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Abstract: Modern approaches to predictive ecosystem mapping (PEM) have not thoroughly explored
the use of ‘characteristic’ gradients, which describe vegetation structure (e.g., light detection and
ranging (lidar)-derived structural profiles). In this study, we apply a PEM approach by classifying
the dominant stand types within the Central Highlands region of south-eastern Australia using
both lidar and species distribution models (SDMs). Similarity percentages analysis (SIMPER) was
applied to comprehensive floristic surveys to identify five species which best separated stand types.
The predicted distributions of these species, modelled using random forests with environmental
(i.e., climate, topography) and optical characteristic gradients (Landsat-derived seasonal fractional
cover), provided an ecological basis for refining stand type classifications based only on lidar-derived
structural profiles. The resulting PEM model represents the first continuous distribution map of stand
types across the study region that delineates ecotone stands, which are seral communities comprised
of species typical of both rainforest and eucalypt forests. The spatial variability of vegetation structure
incorporated into the PEM model suggests that many stand types are not as continuous in cover as
represented by current ecological vegetation class distributions that describe the region. Improved
PEM models can facilitate sustainable forest management, enhanced forest monitoring, and informed
decision making at landscape scales.

Keywords: Cool Temperate Rainforest; decision-tree; ecological vegetation class; ecotone; mixed
forest; plant area volume density; random forest; stand structure.

1. Introduction

Understanding the composition and structure of forest ecosystems is critical for ecological
understanding, and for developing effective forest management strategies. The increased availability of
geographic information and remote sensing data for forested ecosystems, in combination with advances
in computational modelling, has facilitated the development of predictive ecosystem mapping (PEM)
models [1–3]. PEM models are defined as methods that identify ecological-landscape relationships
from spatial environmental data and field observations (as available) to predict vegetation composition
across a landscape [1,2,4–7]. Using similar approaches but with varying objectives and units, PEM
models have been broadly defined as predictive vegetation mapping [1], which also encompass
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species distribution models (SDMs) [2,3,8,9], bioclimatic envelope models [10,11], habitat suitability
or decision-support models [12–14], and ecological niche models [15,16]. Such models originated
from ecological niche theory whereby vegetation distribution is predicted using variables that either
correlate with or define tolerance ranges of species [1,8–10,17,18].

There are three typical approaches to modelling community distributions from species and
environmental data: (1) assemble species into communities and then predict, (2) predict species
individually then assemble into communities, and (3) assemble and predict species together [19–23].
The first approach uses some form of classification, ordination, or aggregation method to generate
communities from individual species survey data. The presence-absence locations of each community
are then compared with environmental predictors to describe their distributions. The second approach
models each species distribution individually as a function of available environmental predictors.
A community-level output is then generated from a classification, ordination, or aggregation of all the
extrapolated individual species distribution models. The third approach characterizes each community
and associated relationships with environmental data in a single process incorporating each species
and all environmental data simultaneously. No single approach will be optimal in all circumstances,
with the selection dependent on available data and study objectives [21,22]. Ohmann et al. [24]
argued that any approach selected should aim to retain information of individual species and
patterns of co-occurrence in the final predictions. Joint species distribution modeling (JSDM) is
an approach that accounts for both presence-absence and abundance data jointly across species to
classify communities [25,26]. Combining independent SDM model outputs may be just as effective as
JSDM though where the species of interest do not interact with one another [25]. These techniques all
aim to develop predictive models that utilize multidimensional descriptive variables to predict the
distribution of vegetation across landscapes.

The use of multiple data types to describe environmental variables and forest structure can result
in complex, often non-linear data, which challenges the accuracy of predictive models developed using
traditional parametric approaches [27–29]. Machine learning techniques have emerged from synergies
between computer science and the identification of ecological processes and patterns, known as
ecological informatics, which directly address issues of data complexity and non-linearity to generate
accurate predictive models [28–30]. Some examples of machine learning techniques that have been
used for species distribution modelling include artificial neural networks, k-nearest neighbors, support
vector machines, boosted regression trees, and random forests [6,8,27,31–34]. The random forest
algorithm, developed by Breiman [35], has two key advantages for forest distribution mapping;
(1) the novel variable importance measure, and (2) the proximity measures of similarity among data
points [27].

Many predictor variables for PEM models can be measured in the field or collated from various
geographic information system layers and remote sensing data [3]. Selection of predictor variables
is critical to PEM accuracy [36–39], with each variable considered in terms of its importance to
the distribution of an ecosystem and the ecological basis for its inclusion [18,37]. These variables
can include a number of environmental gradients: direct gradients influence growth but are not
consumed (i.e., temperature, pH); indirect gradients have a location-dependent correlation with
forest distribution but have no functional effect on plant growth (i.e., latitude, altitude, slope);
and resource gradients are consumed by vegetation (i.e., light, water) [2,5,18,36]. Interactions between
structural and compositional gradients can influence stand development and are important to capture
in ecosystem classification [40]. These gradients of structure and composition describe the state
of vegetation at a specific point in time (i.e., height, cover, strata), and can be broadly defined as
‘characteristic gradients’. Characteristic gradients are increasingly being included in PEM models
with inputs summarizing forest structural complexity into a single metric or multiple metrics when
three-dimensional data are available [12,41,42].

Characteristic gradients can be quantified at broad spatial scales using remote sensing compared
to spatially limited and cost-intensive field observations. Systematic field observations are often
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individual locations spread across large areas with limited sensitivity to the vertical assemblage of
vegetation. Both horizontal and vertical structure can be obtained across a spatial continuum using
light detection and ranging (lidar) technology. Lidar is an active remote sensing technique that uses
laser ranging to determine the distance between the sensor and an object. Distance is calculated from
half the time-lapse between when the laser pulse is emitted and the detection of the returned pulse
after striking an object [14,43,44]. Key sensitivity and accuracy limitations of commonly used optical
and radar imagery [45] can be overcome using lidar data [44]. Lidar pulses measure the presence or
absence of foliage and topographic structure in three dimensions [46–49], where optical and radar data
responses are generally canopy and mid-canopy driven, respectively [43]. Results from Kane et al. [50]
highlight that lidar can accurately characterize forest successional stages in the absence of field
measurements. The ability of lidar to exploit small gaps in the forest canopy and capture understorey
structure allows for the inclusion of lower strata attributes in predictive vegetation models [51–54].
Predictive models that include characteristic variables from lidar often use discrete derivatives such
as canopy height, foliage cover, leaf area index (LAI), and vegetation density [12,29,50,51,55–60].
Recent studies using the vertical continuum of lidar data have typically focused on structure only
classifications using random forest [49,61], excluding the use of ecological data pertaining to species
composition dominating landscape-scale PEM.

