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Abstract: Detailed vertical forest structure information can be remotely sensed by combining
technologies of unmanned aerial systems (UAS) and digital aerial photogrammetry (DAP). A key
limitation in the application of DAP methods, however, is the inability to produce accurate digital
elevation models (DEM) in areas of dense vegetation. This study investigates the terrain modeling
potential of UAS-DAP methods within a temperate conifer forest in British Columbia, Canada.
UAS-acquired images were photogrammetrically processed to produce high-resolution DAP point
clouds. To evaluate the terrain modeling ability of DAP, first, a sensitivity analysis was conducted to
estimate optimal parameters of three ground-point classification algorithms designed for airborne
laser scanning (ALS). Algorithms tested include progressive triangulated irregular network (TIN)
densification (PTD), hierarchical robust interpolation (HRI) and simple progressive morphological
filtering (SMRF). Points were classified as ground from the ALS and served as ground-truth data
to which UAS-DAP derived DEMs were compared. The proportion of area with root mean square
error (RMSE) <1.5 m were 56.5%, 51.6% and 52.3% for the PTD, HRI and SMRF methods respectively.
To assess the influence of terrain slope and canopy cover, error values of DAP-DEMs produced using
optimal parameters were compared to stratified classes of canopy cover and slope generated from
ALS point clouds. Results indicate that canopy cover was approximately three times more influential
on RMSE than terrain slope.

Keywords: unmanned aerial systems (UAS); Structure from Motion (SfM); point cloud classification;
digital elevation model (DEM)

1. Introduction

The emergence of three-dimensional remote sensing techniques such as aerial laser scanning (ALS)
and digital aerial photogrammetry (DAP) have the ability to provide detailed structural information in
the form of point clouds. Provided an adequate digital elevation model (DEM) can be extracted from
point clouds, analysis techniques such as individual tree crown detection (ITCD) [1–4] and area-based
analysis (ABA) [5–7] can be applied to estimate metrics related to forest structure. ABA metrics
generated from the normalized vertical distribution of point clouds can be used to describe complex
forest attributes such as timber volume, biomass and basal area from models established between
sample field measurements such as tree height and diameter at breast height (DBH). Similar ALS
derived structural metrics have also been shown to highlight various animal-habitat associations,
useful in implementing effective conservation strategies [8,9].
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Concurrent with the development of DAP analysis techniques has been the increased adoption of
camera-equipped unmanned aerial systems (UAS). Originally developed for military operations [10],
UASs have been rapidly adopted in a wide range of commercial markets. Recent adoption of
Lithium-Ion battery technologies in consumer UASs enable greater power to weight ratios and thus
flight duration and payload capacity [11]. In addition, the decreasing size, cost and increasing
resolution of consumer-grade cameras [10,12] have driven such rapid UAS expansion. Systems
specializing in quadcopter flight stability, previously restricted to military use, can now be paired
with flight planning software capable of maintaining above ground level (AGL) altitude or terrain
following [13]. By flying at lower altitudes than manned counterparts, UAS can capture imagery of
higher quality and spatial resolution while reducing dependency on cloud conditions [14]. Moreover,
the ease of deployment of UAS allow for frequent flights and therefore the ability to monitor
highly dynamic vegetation compared to conventional remote sensing platforms such as aircraft
and satellites [15,16].

The ability to provide continuous ground points under complex vegetated environments [17]
has facilitated the commercial adoption of ALS techniques to model terrain and thus assess forest
structure [18]. In contrast, the derivation of dense photogrammetric point clouds from aerial imagery
is a relatively newer technology [19–22]. Photogrammetry, based on principles of stereo-photography,
is the process of gathering 3-D structure from overlapping portions of adjacent two-dimensional
images [23]. The extraction of vertical structure relies on the identification of common objects, known
as tie-points, in overlapping images. Practical applications for aerial photogrammetry exist [24,25]
however, prior to modern digital cameras and advanced computing technology, the creation of
photogrammetric products relied on expert photogrammetrists in addition to a pre-existing network of
visible tie-points with known coordinates [26]. Automatic tie-point extraction is now possible with the
emergence of Structure from Motion (SfM) algorithms, facilitating a marked increase in image-based
3D data generation [27]. As a result, DAP approaches are increasingly being applied in natural resource
applications; however, detection of the ground using DAP has principally been limited to non-forested
landscapes, open forests with no understory, or plantations (Table 1).

Table 1. Recent studies utilizing digital aerial photogrammetry divided into forest structure and
ground detection.

