉

(26)

where Es
PQ(t) is the scattered field calculated with Equation (21) at time t, the angular bracket 〈·〉means

the average from different samples of sea surfaces, T is the total evolution time for a time-varying
sea surface.

Figure 9 illustrates the normalized Doppler spectrum averaged over 100 samples of sea surfaces
for different polarizations and incident angles. In the simulation, the wind speed is 5 m/s in the
upwind direction, the time step is set as 0.025 s and the total evolution time is 3.2 s. The size of the sea
surface is 50 m× 50 m. The frequency of the incident wave is 1 GHz. As indicated in Figure 8, one can
observe the good performance of the proposed method on investigating the Doppler spectrum for
different radar configurations and polarizations.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 9. Comparison of Doppler spectrum results calculated by FPFSM and SSA-II at L-band for
different incident angles and polarizations.

4. Analyses of Electromagnetic Scattering Characteristics at Ka-Band

In this section, the FPFSM is further applied to Ka-band (30 GHz). The NRCS results and the
Doppler spectrums from sea surfaces at Ka-band are calculated and analyzed by the proposed method.

4.1. Normalized Radar Cross Section under Monostatic Configuration

Firstly, the backscattered NRCS results calculated by the FPFSM are given in Figure 10. The
size of the sea surface and the wind speed is the same as that in Section 3.1. At Ka-band, the SSA-II
is difficult to implement due to the very large requirement for computer memory. Thus, for the
comparison, the co-polarized results calculated with FPFSM are compared with those generated by the
first order small slope approximation (SSA-I) with the spectral decomposition method [46], and the
cross-polarized results are compared with the data in Guérin et al. [1]. From Figure 10, it can be
observed that the two models are in good agreement, which indicates the good performance of FPFSM
in evaluating the radar returns from the sea surface at higher microwave bands.
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Figure 10. Performance of the FPFSM at Ka-band.

4.2. Normalized Radar Cross Section under Bistatic Configuration

Furthermore, the NRCS results at Ka-band under forward–backward configuration is shown in
Figure 11a. Here, the incident angle is θi = 40◦, and the scattering angle θs varies from −80◦ to 80◦.
Specifically, in this configuration, one can observe that the maximum energy is received around the
specular direction for co-polarized cases, which is a logical result. However, for cross-polarized results,
the maximum value does not appear in the specular direction. In addition, unlike the backscattering
configuration, the NRCS results for vertical-transmit-horizontal-receive (HV) polarization are not
exactly the same as the horizontal-transmit-vertical-receive (VH) polarized results except for the
specular direction.

Furthermore, the NRCS results in fully bistatic configurations at Ka-band are investigated as well.
Figure 11b,c gives the NRCS with the incident direction θi = 40o, ϕi = 0o and the scattering direction:
(b) θs = −800 ∼ 800, ϕs = 45o; (c) θs = −800 ∼ 800, ϕs = 135o. It is interesting to find that the
discrepancy between the VH and HV polarizations became wider in these configurations. In addition,
the levels of cross-polarized NRCS are larger than the co-polarized NRCS in the plane of ϕs = 45o,
and the VV-polarized NRCS is the minimum. However, in the plane of ϕs = 135o, the behavior is
the opposite. The behaviors of the aforementioned curves show a very good trend with conclusions
drawn in other relevant papers [47,48].
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Figure 11. Bistatic NRCS evaluated by FPFSM on the variation of scattering angles.
(a) θi = θs, ϕi = 0◦, ϕs = 180◦; (b) θi = 40◦, ϕi = 0◦, ϕs = 45◦; (c) θi = 40◦, ϕi = 0◦, ϕs = 135◦.
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4.3. Normalized Radar Cross Section Dependence on Wind Speed

When referenced to 2D surfaces, it is of great interest to discuss the dependence of NRCS
on the wind speed. In Figure 12, NRCS results which vary with wind speed are shown under
forward–backward configuration at Ka-band. From Figure 12, several items of importance may be
deduced. First, the maximum of energy for co-polarizations is received around the specular direction,
which is a logic statement. Second, the magnitude of NRCS for cross-polarizations increases with
the increase in wind speed. However, when it comes to the co-polarization modes, the scattering
coefficient decreases with wind speed around the specular direction, whereas it increases with wind
speed when the scattering direction is away from the specular direction.
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Figure 12. Variation of Bistatic NRCS with wind speeds evaluated by FPFSM for different polarization
states. (a) HH and HV polarizations. (b) VV and VH polarizations.

4.4. Doppler Spectrum of Time-Evolving Sea Surfaces

In this part, Doppler spectrum characteristics at Ka-band is analyzed with the standard spectral
estimation technique. In the following simulations, the normalized Doppler spectrum are averaged
from 100 samples of sea surfaces with the size of 50 m× 50 m, and the wind speed of 5 m/s. The time
step is set as 0.002 s and the total evolution time is 2.048 s.

Figure 13 compares the Doppler spectrum for up-wind direction with different incident angles.
As indicated in Figure 12, it is observed that at moderate incident angles, the Doppler spectrum
becomes wider compared with a lower incident angle. However, the variation of Doppler central
frequency is not very obvious. In addition, the Doppler spectrum at Ka-band for different wind
directions and polarizations are shown in Figure 14. In fact, researches have reported that there are
two peaks in the cross-wind direction [5,7,31], which can be attributed to the fact that both the waves
moving toward and away from the radar can be detected. However, the two peaks aliased to one peak
due to the broader shape of the spectrum for Ka-band.
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Figure 13. Comparison of Doppler spectrum at Ka-band for different incident angles and polarizations.
(a) HH polarization; (b) VV polarization; (c) HV polarization.