In south-eastern Australia, eucalypt forests have traditionally been delineated based on dominant
Eucalyptus species without consideration for associated Acacia, rainforest and understory species [62].
The classification of rainforest focuses on the floristic composition at maturity and excludes changes in
species composition over time due to changes in the composition that may be driven by disturbance
(i.e., ingress of Acacia and Eucalyptus following fire) [62]. Cameron [62] argued that, while this
traditional approach has advantages for interpreting community niche distributions, it is problematic
at the ecotones that share dominant species, or where dominant canopy species are replaced by
species characteristic of another stand type (e.g., patches of eucalypts within a rainforest mosaic
after fire). The potential need to consider both climatic and structural gradients in PEM models for this
region was further highlighted in a recent study that indicated both types of variables were important
for explaining beta-diversity in the temperate forests of south-eastern Australia [63]. Accordingly,
the cool temperature forest landscapes of the Central Highlands region in south-eastern Australia
are an ideal case study for examining the potential to improve traditional PEM approaches using
structural information such as characteristic gradients. The landscape contains wet sclerophyll forest,
rainforest and an ecotone between these two stand types described as ‘cool temperate mixed forest’ [62],
which has so far been excluded from the principal vegetation class system in the region (‘Ecological
Vegetation Class’, EVC) [64,65].

This study seeks to examine the utility of combining recent developments in stand type predictions,
using characteristic gradients in lidar structural attributes with complementary sources of ecologically
meaningful information. The previously developed lidar-derived stand type map [61] demonstrates
the assemble-and-predict approach, which evaluates characteristic gradients (i.e., the vertical profile of
vegetation density) across the landscape to predict the distribution of rainforest, ecotone and eucalypt
stands. The distribution of species which best characterize stand types in the region were predicted
individually and subsequently assembled into community groups in order to provide important
ecological context. The lidar-derived and SDM-derived stand type classifications, in addition to
auxiliary criteria which further stratify these stand types (i.e., specific individual species, elevation,
canopy height) were combined using a series of decision trees to generate a highly detailed PEM
model of the study region. This approach to PEM demonstrates a hierarchical, stepwise approach to
combining lidar-derived stand type classifications with auxiliary information which provide important
ecological context for predicting the spatial distribution of ecological communities. The PEM model
demonstrates the potential for defining the spatial distribution of ecological communities at a much
higher resolution than existing EVC-based classifications in the study region.



Remote Sens. 2019, 11, 93 4 of 25

2. Materials and Methods

2.1. Study Area

The Central Highlands region of south-eastern Australia is located in the state of Victoria
approximately 100 km north-east of Melbourne (Figure 1). Three spatially contiguous stand types
of varying structure dominate the region’s forests: cool temperate rainforest (herein referred to as
‘rainforest’); wet sclerophyll eucalypt forests (‘eucalypt’ forest); and the ‘ecotone’ where rainforest
and eucalypt forest species mix [66]. Rainforest stands are dominated by 30–40 m tall Nothofagus
cunninghamii, Acacia melanoxylon and Acacia dealbata with understorey species, including up to 20 m
tall Atherosperma moschatum. Tree ferns Cyathea australis and Dicksonia antarctica dominate the lower
5 m strata with ground ferns at less than 1 m. Rainforest stands may occasionally include emergent
60 m tall Eucalyptus regnans. Eucalypt stands are dominated by up to 80 m tall E. regnans and
occasionally Acacia-dominated understories reaching 40 m in height. Smaller trees and single-stemmed
tall shrubs frequently occupy the lower 20 m of these forests. Ecotone forests occur in areas between
distinct rainforest and eucalypt stands when eucalypts are co-dominant with rainforest trees in
the overstorey above a rainforest understorey. Cameron [62] describes this ‘ecotone stand type’ as
‘cool temperate mixed forest’; a seral community where fire or other recurring disturbances prevent
secondary succession to eucalypt-free rainforest.
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Other stand types that may be dispersed within or surrounding rainforest, eucalypt and
ecotone forests, include a range of eucalypt-dominated forests. Dry sclerophyll forests occur at
lower elevations (up to approximately 900 m) and on warm and dry sites (elevated ridge lines
and exposed northerly aspects). These dry eucalypt forest canopies are typically dominated by
a mix of stringybark, peppermint, and gum-barked eucalypt species, excluding E. regnans and/or
E. delegatensis. Similar in dominant overstorey species to wet forest stands, damp eucalypt forest occurs
from 200 to 1000 m in elevation on warm, moist sites and contain local abundances of E. obliqua and
E. regnans with both species replaced at higher elevations (approximately > 1000 m) by E. delegatensis.
Areas of shrubby wet forest are similar to damp eucalypt forest but more consistently dominated
by E. delegatensis and a dense understorey of tall shrubs, including Polyscias sambucifolia and Oleria
phlogopappa. Montane eucalypt forests include both wet and damp forests, typically at elevations greater
than 1000 m, often with a dominance of E. delegatensis that replaces other lower elevation eucalypt
species. Sub-alpine woodlands occur at elevations above 1200 m, frequently receive snow, and are
dominated by E. pauciflora. Riparian eucalypt forests occur as narrow buffers around inland waterways
at lower elevations and occur as patches amongst rainforest at their ecotone. Riparian stands commonly
contain E. regnans, E. viminalis, A. melanoxylon and a dense assemblage of understorey vegetation.

2.2. Species Composition of Stand Types

Ecological vegetation classes (EVCs) are used across Victoria to classify vegetation types in
different bioregions, defined by climate, geomorphology, geology, soils and vegetation [64,65,67]. EVCs
are characterized by floristics, lifeforms and ecological characteristics, with an inferred association to
distinct environmental conditions [64,65,67]. Many of these characteristics were either from previously
modelled data, derived from Landsat imagery, or from floristic information collected in 2004 and
2005 from an unspecified number of field plots across Victoria [65]. Multiple EVCs correspond to
the stand types in this study, including cool temperate rainforest, wet forest, damp forest, shrubby
wet forest, riparian forest, montane wet forest, montane damp forest, and sub-alpine woodlands.
To facilitate analysis, the wet forest, damp forest, and shrubby wet forest were considered eucalypt
stands, and the montane wet and montane damp forest classes were considered as montane eucalypt
stands. Cool temperate rainforest, riparian forest, and sub-alpine woodlands retain their classification.
There is currently no distinct EVC for ecotone stands. Benchmark lists of species were identified as
‘typical’ to each EVC [68], and were filtered to include only tree, shrub, and tree fern lifeforms.