Publication Year Aerial Platform Location Landcover Type Forest
Structure

Ground
Detection

[28] 2018 MA * Northern Alberta, Canada Mixedwood, Boreal
and Temperate

√

[29] 2018 UAS Edmundston, New
Brunswick, Canada Hardwood dominated

√

[30] 2017 UAS Otsu City, Shiga Prefecture, Japan Evergreen coniferous
√ √

[31] 2017 UAS Alcochete, Central Portugal Pinus pinea plantation
√ √

[32] 2017 MA Central Norway Temperate, coniferous
√

[33] 2016 UAS Central British
Columbia, Canada

Young coniferous
(<15 years since clearcut)

√

[34] 2016 UAS Central Belgium Pasture, arable fields
without crops

√

[35] 2016 UAS Edwards Plateau, Central
Texas, USA

Savannah, undulating
hills, evergreen

√ √

[36] 2015 MA Central Cambodia Evergreen, deciduous,
√

[37] 2014 UAS Southern Tasmania, Australia Landslide zone,
exposed soil, short grass

√

[38] 2013 Helium Blimp Central Texas, USA Bedrock
√

[39] 2012 UAS Southeast Tasmania, Australia Scattered shrubs, Coastal
marsh, erosion scarp

√

[40] 2012 UAS Southern Alps, France Landslide zone, bedrock,
exposed soil

√

[41] 2008 MA New Brunswick, Canada Boreal forest
√

[42] 2004 MA Southern Finland Temperate, coniferous
√

* Manned Aircraft.
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The analysis of 3D point cloud data typically involves the separation of bare-earth from vegetation
object components. This allows the point cloud to be normalized according to height above ground,
thus facilitating the measurement of three-dimensional forest metrics. This process will be referred
to herein as ground classification. The accuracy of such classification varies according to surface
variability [43,44]; therefore, a DEM generation workflow that accounts for these factors is necessary
to ensure accurate estimates of forest structure. Both DAP and ALS point clouds provide accurate,
continuous top-of-crown measurements however, the ability for DAP to describe forest structure
decreases with distance below the canopy surface. Furthermore, DAP is prone to producing voids in
the point cloud where trees found in matching photos may occlude each other [45]. The disparity of
bare-earth coverage between ALS and DAP generally increases with canopy height [5]. Nevertheless,
the low cost and increased repeatability of DAP relative to ALS, for stand-level applications,
shows significant potential [27,29]. Recent studies indicate that accurate DEM generation from the
unsupervised classification of DAP point clouds under open forest canopies is achievable [29,31,46,47].
For example Guerra-Hernández et al. [31] used 20 high precision GPS checkpoints and found RMSE of
0.046 m, 0.018 m and 0.033 m in the X, Y and Z directions respectively.

This study aims to (1) obtain terrain-modeling results typical of a low-cost UAS DAP acquisition in
a mountainous forest environment, (2) establish optimal parameters of three ground-point classification
algorithms, and (3) compare DAP terrain-modeling accuracies under various terrain slope and forest
cover conditions. In this paper, we first outline the physical characteristics of the study area chosen
for UAS DAP. Secondly, we present the DAP SfM point cloud processing chain and ground control
point (GCP) based method of point cloud georeferencing used in this study. This is followed by a
description of the ground-point filtering methods applied to UAS DAP point clouds, in addition to a
surface interpolation method employed to generate all DEMs. A sensitivity analysis of the ground
filtering methods is then described for the purpose of estimating optimal parameters. Accuracies of
the UAS DAP derived DEMs (DAP-DEM) are then evaluated against ground filtered ALS points using
root-mean-square error (RMSE) and the vertical residual distances (bias) across six stratified classes
of forest canopy cover and terrain slope. Lastly, the relative influence of terrain slope and canopy
cover on the DAP-DEM error are assessed using a random forest model. We conclude by proposing
operational guidelines on the use of DAP to detect the ground surfaces in forest situations.

2. Materials and Methods

This study was carried out in five steps: photogrammetric processing, georeferencing, ground
filter sensitivity analysis, forest structure and terrain stratification and performance evaluation. Figure 1
illustrates the conceptual workflow of the methodology. First, UAS images from three acquisitions were
processed to generate photogrammetric point clouds. The point clouds were then georeferenced using
GCPs followed by a systematic sensitivity analysis of three ground-point classification algorithms to
determine optimal parameters, resulting in a single ground classified point cloud for each algorithm.
Finally, performance evaluation was carried out to assess the accuracy of subsequently generated
DEMs under various terrain slope and forest cover classes.

