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Abstract: Shallow water bathymetry is important for nautical navigation to avoid stranding, as well
as for the scientific simulation of high tide and high waves in coastal areas. Although many studies
have been conducted on satellite derived bathymetry (SDB), previously used methods basically
require supervised data for analysis, and cannot be used to analyze areas that are unreachable by
boat or airplane. In this study, a mapping method for shallow water bathymetry was developed,
using random forest machine learning and multi-temporal satellite images to create a generalized
depth estimation model. A total of 135 Landsat-8 images, and a large amount of training bathymetry
data for five areas were analyzed with the Google Earth Engine. The accuracy of SDB was evaluated
by comparison with reference bathymetry data. The root mean square error in the final estimated
water depth in the five test areas was 1.41 m for depths of 0 to 20 m. The SDB creation system
developed in this study is expected to be applicable in various shallow water regions under highly
transparent conditions.

Keywords: satellite derived bathymetry; shallow water; machine learning; random forest; Google
Earth Engine; multi-temporal; Landsat-8

1. Introduction

Shallow water bathymetry is important for nautical navigation to avoid stranding, as well as
for the scientific simulation of high tide and high waves in coastal areas. However, only a few open
databases with a global reach are suitable for this purpose. The main measurement methods for
bathymetry that are currently in use include sonar measurement and airborne laser measurement.
Sonar measurements from a research vessel can instantaneously measure a width equal to twice the
water depth, however this technique is not efficient in shallow water [1], and there is a risk of stranding.
Bathymetry measured by an airborne lidar system is called airborne lidar bathymetry (ALB), and is
appropriate for use in shallow waters [2]. However, the target area must be in a flight capable area,
and the cost of ALB is still extremely high. Thus, insufficient bathymetric data have been collected for
coastal areas which cannot be easily accessed by ship and airplane for these measurements.

Another method that is currently in use for bathymetric measurement is depth estimation via
remote sensing, using multi-spectral or hyper-spectral sensors. Many studies have been conducted
using this method since the 1970s [3–14]. The use of satellite images helps to obtain information about
areas that are difficult to access by boat or airplane. Depth information obtained by analyzing satellite
images is called satellite derived bathymetry (SDB). Following improvements in the spatial resolution
of optical sensors, SDB has been the focus of hydrographic associations worldwide [15]. Studies have
been conducted using airborne hyper-spectral sensors [4,5,11], however only a few satellites have
hyper-spectral sensors with a high spatial resolution suitable for extracting depth information.
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With regard to multi-spectral sensors, studies have used satellite images with a high spatial resolution
greater than 30 m, such as those of the Landsat, SPOT, IKONOS, and WorldView satellites [3,6–10,12–14].
As analysis methods, an empirical method [8] and physics-based semi-empirical methods [3,9] have
been developed and used in SDB studies. Although variable bottom-reflectance and variation in the
optical properties of the water column impact accurate depth extraction, using several wavelength bands
increases the robustness of the depth estimation [9,11]. However, SDB based on multi-spectral sensors
still presents problems for practical use.

Previously used methods basically require supervised training data for each satellite image,
and SDB cannot be performed using only a satellite image. In practice, the SDB process is inefficient,
since the necessity of field surveys for training bathymetry data means that areas that are unreachable
by boat or airplane cannot be analyzed. Kanno et al. [12] proposed a generalized predictor based on
the method of Lyzenga et al. [9], and validated its accuracy using WorldView-2 images [13]. However,
in the study of the Kanno et al., test sites were relatively close to each other, and the water depth was
shallow (average depth of 3.27 m), and further validation using variable data is therefore necessary.

To develop a general water depth estimation model, machine learning is also considered to be a
useful approach. Data recorded by multi-spectral sensors have multi-dimensional features. Although
it is not easy to build a model that explains the relationship between multi-dimensional feature values
and water depth under variable observation conditions, machine learning can be used to automatically
investigate numerical models and provide an optimal solution.

Random forest (RF) [16] is one of the machine learning methods that is considered suitable for
building regression models that relate satellite images to water depth data. RF automatically creates
decision trees using the training data of an objective variable (e.g., water depth), and predictor variables
(e.g., pixel values of satellite images), and provides as results the mean of the outputs from the trees of
the regression model. Compared with previous simple empirical or semi-empirical models, RF can
create more flexible and accurate models based on real data [14].

Previous researchers created regression models from only one or a few satellite images,
and produced one bathymetry map from one satellite image for each target area [3,6–10,12–14].
It is not easy to obtain a satellite image that is free of clouds, waves, and turbidity across an entire area,
and the estimated water depth for a target area obtained from a given satellite image may be different
to the results obtained from other images. These problems have not yet been adequately discussed or
studied. The calculation cost of satellite image analysis has been a considerable drawback in previous
analysis environments, and may have prevented further analysis using many satellite images to solve
the above problems.

Google LLC (Mountain View, CA, USA) has provided the Google Earth Engine (GEE), a cloud-based
geographical information analysis system, including almost 30 years of Landsat data, which permits
analysis using many satellite images over a short period of time. In this study, using the GEE, a water
depth estimation model was created by RF using many satellite images for five study areas, with the
aim of improving the generality of the model. A bathymetry map for a given target site was created by
merging SDBs obtained from the analysis of several satellite images using the depth estimation model.