2.3. Floristic Sampling

Floristic surveys were conducted in 71 field plots (after excluding burnt/logged/observably
disturbed plots) that represented our three main stand types (rainforest, ecotone, and eucalypt)
from four field campaigns in the study area between April 2011 and October 2014. The presence or
absence of all native tree, shrub, and tree fern species were recorded across sites over a broad range of
environmental conditions for each stand type (see Section 2.1 Study Area) in fixed-area plots of sizes
20 × 20, 30 × 30, or 10 × 40 m2 (Table S1). Differences in species composition (dependent variable)
among stand types (fixed factor) were tested using permutational ANOVA (PERMANOVA), using
PERMANOVA+ Version 1.0.6 (PRIMER-E Ltd., Plymouth, UK) [69]. Species composition was based
on the Bray-Curtis similarity matrix of the presence or absence of all tree, shrub, and tree fern species.
Significance testing of the Bray-Curtis similarity measures and post hoc comparisons were made using
9999 permutations. Permuted residuals were calculated using the Type III (partial) partitioned sum of
squares [69]. The similarity percentages (SIMPER) procedure of PRIMER (Version 6.1.15, PRIMER-E
Ltd., Plymouth, UK) [70] was used to identify those species that contributed up to 90% similarity
within stand types (Table S2) and also those species contributing most to differences among the three
main stand types (Table S3). The results of the SIMPER analysis were used to differentiate stand types
based on the presence or absence of key species. Species that had an average abundance value of
<0.2 (occurs less than 20% of the time) in at least one stand type and also present on the EVC species
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lists were identified as species which best separate stand types. An exception was made to include
E. delegatensis in future analyses as it exists in montane eucalypt forest and typically occurs at elevations
between 500 m and 1200 m above sea level [71,72] but was under-represented in the field sampling.

2.4. Lidar-Derived Digital Elevation Model (DEM)

Airborne lidar data were commissioned by the state environment department and were acquired
from late 2007 to early 2008 over a subset of the Central Highlands region (Figure 1) from a fixed
wing aircraft (Data agreement number DQ201206071138; see Table 1 for flight details and sensor
settings). There should be limited impact of the date discrepancy between the lidar capture and floristic
sampling due to the slow change in forest structure of these mature stand types (>100 years old)
and the exclusion of disturbed field sites in the study [45,51,73,74]. This is further supported by
a previous study where a time lag of six years between field-data collection and lidar acquisition
only had a minimal influence on the predicted distribution of bird species modelled using structural
variables in an undisturbed coniferous forest [74]. All mapping in this study was constrained within
the lidar coverage. Data were provided in 2 km × 2 km tiles, including a ‘bare-earth’ digital elevation
model (DEM) at 1 m resolution that was generated by the data provider using the ground-classified
points. Cells were aggregated and the mean value was used to generate a 20 m resolution DEM for
each tile. The reported DEM vertical (±50 cm) and horizontal accuracies (±35 cm) were the same as
the lidar data (Table 1). Additional assessments of vertical accuracy were conducted using differential
GPS coordinates of six field plots in each of the rainforest, ecotone, and eucalypt stand types of varying
vegetation density (total of 18 point locations). Differential GPS (DGPS) coordinates were acquired
using a Leica GNSS Viva GS10 with an AS10 antenna and post-processed with ground-based reference
stations. The overall root mean square error (RMSE) of the DEM compared to the DGPS recorded
elevation at the 25 locations was 0.49 m.

Table 1. Lidar data flight acquisition details and sensor configurations.

Lidar System Configurations

Acquisition date range 19 November 2007–0 January 2008
Sensor type OptechALTM3100EA

Wavelength (nm) 1064
Scan rate (kHz) 71
Scan angle (◦) ±25

Mean footprint size (m) 0.26
Pulses (m2) 0.90

Maximum returned signals 4
Horizontal accuracy (cm) ±35

Vertical accuracy (cm) ±50

2.5. Environmental and Satellite Data

A series of topographic, climate and satellite-derived characteristic variables were considered
for modelling individual species distributions (Table 2). All topographic variables were generated
using the 20 m lidar-derived DEM. Seasonal fractional cover products (bare ground, green vegetation,
non-green vegetation) derived from Landsat imagery (30 m cell resolution) and acquired between
December 2007 and February 2008 [75–77] were used as satellite-derived characteristic variables.
The combination of the environmental and satellite data at varying resolutions reflects the scale of
phenomena at which species distributions are driven or constrained by each variable [3,78]. Each of the
satellite-derived characteristic variables and climate variables were resampled to 20 m resolution using
bilinear and nearest neighbor interpolation, respectively, for all data analysis and spatial predictions.
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Table 2. Environmental and satellite variables for the Central Highlands region (bold variables were
included as potential predictors in species distribution models, non-bold variables were excluded
based on strong correlations, r ≥|0.7|, with included variables). Maximum, minimum and mean
values are provided for each variable within the lidar acquisition boundary.