2.1. Study Area

DAP-DEM evaluations were conducted in three study areas (Figure 2) located within the University
of British Columbia Alex Fraser Research Forest (AFRF) Gavin Lake Block, about 50 km northeast of
Williams Lake, British Columbia, Canada. The block transitions west to east from the Sub-boreal Spruce
(SBS) to the Interior Cedar Hemlock (ICH) biogeoclimatic ecosystem classification (BEC) zones. Forest
structure of the Gavin Lake block is a product of frequent wildfires and logging activity dating back
to the 1940’s [48]. The forest stands are dominated by coniferous with small patches of deciduous
species [49]. Tree species in decreasing abundance are Douglas-fir (Psuedotsuga menziesii var. glauca (56%)),
hybrid spruce (Picea glauca × engelmannii (15%)), western redcedar (Thuja plicata (10%)), lodgepole pine
(Pinus contorta (9%)), and trembling aspen (Populus tremuloides (6%)) [49]. The combined areas lie between
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700 m and 1250 m MSL with varying terrain slopes up to 68◦ and a mean slope of 16◦. In addition to
ALS data availability, sites were chosen to represent the variability of forest canopy density and terrain
complexity of British Columbia’s interior plateau physiographic region.
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Figure 1. Schematic workflow of DAP point cloud generation, ground filter sensitivity analysis and
DEM error assessment.

A number of non-contiguous wildfires affected sizeable portions of the AFRF Gavin Lake Block
with heterogeneous severity in the summer of 2017 prior to UAS data acquisition. As a result, portions
of the study areas consist of dead or dying trees along with scorched ground and tree stems. Where the
fire intensity was higher, any standing trees had reduced or completely removed foliage. These areas
are identifiable in Figure 2 as patches of dark grey and black, where a visual estimation of aggregated
burn area increases from area A to C. In order to quantify the proportional burned area within the
study areas, relative differenced Normalized Burn Ratio (RdNBR) was divided into low, moderate and
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high fire severity classes from Landsat TM/ETM+ imagery as per Soverel et al. [50]. The proportion of
fire severity classes across aggregated over the focus acquisitions was 28.9%, 14.5% and 5.4% for low,
moderate and high respectively.
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Figure 2. UAV acquired orthomosaics (a) of study areas A, B and C (i, ii, and iii) respectively with
overlaid GCP locations, study area northeast of Williams Lake, BC (b), an example photo of GCP
(0.7 m × 0.7 m) situated on steep slope in study area A (c), and subcanopy image taken at the northwest
corner of study area A (d). The coordinate system used throughout this study is X, Y: NAD83,
UTM Zone 10 N; and Z: NADV 88.

2.2. Image Acquisition

UAS DAP data acquisitions were conducted within the AFRF Gavin Lake block from
21 to 24 October 2017 using a DJI Phantom 4 quadcopter UAS equipped with a compact RGB digital
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camera. Each of the study areas (A, B and C) were flown on a single day with up to eight flights per area.
Weather conditions were predominantly clear sky with minimal cloud coverage. No precipitation
was observed during any acquisitions. The specifications of the phantom UAS along with employed
acquisition parameters are presented in Table 2.

Table 2. UAS specifications of the DJI Phantom 4 and parameters used for image acquisition.

System Specifications

Aircraft
Max Flight Time 28 min

Navigation GPS & GLONASS
GPS Positional Accuracy 0.5 m (z), 1.5 m (x,y)

Transmission Range 5 km

Camera
Sensor 1/2.3” CMOS

ISO Range 100–1600 (photo)
Electronic Shutter Speed 1/8000s

FOV 94◦

Aperture f/2.8
Image Size 4000 × 3000

Acquisition Parameters
Altitude ~100 m (AGL)

Terrain Following 30 m SRTM *
Image Overlap >75% Forward, >75% Lateral

Image Capture Interval 2.5 s
Write to Disk Speed 10 Mb/s

* Shuttle Radar Topography Mission.

2.3. Georeferencing

Point cloud data captured from aerial platforms can be either directly georeferenced with onboard
GPS systems or using a network of GCPs with precise 3D coordinates. In this study, 10 GCPs were
evenly distributed within each study site (Figure 2) resulting in an average density of 1 GCP per
13 ha. The location of each GCP was measured using autonomous DGPS techniques with the Ashtech
ProMark 120 by averaging one reading per second for five minutes. The Ashtech ProMark 120 is
capable of DGPS accuracy of <0.30 m + 1 ppm. One GCP in area A was discarded due to high vertical
RMS error reported by the GPS unit at the site. Images containing GCPs were identified, then GCP
tagged. The number of images containing GCPs varied across the sites and likely contributed to the
inaccuracy of the georefencing block adjustment in areas B and C compared to A. The RMS error of
GPS measurements and GCP image identification are presented in Table 3.