Remote Sens. 2019, 11, 75 15 of 18

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 18 

 

4.4. Doppler Spectrum of Time-Evolving Sea Surfaces 

In this part, Doppler spectrum characteristics at Ka-band is analyzed with the standard spectral 
estimation technique. In the following simulations, the normalized Doppler spectrum are averaged 
from 100 samples of sea surfaces with the size of 50 m 50 m , and the wind speed of 5 m/s. The time 
step is set as 0.002 s and the total evolution time is 2.048 s. 

Figure 13 compares the Doppler spectrum for up-wind direction with different incident angles. 
As indicated in Figure 12, it is observed that at moderate incident angles, the Doppler spectrum 
becomes wider compared with a lower incident angle. However, the variation of Doppler central 
frequency is not very obvious. In addition, the Doppler spectrum at Ka-band for different wind 
directions and polarizations are shown in Figure 14. In fact, researches have reported that there are 
two peaks in the cross-wind direction [5,7,31], which can be attributed to the fact that both the waves 
moving toward and away from the radar can be detected. However, the two peaks aliased to one 
peak due to the broader shape of the spectrum for Ka-band. 

Figure 15 illustrates the comparison of Doppler spectrum for different polarizations. When the 
incident angle is 40 , it is observed that the Doppler shift at HH polarization mode is larger than 
that at VV polarization mode, and the Doppler shifts at cross polarization modes are the smallest. As 
for the Doppler width, the discrepancy caused by polarizations are relatively small. For the incident 
angle of 60 , the difference of Doppler width between HH and VV polarizations are obvious. 
However, there is almost no difference for the Doppler spectrum between VV and cross polarizations. 
That is to say for large incident angles, both the Doppler central frequency and the width are close 
for VV and HV polarizations. 

 

 
Figure 13. Comparison of Doppler spectrum at Ka-band for different incident angles and 
polarizations. (a) HH polarization; (b) VV polarization; (c) HV polarization. 

 

 

-500 -400 -300 -200 -100 0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
op

pl
er

 sp
ec

tru
m

Doppler frequency (Hz)

(a) HH-pol, Up-wind
 Incident angle:40o

 Incident angle:60o

-500 -400 -300 -200 -100 0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
op

pl
er

 sp
ec

tru
m

Doppler frequency (Hz)

(b) VV-pol, Upwind
 Incident angle:40o

 Incident angle:60o

 

-500 -400 -300 -200 -100 0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
op

pl
er

 sp
ec

tru
m

Doppler frequency (Hz)

(c) HV-pol, Upwind
 Incident angle:40o

 Incident angle:60o

-500 -400 -300 -200 -100 0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
op

pl
er

 sp
ec

tru
m

Doppler frequency (Hz)

(a) HH-pol
Incident angle: 40o

 Up-wind 
 Cross-wind

-500 -400 -300 -200 -100 0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
op

pl
er

 sp
ec

tru
m

Doppler frequency (Hz)

(b)VV-pol
Incident angle: 40o

 Up-wind 
 Cross-wind

 

-500 -400 -300 -200 -100 0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
op

pl
er

 sp
ec

tru
m

Doppler frequency (Hz)

(c) HV-pol
Incident angle: 40o

 Up-wind 
 Cross-wind

Figure 14. Comparison of Doppler spectrum at Ka-band for different wind directions and polarizations.
(a) HH polarization; (b) VV polarization; (c) HV polarization.

Figure 15 illustrates the comparison of Doppler spectrum for different polarizations. When the
incident angle is 40◦, it is observed that the Doppler shift at HH polarization mode is larger than that
at VV polarization mode, and the Doppler shifts at cross polarization modes are the smallest. As for
the Doppler width, the discrepancy caused by polarizations are relatively small. For the incident angle
of 60◦, the difference of Doppler width between HH and VV polarizations are obvious. However,
there is almost no difference for the Doppler spectrum between VV and cross polarizations. That is to
say for large incident angles, both the Doppler central frequency and the width are close for VV and
HV polarizations.
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(a) Incident angle 40◦; (b) Incident angle 60◦.

5. Conclusions

In this paper, FPFSM shows quite a good accuracy and computing efficiency in evaluating the
radar returns from the electrically large sea surface, and it works well in a wide range of frequencies.
In addition, the scattering characteristics from sea surface are predicted by FPFSM at Ka-band in bistatic
configurations as a function of scattering angle, polarization mode, and wind speed. One can draw
the following conclusions: (i) The maximum of energy is received around the specular direction
in the forward–backward configuration for co-polarizations, but it does not hold true for cross
polarizations. (ii) In cross polarization cases, the level of NRCS results increase with wind speed in
both specular and diffuse scattering directions, which is different in the co-polarized cases. (iii) As for
the Doppler spectrum, the results for different wave bands show similar characteristics in up-wind
and co-polarizations cases. However, for cross-wind direction, the Doppler spectrum has two peaks at
low wave bands but the two peaks aliased to one at Ka-band. All of the numerical results show the
good performance of the proposed method, and it can be further applied to analyze the scattering
from targets over sea surfaces and to the SAR imaging simulators, which will benefit the recognition
and detection of targets in a maritime environment.
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