Variable Minimum Maximum Mean

Environmental—Topography
Elevation (m above sea level) 103.9 1567.9 652.0

SlopeA (◦) 0 68.1 17.1
Topographic Position IndexA (TPI; 100 m radius) −8.6 14.2 0

Heat load indexB (HLI) 0.2 1.0 0.8
Potential direct incident radiationB (PDIR; MJ cm−2 yr−1) 0.2 1.0 0.8

Proximity to waterwaysC (m) 0.0 6882.7 1817.5
Environmental - Climate

Annual mean temperature (BIO1; ◦C) 5.9 14.9 11.6
Mean diurnal range (BIO2; ◦C) 5.1 13.4 9.2

Isothermality (BIO3; %) 28.8 51.8 43.4
Temperature seasonality (BIO4; standard deviation; ◦C) 3.7 5.0 4.3

Maximum temperature of warmest month (BIO5; ◦C) 16.2 29.1 23.8
Minimum temperature of coldest month (BIO6; ◦C) −2.4 5.7 2.6

Temperature annual range (BIO7; ◦C) 16.7 27.0 21.2
Mean temperature of wettest quarter (BIO8; ◦C) 1.6 13.5 6.8
Mean temperature of driest quarter (BIO9; ◦C) 11.1 19.8 16.7

Mean temperature of warmest quarter (BIO10; ◦C) 11.1 20.8 16.9
Mean temperature of coldest quarter (BIO11; ◦C) 0.7 9.5 6.3

Annual mean precipitation (BIO12; mm) 667.1 2089.5 1290.3
Precipitation of wettest month (BIO13; mm) 70.7 274.9 164.9
Precipitation of driest month (BIO14; mm) 31.8 84.2 53.0

Precipitation seasonality (BIO15; coefficient of variation; %) 14.8 47.2 31.9
Precipitation of wettest quarter (BIO16; mm) 202.3 745.4 454.3
Precipitation of driest quarter (BIO17; mm) 109.7 324.3 194.7

Precipitation of warmest quarter (BIO18; mm) 110.5 324.3 198.5
Precipitation of coldest quarter (BIO19; mm) 199.5 690.0 446.6
Annual mean vapour pressure deficit (hPa) 2.0 6.2 4.0
Summer mean vapour pressure deficit (hPa) 3.6 10.7 6.9

Annual heat moisture indexD (AHMI) 7.7 35.9 17.8
Satellite

Bare ground fraction (% + 100) 97.7 194.1 103.5
Green vegetation fraction (% + 100) 98.0 203.1 169.0

Non-green vegetation fraction (% + 100) 95.9 202.0 126.0
A Calculated using SAGA GIS (Version 4.0.1) [79]. B Calculated using Hyperniche (Version 2.2) [80]. C Euclidean
distance. D AHMI = (BIO1 + 10)/(BIO12/1000) [81].

Climate variables were developed using a combination of pre-existing and interpolated mean
monthly datasets (250 m cell resolution) centered on the 1981–2010 reference period. A series of 19
bioclimatic indices commonly used in SDM analyses were computed using the dismo package [82] in
R (Version 3.3.0) [83]. The annual and summer (from December to February) mean vapor pressure
deficit (VPD), and an annual heat moisture index (AHMI) were also calculated using the available
climate data. Maximum and minimum temperature layers were sourced from a previous study [84],
which used a topographic index of relative elevation (minimum temperature only) and standardized
moderate resolution imaging spectroradiometer (MODIS) land surface temperature (LST) data
to improve interpolation performance. Precipitation and vapor pressure were interpolated using
ANUSPLIN 4.4 [85,86] following Stewart et al. [87], with the addition of a regression procedure [84,88]
to minimize bias in the monthly climate normals prior to model calibration. Pooled cross-validation
statistics for mean monthly precipitation and vapor pressure are presented in Table S4. The mean
monthly vapor pressure deficit was then computed by subtracting vapor pressure from the saturation
vapor pressure. Saturation vapor pressure (SVP) was calculated using temperature data in conjunction
with the August-Roche-Magnus equation [89,90]:
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SVP = 6.1094 × exp
17.625×T
243.04+T (1)

where T is the mean monthly temperature.
Correlation matrices were used to detect collinearity and to select a reduced set of predictor

variables for SDMs (Table S5). Variables were considered as highly correlated where r ≥ |0.7| [91].
Three climate metrics (annual heat-moisture index [81], temperature seasonality [92], temperature
annual range) were selected after excluding highly correlated variables. The majority of climate
variables were highly correlated with one another, including the mean annual temperature and the
annual precipitation despite smoothing to account for the lack of short-range (5–10 km) correlation
between precipitation and elevation [93,94]. As an alternative, the annual heat moisture index was used
as it reflects moisture availability as a function of both temperature and precipitation [81]. The three
climate variables selected were considered suitable for species distribution modelling, as they reflect
both mean climates and seasonal variability, quantifying important components of the ecological niche.
Correlation analysis of the optical satellite characteristic gradients showed a strong correlation between
the green vegetation and non-green vegetation fractions (r = −0.98). Only the non-green vegetation
fraction and bare ground fraction were retained as they were the only pairwise combination below the
correlation threshold (r = 0.56). As each of these three cover components (approximately) sum to one,
the green vegetation fraction can otherwise be inferred by the bare ground and non-green vegetation
cover and therefore was unlikely to have deleterious effects on model performance. The final set of
predictor variables included seven environmental variables and two satellite-derived fractional cover
products (Table 2).

2.6. Species Distribution Modelling

SDMs for each of the five species which best differentiated stand types were fit using presence and
absence records obtained across the Central Highlands region with the randomForest package [95,96] in
R. Records were collated from a collaborative network of field plots among the listed authors, (including
the 71 sites used for the SIMPER analysis) in addition to project-specific survey data obtained from
the Victorian Biodiversity Atlas [97]. Each of the plots used for the analysis maintained a minimum
separation distance of at least two pixels (at 20 m resolution), ensuring that no replicates were present
in the complete dataset. A six-fold, spatially blocked cross-validation strategy was applied using the
blockCV package in R [98] in order to minimize the effect of spatial autocorrelation on the model
evaluation. Autocorrelation range in the prediction surfaces was evaluated by fitting variograms to
subsampled points across the landscape. A median autocorrelation range of approximately 25 km was
selected based on the variogram analysis and was used to stratify the plot data into six sets of training
and testing data. Two random forest model variants were run for each species; one using environmental
variables only and the other using environmental and satellite variables combined. The cross-validated
predictive performance of each model was assessed using the area under the receiver operating
characteristic (AUC), overall accuracy (%), sensitivity (%; true positive rate), specificity (%; true
negative rate) and true skill statistic (TSS; sensitivity + specificity − 1). The optimal threshold for
binary classification (presence or absence) of species distributions was selected by maximizing the sum
of sensitivity and specificity of cross-validated predictions [99]. The final set of predictor variables
used to map the distribution of each species was selected based on the overall accuracy of the classified
cross-validated predictions. The spatial distributions of each species were calculated as the average
value predicted by models generated during cross-validation and were classified into binary maps
using the optimal threshold.