Table 3. Study area characteristics, horizontal and vertical RMS error (HRMS, VRMS) acquired from
the DGPS measurements of GCP points used for georeferencing of the DAP point cloud and GCP
image identification accuracies averaged per study site.

UAS Flight Area GPS GCP Image Identification Accuracy

Site Size (ha) Mean
GSD (cm) # of GCP Mean

HRMS (m)
Mean

VRMS (m)
# of Marked

Images
RMS Error

X (m)
RMS Error

Y (m)
RMS Error

Z (m)

A 131 4.69 9 1.382 1.964 204 0.088 0.082 0.114
B 116 4.88 10 1.662 2.874 101 0.483 0.724 2.507
C 123 4.97 10 0.617 0.882 105 1.026 2.309 3.320

2.4. Structure-from-Motion Point Cloud Processing

UAS images were compiled for point cloud generation using Pix4Dmapper Pro [51] software
for each study area separately. Images were first aligned and optimized using the on-board inertial
measurement unit (IMU) and GNSS/GPS followed by tie-point pixel identification within overlapping
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images. The number of calibrated images used was 2117, 1890 and 1882 for areas A, B and C respectively.
Settings employed for point cloud generation were default image scale and ‘optimal’ point density,
and the minimum number of images matches was set to 3. Average processing time for point cloud
generation between the three study areas was 5.1 h and the average point cloud density was 95
points per m2. Computing hardware used was RAM: 64GB (2400 MHz) and Core: i7-6950X (10 cores,
20 threads).

2.5. ALS Acquisition and Ground-Point Classification

ALS data was acquired over the Gavin Lake Block in 2008 at a point density of 4–6 points per m2

using 50% lateral overlap [52]. A 1 × 1 m resolution DEM was generated from the ground-classified
returns and used in height normalization necessary for deriving ALS canopy cover metrics. A 1 m × 1
m resolution terrain slope raster was also generated from the ALS DEM.

2.6. UAS DAP Ground-Point Classification

Ground classification routines can be broadly categorized into surface-based, morphology-based
and slope-based [53]. Surface-based algorithms can be further subdivided into progressive triangulated
irregular network densification (PTD) and interpolation-based algorithms [54–56]. We tested three
published, academically licensed or open-source ground-point selection methods, all designed
for ALS data. The leading two algorithms based on results from Sithole & Vosselman [57] are
tested in this study. They are PTD [58,59], followed by the Hierarchical Robust Interpolation (HRI)
algorithm [60]. The third method is the simple morphological filter (SMRF) [61], first proposed by
Kilian et al. [62] and later implemented by Zhang et al. [63]. The PTD and SMRF algorithms are
primarily designed for the ground classification of urban environments with a mix of natural and
man-made surface elements while the HRI method is designed for wooded areas [60].

The PTD algorithm [58,59] and its modifications for the improved handling of surface
discontinuities [64], first generates a sparse triangulated irregular network (TIN) based on seed points
(lowest points) within a gridded point cloud [59]. After seed points are established, the remaining
points are used to iteratively densify the initial TIN based on thresholds of normal distance and angle
to nearest facets and nodes respectively of the sparse TIN [59]. The PTD method has been shown to
produce better results when compared to other methods [54,65] and is implemented in the commercial
point cloud classification software, Terrascan (2016).

The HRI algorithm [60], is based on linear-least-squares and is designed for removing non-ground
ALS measurements of forested environments. The method begins by computing an equally weighted
surface (Zi) through z-values of all points, and is presumed to lie between the true bare-earth and
canopy top surfaces. Under the assumption that points with larger negative residuals with respect
to Zi are more likely to be true bare-earth points, residual based weights are computed. Zi is then
updated iteratively until the specified number of iterations is reached [60]. Upon each iteration, points
are assigned a weight value pi where points with residuals greater than g + w with respect to the
current ground surface estimation are assigned as object points. Parameters a, b, g and w of the HRI
method operate according to the following equation:

pi =


1
1

1+(a(vi−g)b)

0

vi ≤ g
g < vi ≤ g + w

g + w < vi

(1)

The SMRF is a computationally simplified method stemming from the proposed work of
Kilian et al. [62], previous implementation by Zhang et al. [63] and establishes a performance baseline
for the morphological filtering approach [61]. The algorithm consists of four steps and four required
parameters in addition to the 3D coordinates of points. The initial step is similar to that of the PTD
algorithm where lowest points within a gridded point cloud are isolated to generate an initial minimum
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surface, represented as a raster rather than a TIN. Algorithm parameters are the cell-size of the initial
minimum raster surface, a slope value that dictates bare-earth vs. object classification upon each
iteration, and minimum and maximum window radii controlling the opening operation. An additional
optional parameter, cut is dependent on provisional DEM slope calculations and operates under
the assumption that bare-earth vs. object distance thresholds should be more liberal in areas of
steeper slope.

2.7. DEM Generation

For the final DEM surface generation, the ALS and DAP ground points were converted to a TIN
surface, and a 1 m × 1 m raster DEM using memory efficient streaming TIN technology based on three
parallel processes [66].

2.8. Ground Classification Algorithm Sensitivity Analysis

All three examined ground classification methods require parameterization, with key parameters
likely to be different for DAP vs. ALS derived point clouds. Therefore, a sensitivity analysis was
conducted by varying key parameters to derive a single set of optimal parameters for each classification
method. Given the strong influence of terrain slope on the results of ground filtering [43,67], we
stratified the study area into three terrain slope classes; gentle (0–11◦), moderate (11–17◦) and high
(17–39◦) based on the ALS DEM. Three 1 × 1 ha samples were randomly placed within each slope
class and a 25 m buffer was incorporated around samples to eliminate edge artefacts during the TIN
based DEM generation. Next, a combination of parameter values (see Table 4) were utilized for each
algorithm at each sample. Step, cell and cell of the PTD, HRI and SMRF algorithms respectively serve as
the spatial resolution of the classification input area and were therefore varied from 1 to 25 m in 7 steps.
For the remaining parameters, default values from the original authors were used as the median of
the varied range. Parameters without default values were varied in equal steps. The cut parameter of
the SMRF method is a large structuring element designed for removing large continuous objects on
relatively flat terrain [61] and therefore was not varied and held at its default value of 0. As a result,
23,625, 45,927 and 25,515 unique runs were undertaken to produce DAP-DEMs for the PTD, HRI and
SMRF methods respectively.

Table 4. Chosen ALS ground-point classification methods tested on DAP point clouds and their
respective parameters and software implementations.

Publication Class Key Method Tested Parameters Software Implementation

[58,59] Surface PTD step-size, initial search intensity,
bulge, spike, ground offset LAStools

[60] Surface HRI cell-size, tolerance distance, a, b, g,
w, iterations FUSION

[61] Morphological SMRF
cell-size, cut-net size, elevation

scalar, slope, elevation threshold,
max window size

Point Data Abstraction
Library (PDAL)

2.9. Ground-Point Classification Algorithm Accuracy

The RMSE and the signed elevation differences, referred to as DEM bias, were calculated for
each sensitivity analysis iteration using the vertical residual between the DAP-DEM surfaces and ALS
ground points. RMSE was calculated according to the following equation:

RMSE =

√
∑n

i=1 ALSz − DAPDEMz

n
(2)

where ALSz is the elevation of ALS ground point and DAPDEMz is the elevation of the 1 m resolution
DAP-DEM raster surface and n is the number of ALS ground points. Anticipating that some runs
would yield DAP-DEMs with incomplete sample coverage, 99% of ALS ground points were required
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to overlap with the DAP-DEM to provide a valid RMSE. Then, for each 1 ha sample, RMSE values
within the first percentile were extracted and compiled where the mode value of each parameter was
designated as the optimal parameter for each method.

2.10. DEM Accuracy under Various Forest Cover and Terrain Slope

Once optimum values were found for each method, the resulting DEMs and their RMSE with
respect to ALS ground points were compared to canopy cover and terrain slope classes computed in
25 m × 25 m cells. Terrain slope and canopy cover classes were defined using a single stratification
across the three study areas from clipped ALS point clouds and 1 m resolution ALS derived DEMs.
Overlaying a 25 m × 25 m grid, each cell was assigned a mean terrain slope and canopy cover value.
Traditionally, canopy cover has been defined as fraction of points above breast height (1.3 m) [68] or 2
m [69]. However, an increased height threshold of 6 m was chosen due to the relative abundance of tall
stands (>20 m) across all study areas to ensure representation of all canopy cover classes. Six classes
of each terrain slope and canopy cover were defined across the study areas at the 25 m × 25 m cell
level. The best performing classification method was defined by the greatest proportional area of the
DAP-DEM which yielded an RMSE < 1.5 m. Finally, a random forests regression tree algorithm was
used to model RMSE in order to estimate the relative influence of terrain slope and canopy cover.

2.11. Software

The PTD algorithm and DEM generation were conducted using LAStools [70]. The SMRF and
HRI were implemented using open-source tools from the Point Data Abstraction Library (PDAL)
and FUSION respectively. Data processing and error analyses were scripted using Python 3.6 and R
statistical software (3.4.2). The lidR package [71] was used to load point cloud data in R.