2.7. Predictive Ecosystem Mapping Model

The PEM model was developed using a combination of SDM-derived (landscape species model)
and lidar-derived (landscape structure model) stand type classifications (rainforest, ecotone or
eucalypt), individual SDMs, elevation, and a canopy height model (CHM) to identify non-forest
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areas. The landscape species model was developed using individual species distributions to minimize
model complexity while maximizing the number of species presence and absence records used
to support stand type classification. Structured survey records could therefore be sourced from
ecological surveys with varying objectives and locations, which would not otherwise have been
possible with a JSDM approach. We intentionally excluded the full vertical profile of vegetation from
the modelling of individual species distributions as they reflect a complex assemblage of multiple
species. Each modelled species had between 316 and 494 combined presence and absence records
sourced from a selection of different field campaigns conducted in the region. The landscape species
model was generated with the predicted distributions of species which best differentiated stand types,
guided by a decision tree developed using the SIMPER analysis results (Figure 2). The presence or
absence of E. regnans or E. delegatensis was used to differentiate between ecotone and rainforest stands
in the landscape species model.
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Figure 2. Landscape species model decision tree for classifying rainforest, ecotone, and eucalypt classes
using the presence or absence of species which best separate stand types.

The landscape structure model refers to a specific landscape-scale map derived using structurally
based characteristic gradients derived from the full vertical profile of lidar data [61]. The landscape
structure model, previously developed by Fedrigo et al. [61] for the same study extent, provides
a detailed delineation of forest classes into rainforest, ecotone and eucalypt stands, specifically
recognizing the coalescing of stand types at the landscape scale. The model uses known stand types in
conjunction with the first 10 principal components of 1 m strata plant area volume density (PAVD)
profiles to predict rainforest probability across the landscape. The retained principal components
were most sensitive to PAVD for strata between 1 and 10 m. The highest rainforest probabilities
were associated with high PAVD in these strata. The classification was then performed by selecting
probability thresholds, which were used to separate each stand type [61]. The landscape structure
model achieved an overall accuracy of 83.8% and achieved a Cohen’s kappa coefficient of 0.62 during
cross-validation, indicating substantial model agreement. Stand type rainforest probability thresholds
were adjusted from Fedrigo et al. [61] to ranges that were predicted for field plots only. The rainforest
probability range thresholds for eucalypt, ecotone and rainforest stands were <18%, 18% to 70%,
and ≥70%, respectively. New thresholds were selected to eliminate potential bias from modelled
EVC classifications, which were used to identify thresholds in Fedrigo et al. [61]. The new thresholds
resulted in substantial model agreement with the same overall accuracy of 83.8% and a slightly
increased Cohen’s kappa coefficient of 0.63. The species distribution modelling and hierarchical
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decision trees were designed to provide an ecological basis for constraining and further stratifying the
lidar-derived stand type maps.

The landscape species model was combined with the landscape structure model to find areas of
agreement based on a second decision tree (Figure 3). Congruence between the landscape species and
landscape structure models was indicative of a higher degree of confidence in the modelled predictions.
E. regnans, E. delegatensis, and elevation were used to separate montane eucalypt, sub-alpine woodland,
and other forest types (inclusive of dry forest) from the broader eucalypt class. The CHM was used
to filter out non-forest regions and was generated from the lidar data by identifying the maximum
height of returns for each cell. Areas of recent logging, within the last 10 years before lidar acquisition,
were used to identify a CHM threshold to identify areas of non-forest. A threshold of 6 m was defined
as the first quartile CHM value in recently logged areas. All areas on the landscape with a CHM value
of less than 6 m were classified broadly as non-forest.
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Figure 3. Decision tree for (a) predictive ecosystem mapping (PEM) model stand type classification
map based on the combination of the landscape structure model and the landscape species model,
(b) eucalypt forest classification into montane eucalypt, sub-alpine woodland and other forest,
and (c) the distinction between forest and non-forest areas.

A summary of the preceding steps, and the workflow for developing the final PEM model is
illustrated in Figure 4.

The final PEM model was compared against the EVC distributions by summarizing the predicted
spatial coverage (km2) of each stand type. The potential distribution of the ecotone stand type
amongst the existing EVCs was also examined, as ecotones were not previously defined in the EVCs.
The total area of rainforest, ecotone, and eucalypt stands predicted by the landscape species model
and the landscape structure model were also compared to highlight how each of these preliminary
classifications constrained one another. Total area and percentage of the total ecotone area was
determined for each EVC. All comparisons were made separately for two 5 km × 5 km extents
(Figure 1) and the full study area.
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Figure 4. Methodological framework for predictive ecosystem mapping (PEM) by applying a series
of rule-based decision trees to species distribution models, lidar-derived stand type classifications
(i.e., landscape structure map; Fedrigo et al. [61]), a canopy height model and elevation data.

3. Results

3.1. Species Composition of Stand Types

A total of 19 species occurred in both the collated EVC list and the field-based list of species that
were identified as contributing up to 90% of the similarity within each stand type (Table S2). The overall
species composition differed significantly among stand types (P ≤ 0.001). Four species, including
A. dealbata, A. moschatum, N. cunninghamii, and P. bicolor, were identified as those which were best able
to separate stand types based on the SIMPER analysis (Table S3). E. regnans and E. delegatensis were also
included to separate ecotone from rainforest stand types in the landscape species model. Rainforest
stands were best separated from ecotone and eucalypt stands by the presence of A. moschatum and
P. bicolor and the absence of A. dealbata (Table S3). The presence of N. cunninghamii also distinguished
rainforest from eucalypt stands. Ecotone stands were best separated from the other stand types by the
presence of N. cunninghamii and A. dealbata. While A. dealbata was identified as important in separating
rainforest from ecotone and eucalypt stands, it was excluded from the categorization of stand types
due to its ecological niche covering the majority of the study area.