3. Results

3.1. Ground-Classification Algorithm Sensitivity Analysis

The frequency and spatial distribution of terrain slope and canopy cover over the study areas are
shown in Figures 3 and 4 respectively. Proportion of valid DAP-DEMs generated during the sensitivity
analysis were 99.9%, 94.9% and 91.8% for the PTD, HRI and SMRF methods respectively. Figure 5
shows a subset of the ground classification algorithm sensitivity analysis results averaged across the
nine stratified samples. The ALS vs. DAP RMSE is plotted against the parameter value ranges listed
in Table 5. In order to isolate a given parameter’s relative influence on RMSE, each parameter was
varied across its range while the remaining parameters were held constant at the mean of their range.
For example, the step parameter curve of the PTD method shown in Figure 5 represents algorithm runs
where step was employed with values 1, 5, 9, 13, 17, 21, and 25 m with bulge of 1.1 m, offset of 1.1 m,
spike of 1.1 m and ‘fine’ intensity.

The PTD step parameter had the greatest range in RMSE of any method-parameter combination,
indicating its susceptibility to erroneous point classification. RMSE steadily decreased with increasing
values of the step parameter while the offset, intensity and bulge parameters, in decreasing order, had a
relatively smaller inverse effect on RMSE. The spike parameter, designed to remove localized positive
vertical spikes in the estimated ground surface, had little to no effect on RMSE. The cell parameter
of the HRI method influenced RMSE similar to that of PTD’s step parameter; however, it reached a
minimum RMSE using cell of 17 m. Increasing the number of iterations, represented by the iteration
parameter, had a relatively smaller effect of reducing RMSE. The tolerance parameter yielded lower
RMSE when set to the minimum tested value of 0.1 m. For the SMRF method, RMSE decreased most
from a cell value of 1 m to 5 m and continued to decrease until a minimum was reached at a cell value
of 17 m similar to the HRI method, while the remaining parameters show very little effect on RMSE.
Optimal parameters for each tested classification method were found by isolating the first percentile of
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RMSE values for each method and are presented in Table 6. For all methods, default parameter values
were not found in any of the optimal parameter sets.
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Figure 5. Sensitivity analysis results of ALS ground points vs. DAP DEM surface elevations using
ground classification methods PTD (a,d,g,j); HRI (b,e,h,k); and SMRF (c,f,i,l). Varied parameter ranges
are combined in a relative scale.

Table 5. Ground classification algorithms, parameter descriptions and values used for testing on 1 ha
stratified samples.

Method Parameter Description Values

PTD

step initial grid resolution for assigning TIN seed points (m) 1, 5, 9, 13, 17, 21, 25 *
intensity initial ground point search intensity coarse, fine, hyper-fine

bulge positive height coarse TIN surface can bulge during refinement (m) 0.1, 0.6, 1.1, 1.6, 2.1
spike height threshold to remove localized positive vertical spikes (m) 0.1, 0.6, 1.1, 1.6, 2.1
offset positive vertical offset from ground estimate to include points (m) 0.1, 0.6, 1.1, 0.6, 2.1
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Table 5. Cont.

Method Parameter Description Values

HRI

cell cell-size used for intermediate surface models (m) 1, 5, 9, 13, 17, 21, 25
g

see Equation (1).

−2.2, −2.0 *, −1.8
w 2.25, 2.5 *, 2.75
a 0.9, 1.0 *, 1.1
b 3.6, 4.0 *, 4.4

tolerance vertical tolerance for final classification of ground points 0.1, 1.1, 2.1
iterations number of iterations for classification logic 3, 5 *, 7

SMRF

cell grid cell resolution of ground point search (m) 1, 5, 9, 13, 17, 21, 25
slope slope threshold to exclude adjacent ground points (%) 0.05, 0.10, 0.15 *, 0.20, 0.25
scalar scaling value to be multiplied by slope of provisional DEM 0.75, 1.00, 1.25 *, 1.50, 1.75

threshold vertical distance from provisional DEM to include points (m) 0.1, 0.5 *, 0.9
window max search radius for including points in the provisional DEM (m) 10, 14, 18 *, 22, 26

cut spacing of minimum values used for removing large objects (m) 0 *

* algorithm default value.

Table 6. Optimal parameters found for each ground-classification algorithm tested.

Method Parameter Optimal Value

PTD

step 21
intensity coarse

bulge 0.1
spike 0.1
offset 0.1

HRI

cell 17
g −2.2
w 2.25
a 1.1
b 4.4

tolerance 0.1
iterations 7

SMRF

cell 21
slope 0.05
scalar 0.75

threshold 0.1
window 22

cut 0

3.2. DEM Accuracy under Various Forest Cover and Terrain Slopes

Figures 6 and 7 show the spatial distribution of DEM RMSE and DEM bias respectively across the
three study areas. Figure 8 shows the distribution of RMSE across the six stratified classes of terrain
slope and forest cover for each study area. Proportion of 25 m × 25 m cells with RMSE < 1.5 m was
56.5, 51.6 and 52.3% for the PTD, HRI and SMRF methods respectively, therefore based on this criteria,
PTD was found to be the best performing method. Mean canopy cover for these areas was 67, 68 and
68% for the PTD, HRI and SMRF methods respectively. A random forest model of RMSE using optimal
parameters of the PTD method found the relative importance of canopy cover to be approximately
three times that of terrain slope.
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cover class 1 was not represented in area B an is denoted by the white square.

4. Discussion

This study examined the achievable terrain-modeling accuracy of a low-cost UAS DAP data
acquisition. Optimal parameters of three ground classification algorithms, designed for ALS point
clouds, were determined using a sensitivity analysis and the variation in terrain-modeling accuracy
was analyzed across local terrain slope and forest cover conditions.

Optimal parameter values for each method differed from the default algorithm values indicating
that forested environments, in particular, the combined ICH and SBS BEC zones, require a unique set
of parameter values to produce the most accurate DAP-DEM possible. The step, cell and cell parameters
of the PTD, HRI and SMRF methods respectively had the greatest influence on DEM RMSE as for they
specify the two-dimensional footprint of the initial search for ground points. Given the many ground
classification algorithms that employ this fundamental step [53,58–61,63], the agreement between
optimal step, cell and cell values of ~20 m indicate an initial search resolution likely appropriate for
conifer stands of the ICH and SBS BEC zones.

Following the sensitivity analysis, errors of the DAP-DEMs generated employing optimal
parameters were compared to stratified classes of terrain slope and canopy cover derived from
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ALS point clouds. The relative importance of canopy cover was found to be approximately three
times that of terrain slope when using optimal parameters of the best performing PTD classification
method. We found that 57% of the terrain was modeled with an RMSE < 1.5 m. With this, assuming a
mean tree height of 15 m, DEM error may contribute an error of 10% or less. Similar to this study’s
findings, Iizuka et al. [30] generated terrain models within a forested environment from a UAS DAP
point cloud and found normalized tree heights to be estimated with a minimum RMSE of 1.712 m.
Similarly, Guerra-Hernández et al. [47] estimated tree heights with an RMSE of 1.82 m using a UAS
DAP point cloud normalized by an ALS DEM. As another comparison, Goodbody et al. [29] were
able to produce DAP derived ground models within low cover deciduous forests where the mean
error reported was 0.01 m with a standard deviation of 0.14 m. While the results show a significant
portion of the terrain was modeled adequately, large errors (>4 m) persist in areas of high canopy
cover >80% where DAP was unable to register ground in areas larger than the defined initial search
extent of the ground classification algorithms. In these areas, the algorithm misclassifies some canopy
points as ground leading to a large over estimation in terrain elevation. Similar to results from this
study, Guerra-Hernández et al. [47] report terrain height overestimation of >±2.0 m in areas of where
slope was >20% and canopy cover >60%. Nevertheless, this study finds that there is potential for
operationally acceptable DAP-DEM derivation where mean canopy cover is lower than around 70%.

Of the DAP acquisition parameters, flying altitude was restricted by local regulations to 122 m
AGL while flight speed was restricted by the speed at which images are written to disk (5 Mb/s) and
the desired image capture interval. As result of these restrictions, we were able to capture ~100 ha per
day of flight. In comparison to a flat study site, terrain following over the mountainous terrain of the
AFRF required additional power to climb and descend reducing the time of each flight. Up to eight
readily charged batteries and subsequent takeoffs and landings were necessary in order to replace
the battery.

This study assumes the canopy cover and terrain slope derived from ALS acquired in 2008 are
adequate descriptions for analysis with DAP data acquired in 2017. We acknowledge that some degree
of change to forest structure between the acquisitions is inevitable, and that a smaller temporal gap
may have enhanced the relationship between canopy cover and the RMSE. In addition, the precision
of GPS point measurement is known to be reduced within coniferous forests [72–74]. Therefore the
error of GCP locations in complex forested terrain, such as in this region, likely reduced the agreement
between DAP-DEMs and ALS points and therefore inflated RMSE. Tomaštík et al. [75] tested of a
range of GCP configurations using a total station in three ~1 ha plots situated in flat, open canopy
forests and report a mean vertical RMSE of ~0.1 m. Similarly, Jensen and Mathews [35] used eight
GCP over ~15 ha where the landscape transitioned from savannah to closed canopy woodlands and
found a mean estimated error of <0.15 m. Given these comparisons, future analyses involving the
fusion of UAS DAP and ancillary spatial data over dense conifer forests requires a more precise direct
or indirect georeferencing method for DAP point clouds. One possible solution is to deploy a more
extensive GCP network using sub-centimeter precision differential GPS elevations collected from a
total station such as done in [76]; however, defining and mapping the forest floor is challenging and the
associated cost of such equipment is high. Another viable solution is the inclusion of higher precision
GPS equipment onboard UASs, however this may erode the low-cost advantage of the UAS DAP
approach. A third potential solution is the co-registration of the DAP point cloud with an independent,
precisely georeferenced spatial dataset such as an ALS point cloud or an accurate road network layer
with a high degree of spatial detail and coverage.