3.2. Species Distribution Modelling

Cross-validated error statistics for the five SDMs used to generate the landscape species model and
final PEM model are shown in Table 3. Models using environmental and satellite variables achieved
a 2% or greater improvement in overall accuracy during cross-validation relative to environmental
variables only for E. delegatensis, E. regnans, N. cunninghamii and P. bicolor. Alternative metrics generally
supported the selection of the environmental and satellite models based on the trade-off between the
true positive and negative rates, and AUC scores (although AUC for P. bicolor was slightly higher
for environmental variables). The cross-validation performance was higher across all metrics when
using environmental variables for A. moschatum. The annual heat moisture index and fraction of
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non-green vegetation were consistently among the most important variables across cross-validation
folds (see Figure S1 for variable importance plots). The predicted distributions of each species for
a subset of the study area are mapped alongside canopy heights in Figure 5.
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Figure 5. Predicted spatial distribution of five species and canopy heights (greater than 6 m) used to
construct the landscape species model and the predictive ecosystem mapping (PEM) model across
a subset of the study region encompassing extent 1 (see Figure 1). Thresholds indicate the value
at which the true positive rate and true negative rate are maximized for cross-validated data when
classifying maps into binary predictions of presence or absence for each species.
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Table 3. Cross-validated (spatially blocked across six folds) random forest species distribution models for species used to delineate stand types in the Central
Highlands region. Model variants selected for predictive ecosystem mapping are bolded for each species.

Species Predictors P A T TPR TNR OA TSS AUC

Atherosperma moschatum Environmental 38 423 0.22 0.84 0.80 0.80 0.64 0.87
Environmental and Satellite 38 423 0.14 0.82 0.78 0.79 0.60 0.83

Eucalyptus delegatensis Environmental 57 344 0.24 0.98 0.81 0.84 0.79 0.92
Environmental and Satellite 57 344 0.41 0.96 0.88 0.89 0.84 0.92

Eucalyptus regnans Environmental 92 273 0.25 0.86 0.73 0.76 0.58 0.81
Environmental and Satellite 92 273 0.20 0.99 0.72 0.79 0.71 0.85

Nothofagus cunninghamii Environmental 129 365 0.15 0.95 0.64 0.72 0.59 0.83
Environmental and Satellite 129 365 0.21 0.90 0.68 0.74 0.58 0.84

Pittosporum bicolor Environmental 52 264 0.16 0.88 0.66 0.70 0.54 0.81
Environmental and Satellite 52 264 0.19 0.87 0.72 0.75 0.59 0.80

Environmental predictors = topography: slope, topographic position index, potential direct incident radiation, proximity to waterways, climate: temperature seasonality, temperature
annual range, annual heat moisture index; Satellite predictors = bare ground fraction, non-green vegetation fraction (see Table 2); P = number of sites where species was present; A = number
of sites where species was absent; T = mean threshold for binary classification, calculated by maximizing the sum of sensitivity and specificity for each cross-validation fold; TPR = true
positive rate; TNR = true negative rate; OA = overall accuracy; TSS = true skill statistic, calculated as TPR + TNR − 1; AUC = mean area under the receiver operating characteristic,
calculated for each cross-validation fold.
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3.3. Predictive Ecosystem Mapping and Comparison With Ecological Vegetation Classes

The landscape species model and the landscape structure model both predicted much larger
areas of rainforest and eucalypt stands in comparison to the PEM model (Table 4). This overestimation
was particularly excessive for the landscape species model, where the predicted area was 509.2%
more for rainforest, and 234.5% more for eucalypt forest in comparison to the PEM. The landscape
structure model also overestimated the total amount of rainforest and eucalypt forest relative to the
PEM by 70.6% and 46.4%, respectively. The total ecotone area predicted by the landscape species model
was somewhat lower than the PEM (−26.9%), but several times larger for the landscape structure
model (347.4%).

These differences are illustrated by the stand type distributions predicted by a spatial subset of the
landscape species model and landscape structure model illustrated in Figure 6 alongside corresponding
PEM and EVC maps. The distribution of ecotone predicted by the landscape structure model was
strongly constrained by the ecologically based landscape species model. Conversely, the structural
information provided in the landscape structure model constrained the distribution of rainforest and
eucalypt stands which would have otherwise been expected using the landscape species model alone.
When combining these classifications, in conjunction with the auxiliary criteria listed in the decision
trees (i.e., E. regnans and E. delegatensis distributions, elevation and canopy height), the final PEM
model predicted a highly complex distribution of forest across the landscape (see Figure S2 for the
full study region). The PEM model indicates a realistic mosaic of stand types with many examples of
rainforest transitioning to ecotone, which is interspersed within eucalypt forest.

The EVCs (see Figure S3 for the full study region) predict much larger, more uniform clumps of
stand types. The distribution of montane eucalypt and sub-alpine woodland predicted by the PEM
model corresponds well to the EVC distributions of equivalent classes. Thick corridors of riparian
forest indicated by the EVCs were much thinner, or not present, in the PEM model. Non-forest and
regions of other stand types predicted by the PEM model indicate the absence of E. delegatensis and
E. regnans, or a canopy height less than 6 m.

Differences in the area covered by each PEM model class and EVCs for the complete study area
and both 5 km × 5 km extents were calculated (Table 5). The PEM model predicted 56.2% of the
landscape as covered by other forest or non-forest (2909.7 km2), in contrast to the EVCs which predicted
47.0% as covered by all other vegetation classes or non-forest (2429.5 km2). The wet forest, damp forest,
and shrubby wet forest EVCs covered a larger area of the landscape (1688.5 km2) than the associated
eucalypt class of the PEM model (1169.4 km2). The PEM model had higher area estimates for rainforest
(128.6 km2 vs. 101.8 km2) and the only estimate for ecotone (652.9 km2). The EVCs had higher area
estimates for riparian forest (204.3 km2 vs. 90.8 km2) and the combined montane wet forest (458.0 km2)
and montane damp forest (211.5 km2) when compared against the associated montane eucalypt class
of the PEM model (132.9 km2). The PEM model predicted a slightly larger area of sub-alpine woodland
than the EVCs (90.6 km2 vs. 81.3 km2). Ecotone stands identified by the PEM model contained multiple
EVCs, but were most commonly found in the wet forest, damp forest and montane wet forest EVCs
(35.3%, 13.9% and 26.4% of the total ecotone area, respectively; Table 6). The least common EVCs
located within the ecotone region were riparian forest, montane damp forest, cool temperate rainforest
and sub-alpine woodland (4.8%, 5.2%, 6.5%, and 1.4% of the total ecotone area, respectively).
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Figure 6. Stand type classifications from landscape species model, landscape structure model,
predictive ecosystem mapping (PEM) model, and ecological vegetation classes (EVCs) across a subset
of the study region encompassing extent 1 (see Figure 1). Other forest and non-forest regions predicted
by the PEM model indicate the absence of Eucalyptus delegatensis and Eucalyptus regnans, or a canopy
height less than 6 m, respectively. EVCs are listed in parenthesis where they differ from PEM classes.