The range of forest conditions found within the chosen AFRF study area are typical of British
Columbia’s ICH and SBS BEC zones, which account for 17% of British Columbia’s total land mass [77].
As previously mentioned the AFRF study areas were disturbed by wildfire in the months prior to
image acquisition, potentially reducing over story foliage and therefore ground occlusion, providing
the opportunity for a case study unique to stands disturbed by wildfire. Given recent catastrophic
forest disturbances from the mountain pine beetle and wildfire across British Columbia, there is a
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demand from forest managers for the timely collection of structural information. For the many forest
related natural resource management agencies around the province, the relatively low cost of UAS
deployment compared to ALS opens new possibilities for such data collection. This study provides
insight into the feasibility of UAS-DAP derived ground modeling in boreal and temperate forest
biomes, which respectively account for 24.2% and 21.8% of global forests [78].

5. Conclusions

This study demonstrates the current capacity of typical low-cost UAS-DAP ground modeling
results within the interior forests of central British Columbia. We found that DEMs derived from UAS
DAP point clouds using existing ALS ground classification algorithms are comparable to ALS derived
DEMs in a limited capacity largely due to the lack of ground points registered using DAP under
dense forest canopies. Of the ground classification methods tested, PTD was able to model terrain
accurately over a significantly larger area than HRI and SMRF methods. We confirm the expectation
that DAP-DEM error is largely influenced by a combination of terrain slope and canopy cover and that
canopy cover is more influential on error than terrain slope.
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75. Tomaštík, J.; Mokroš, M.; Saloň, Š.; Chudý, F.; Tunák, D. Accuracy of Photogrammetric UAV-Based Point
Clouds under Conditions of Partially-Open Forest Canopy. Forests 2017, 8, 151. [CrossRef]

76. Simpson, J.; Smith, T.; Wooster, M. Assessment of Errors Caused by Forest Vegetation Structure in Airborne
LiDAR-Derived DTMs. Remote Sens. 2017, 9, 1101. [CrossRef]

77. British Columbia—Ministry of Forest, Lands, Natural Resource Operations and Rural Development.
Biogeoclimatic Ecosystem Classification (BEC) Map; British Columbia—Ministry of Forest, Lands, Natural
Resource Operations and Rural Development: Victoria, BC, Canada, 2018.

78. Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.;
Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.isprsjprs.2004.05.004
http://dx.doi.org/10.1016/S0924-2716(99)00008-8
http://dx.doi.org/10.1016/j.isprsjprs.2005.10.005
http://dx.doi.org/10.1016/S0924-2716(98)00009-4
http://dx.doi.org/10.1016/j.isprsjprs.2012.12.002
http://dx.doi.org/10.1109/TGRS.2003.810682
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.001
http://dx.doi.org/10.1109/JSTARS.2015.2436974
http://dx.doi.org/10.14358/PERS.71.7.817
http://dx.doi.org/10.1016/j.rse.2010.12.011
http://dx.doi.org/10.1016/0034-4257(95)00224-3
http://lastools.org
https://CRAN.R-project.org/package=lidR
http://dx.doi.org/10.1139/x99-021
http://dx.doi.org/10.5589/m03-022
http://dx.doi.org/10.3390/f8050151
http://dx.doi.org/10.3390/rs9111101
http://dx.doi.org/10.1038/nature14967
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Image Acquisition 
	Georeferencing 
	Structure-from-Motion Point Cloud Processing 
	ALS Acquisition and Ground-Point Classification 
	UAS DAP Ground-Point Classification 
	DEM Generation 
	Ground Classification Algorithm Sensitivity Analysis 
	Ground-Point Classification Algorithm Accuracy 
	DEM Accuracy under Various Forest Cover and Terrain Slope 
	Software 

	Results 
	Ground-Classification Algorithm Sensitivity Analysis 
	DEM Accuracy under Various Forest Cover and Terrain Slopes 

	Discussion 
	Conclusions 
	References