Table 4. Area of each stand type (km2) as predicted by the landscape species model and the landscape
structure model across the landscape and for two 5 km × 5 km subset extents (see Figure 1 for extents).
Values in parenthesis are the percentage difference in area compared to the final predictive ecosystem
mapping model.

Stand Type
Extent 1 Extent 2 Landscape

Species Model Structure Model Species Model Structure Model Species Model Structure Model

Rainforest 7.8 (107.6) 4.1 (10.2) 7.5 (267.5) 2.3 (15.3) 783.51 (509.2) 219.45 (70.6)
Ecotone 11.5 (36.0) 12.4 (45.6) 11.5 (−6.3) 15.7 (27.8) 477.30 (−26.9) 2921.27 (347.4)
Eucalypt 5.7 (−11.5) 8.5 (32.3) 6.0 (−20.2) 6.2 (−17.4) 3911.82 (234.5) 1712.16 (46.4)
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Table 5. Area of each stand type (km2; percentage of total landscape in parenthesis) as predicted by the predictive ecosystem mapping (PEM) model compared with
the ecological vegetation class (EVC) map. Values are for the entire study region (landscape) and two 5 km × 5 km extents (see Figure 1 for extents).

Stand Type Extent 1 Extent 2 Landscape

PEM EVC PEM EVC PEM EVC PEM EVC

Rainforest Cool Temperate Rainforest 3.7 5.4 2.0 4.5 128.6 (2.5) 101.8 (2.0)
Ecotone Not classified (NC) 8.5 NC 12.3 NC 652.9 (12.6) NC
Eucalypt Wet Forest 6.4 8.8 7.6 13.1 1169.4 (22.6) 717.5 (13.9)

Damp Forest - 0.0 - 0.0 - 970.9 (18.8)
Shrubby Wet Forest - 0.0 - 0.0 - <0.1 (0.0)

Riparian Riparian Forest 0.4 0.0 0.3 0.0 90.8 (1.8) 204.3 (3.9)
Montane Eucalypt Montane Wet Forest 5.3 10.8 2.0 7.4 132.9 (2.6) 458.0 (8.8)

Montane Damp Forest - 0.0 - 0.0 - 211.5 (4.1)
Sub-Alpine Woodland Sub-Alpine Woodland 0.6 0.0 0.0 0.0 90.6 (1.7) 81.3 (1.6)

Other Forest All Other Vegetation Classes 0.0 0.0 0.1 0.0 2586.6 (50.0) 2135.0 (41.3)
Non-Forest Non-Forest 0.0 0.0 0.7 0.0 323.1 (6.2) 294.5 (5.7)
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Table 6. Area covered (km2; percentage cover in parenthesis) by ecological vegetation classes within
the ecotone stand type as determined by the predictive ecosystem mapping model. Values are provided
for the entire study region (landscape) and two 5 km × 5 km extents (see Figure 1).

Ecological Vegetation Class Extent 1 Extent 2 Landscape

Cool Temperate Rainforest 2.2 (25.8) 2.2 (17.9) 42.8 (6.5)
Wet Forest 3.6 (43.0) 7.4 (60.6) 230.6 (35.3)

Damp Forest 0.0 0.0 90.5 (13.9)
Shrubby Wet forest 0.0 0.0 0.0

Riparian Forest 0.0 0.0 31.1 (4.8)
Montane Wet Forest 2.6 (31.2) 2.6 (21.4) 172.1 (26.4)

Montane Damp Forest 0.0 0.0 33.8 (5.2)
Sub-Alpine Woodland 0.0 0.0 9.0 (1.4)

All Other Vegetation Classes 0.0 0.0 41.9 (6.4)
Non-Forest 0.0 0.0 1.0 (0.1)

Total Ecotone Area 8.5 12.3 652.9

A visual comparison of the PEM model and the EVC distributions in each 5 km × 5 km extent
(see Figure 1 for locations) indicated good general agreement for rainforest and eucalypt forest areas
(Figure 7). In general, the finer-scale resolution of the PEM model differentiated stand type patches
in contrast to the more continuous distributions of the EVC map. A network of rainforest patches,
evident in the bottom left of the first PEM subset, was absent from the EVC map. In contrast, rainforest
in the second subset was patchy and covered less area than the cool temperate rainforest EVC.
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4. Discussion

The fusion of statistical analyses, lidar-derived structural profiles, and an assemblage of SDMs
demonstrates an integrated approach to PEM that was highly sensitive to spatial variations in
vegetation structure. The field observations are complemented by the continuous coverage of remote
sensing information that indirectly quantifies characteristics of the stand function [3]. The potential
importance of capturing this spatial variability is highlighted when comparing the PEM model against
the EVCs that are commonly used in the region. The PEM model shows a much greater level of detail
in comparison to the EVCs, which are often spatially homogenized with large clusters of uniform stand
types. In the little detailed information that has been published about the development of EVCs, it has
been suggested that elements of structure were included in the classification process [65]. Structure
(spatial arrangement of forest components) variables in modelling are often used interchangeably with
attributes describing function (forest processes) and composition (species abundance and diversity),
where details related to one can be used as a proxy for another [41]. The extent, level of detail,
and number of variables by which forest structure can be defined by lidar differs greatly in magnitude
from the in situ measurements and those derived from optical remote sensing data like Landsat
data [54].

The high spatial variability of the PEM model suggests that many stand types do not have as
continuous a cover as suggested by the EVC distributions, and this is consistent with our extensive
field observations of these landscapes. Despite these differences in spatial resolution, there was
generally a good level of agreement in the extent and locations of similar stand types predicted by
the PEM model and the EVC maps. Our analysis highlights how complex structural and ecological
information can complement one another through different modeling pathways. The lidar-derived
landscape structure model was effective at constraining the much broader predictions of rainforest
and eucalypt stands by the landscape species model. Conversely, the landscape species model was
crucial in providing an ecological basis for constraining predictions of ecotone as indicated by the
landscape structure model. Leveraging the congruence between predictions driven by characteristic
and environmental gradients shows promise for mapping ecotone stands, as they are likely to have
the most dynamic distributions.

Lidar-derived characteristic gradients provide a continuous representation of the full vertical
vegetation profile, which is useful for identifying the structural gradient between rainforest, ecotone,
and eucalypt stands. Lidar can resolve understorey structure with a level of detail that would not
otherwise be possible using characteristic gradients derived from optical remote sensing [3,29,54].
This vertical complexity can be measured at very broad spatial scales using lidar data, and repeat
acquisitions can provide valuable opportunities to refine model performance and identify important
structural changes in vegetation between specific points in time across the landscape. While field
observations were limited to undisturbed stands, the output PEM model may be subject to error in the
landscape structure model due to the time difference between field observations and lidar capture.
Future studies would benefit from coincident field observation and lidar capture. Furthermore, airborne
lidar provides a consistent measurement of structure at a scale that is not possible from the ground,
including in regions with limited ground access. Nonetheless, one of the main limitations of using
purely structural information to predict stand types is that the tolerance of the individual species
that comprise these ecosystems to environmental conditions is not considered [49,61]. For example,
eucalypt forest and montane eucalypt forest share similar structural characteristics but are strongly
delineated by the environmental conditions that are suitable for either E. regnans or E. delegatensis.
By incorporating SDMs into the PEM model, an ecological basis for stand type classification can be
determined independently of isolated lidar-derived classifications [96].

Lidar-derived structural profiles were intentionally excluded as predictors for SDMs, as the
PAVD profiles represent assemblages of vegetation and their inclusion would have resulted in
a large increase in model complexity [49,61]. The use of lidar in SDMs has typically included several
lidar-derived metrics [12,56,57,59] rather than some derivative that leverages the entire stream of
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data collected along the vertical profile. Zimble et al. [12] used airborne lidar-derived tree heights to
classify western United States forests into single- and multi-layered stands with > 90% accuracy to be
used as the structural component to a variation of the United States Forest Service PEM called habitat
decision-support systems. Recent studies that have utilized these profiles have expressed similar
challenges in distinguishing stand types with similar vertical vegetations structure [49]. In this study,
the use of maximum canopy height as a lidar metric was not useful for distinguishing stand types
because E. regnans occurs across most of the landscape and grows to consistent maximum heights.

Recent studies [this study, 29,51,55] have identified how remotely sensed gradients constrain the
compositional space of stand or community types based on observed changes in forest structure at
different successional stages. Hakkenberg et al. [29] explores the use of an alternative approach to
modeling community continua by incorporating lidar and hyperspectral remote sensing. Their study
utilizes compositional ordination to summarize plot species information into axes of maximum floristic
variation (similar to Simonson et al. [51]). Hakkenberg et al. [29] then classified communities using
an unsupervised classification approach utilizing goodness-of-clustering evaluators and dissimilarity
matrices. This approach is different to our study but achieves similar outcomes to the SIMPER analyses
we used by identifying species that characterize forest communities based on underlying matrices
of floristic dissimilarity. The use of dissimilarity matrices (e.g., Ferrier et al. [100]) in both species
information [this study, 29] and lidar-only metrics [55] is increasingly being used to classify forest stand
types. Compositional modelling in this study, and both the Hakkenberg et al. [29] and Moran et al. [55]
studies utilized random forest for classification due to its generalizability and maximization of
predictive accuracy with its ability to balance limited training data and high data dimensionality.
Key differences in this study include the use of stand type classifications using the vertical continuum
of lidar data through dimension-reduced principal components as predictor variables and the removal
of highly correlated predictor variables (i.e., the landscape structure model). The ordination approach
detailed in Simonson et al. [51] and Hakkenberg et al. [29] are ideally suited for landscapes with limited
a priori knowledge about community/stand species composition while the approaches detailed in
Moran et al. [55] and Fedrigo et al. [61] are suitable when considering classification using lidar-only
metric and vertical continuum data, respectively. This study utilizes a priori knowledge of stand type
composition, combined with the SIMPER approach to species classification at the landscape scale prior
to the use of lidar data, for further stand type identification. Other studies that have performed similar
classifications have been in less complex forests in North America [29] and Europe [51], while our
study demonstrates the success of similar PEM approaches in structurally complex (multi-layered,
dense, closed canopy temperate) forests of south-eastern Australia. All recent PEM studies highlight
concerns with mapping stand or community types as discrete units, when their distribution across the
landscape are ultimately continuous and can often overlap in areas of transition [29,55,61].

The PEM model developed as part of this research provides the first spatial prediction of dominant
stand types in the study region that considers both the ecological niche and the vertical continuum
of vegetation structure. Lidar can penetrate forest canopies and can resolve understorey structure
with a level of detail that would not otherwise be possible using characteristic gradients derived from
optical remote sensing. Lidar-derived characteristic gradients are therefore particularly useful for
identifying ecotone stands that are characterized by eucalypt overstorey with rainforest associated
understorey. Cameron [62] defined these ecotone stands as ‘cool temperate mixed forest’ but until now
they have not been formally delineated. The ecotone may be the most likely to change in distribution
due to the regeneration dynamics that occur in these stands with changes in microclimate, disturbance
regimes and light conditions [62,63]. The succession of forest stands from one type to another suggests
that these stand type maps reflect dynamic processes and will require regular assessment to evaluate
their agreement with ground observations [50,58]. Repeat lidar acquisitions over time will provide
opportunities to detect changes in the structure and distribution of these stand types in response to
natural and anthropogenic disturbances at very high spatial resolutions.
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5. Conclusions

This study demonstrates a novel approach to PEM that integrates a range of data types including
field-based, optical remotely-sensed, and lidar data to model the continuous distribution of key stand
types in the temperate forests of south-eastern Australia. By exploring the use of varying environmental
and characteristic predictor variables and identifying those species which best separated stand types,
we generated a landscape species model based on the combination of multiple SDMs. Characterizations
of stand types based on significantly different species compositions and lidar structural profiles were
critical to identifying and mapping the predicted distribution of ecotone between rainforest and
eucalypt stands. Using a combination of SDMs and remote sensing data, the ecotone forest was
clearly mapped for the first time, offering potential for finer-scale mapping of forests in landscapes
beyond the temperate forests of south-eastern Australia. The PEM model allows processes influencing
forest development patterns to be captured which should enhance classification accuracy and provide
a baseline for evaluating changes in forest development over time. More detailed and high-resolution
stand type mapping for this region and others will serve to improve our knowledge of the composition
and structure of forested landscapes, and provide a valuable tool for supporting sustainable forest
management decisions.
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