2. Data

Images captured by the Landsat-8 satellite and provided by the United States Geological
Survey (USGS) are available on the GEE. This study used Landsat-8/Surface Reflectance (SR)
products created by the USGS using Landsat-8 Surface Reflectance Code (LaSRC) [17], which are
atmospherically-corrected images.

The models used to relate satellite image data to reference bathymetry data were created using
machine learning. The bathymetry data used as reference data are listed in Table 1. The mean sea level
was set as the datum level for these data. Data for Hateruma, Japan; Oahu, USA; and Guanica, Puerto
Rico, were measured by airborne lidar systems and data of Taketomi, Japan; and Efate, Vanuatu were
measured by single-beam sonar systems.
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Table 1. List of reference bathymetry data for five test areas, two in Japan and one each in the USA,
Puerto Rico and Vanuatu. The data were measured by airborne lidar systems (CZMIL and Riegl
VO-880G) or single-beam sonar systems (HDS-5 and HDS-7) from a research vessel. Bathymetry
measured by an airborne lidar system is called airborne lidar bathymetry (ALB). These data were
either provided by the Hydrographic and Oceanographic Department (JHOD)/Japan Coast Guard
(JCG), National Oceanic and Atmospheric Administration (NOAA) or Yamaguchi University, or were
collected by field survey. The stated data accuracy expresses the error at the 95% confidence interval
(CI). The data were classified according to the category Zone of Confidence (ZOC) defined by the
international Hydrographic Organization (IHO).

Area Name Hateruma Oahu Guanica Taketomi Efate
Country Japan USA Puerto Rico Japan Vanuatu
Provider JCG/JHOD NOAA NOAA Yamaguchi Univ. RESTEC

Measurement method ALB ALB ALB Single beam sonar Single beam sonar

System CZMIL
(Teledyne Optech)

CZMIL
(Teledyne Optech)

Riegl VQ-880G
(Riegl)

HDS-5
(Lowrance)

HDS-7
(Lowrance)

Observation date Feb 2015 11 Sep, 2013 7 Apr, 2016 29–30 Sep, 2011 17–18 Aug, 2017

Depth accuracy (m) ±

√
0.52 + (0.013z)2

±

√
0.252 + (0.0075z)2 ±0.29 ±0.29 ±0.29

Positioning accuracy (m) ±(5 + 0.05z) ±(3.5 + 0.05z) ±1 ±5 ±5
ZOC A1 A1 A1 A1 A1

The Hateruma data, which were provided by the Hydrographic and Oceanographic Department
(JHOD)/Japan Coast Guard (JCG), meet the standards of S-44 order 1 b, published by the International
Hydrographic Organization (IHO) [18], and the maximum allowable vertical uncertainty at the 95%
confidence level (CL) for reduced depths (z) is expressed by:

±

√
0.52 + (0.013× z)2 (m) (1)

The maximum allowable horizontal uncertainty at the 95% CL for reduced depths of order 1
b is 5 m + 5% of depth. The Oahu and Guanica data were provided by the National Oceanic and
Atmospheric Administration (NOAA) through an on-line data viewer [19]. The Taketomi data and
Efate data were obtained by the HDS-5 (Lowrance, Tulsa, OK, USA) and HDS-7 (Lowrance, Tulsa,
OK, USA) systems, respectively, both of which include differential GPS. The depth error at the 95%
confidence interval (CI) of the bathymetry measurements obtained by a representative single-beam
sonar is ±0.29 m [20], and the positioning error of real-time differential GPS is lower than 5 m at the 95%
CI [21]. In Table 1, the data accuracy is classified according to the category Zone of Confidence (ZOC)
defined by the IHO [22]. The required position and depth accuracies for each ZOC are listed in Table 2.

Table 2. Category ZOC defined by the IHO. Both position and depth accuracy express the error at the
95% CI.

ZOC Positioning Accuracy (m) Depth Accuracy (m)

A1 ±(5 + 0.05z) ±(0.5 + 0.01z)
A2 ±20 ±(1.0 + 0.02z)
B ±50 ±(1.0 + 0.02z)
C ±500 ±(2.0 + 0.05z)
D Worse than C Worse than C

Landsat-8/SR images with cloud coverage of less than 20%, and an observation term between
April 2013 and August 2018, were collected for the study areas listed in Table 1. Figure 1 shows
sample images of the study areas. The numbers of images for each area are listed in Table 3. The total
number of scenes was 135. Two Landsat-8/SR images were required to cover the Guanica area, while a
single image was sufficient to cover the other areas. Our study areas are considered as areas of highly
transparent water. For Case 1 water [23], optical properties are determined primarily by phytoplankton.
Chlorophyll-a concentration is provided as a product of ocean color sensors. The average chlorophyll-a
concentrations in our study areas were derived from MODIS/Aqua data from 4 January 2003 to 31
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December 2018, provided by the National Aeronautics and Space Administration (NASA) Goddard
Space Flight Center, and were found to be less than 1.0 mg/m3.
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Table 3. List of Landsat-8 images.

Area Number Area Name Country Observation Term Number of Images

1 Hateruma Japan

April 2013 to
August 2018

25
2 Oahu USA 26
3 Guanica Puerto Rico 50
4 Taketomi Japan 24
5 Efate Vanuatu 10

Bathymetry data (objective variable) and the related pixel values of satellite images (predictor
variables) were grouped as one unit of data, and a dataset was created for each satellite image. Here,
the dataset is expressed as:

Ds, j =
{
(zi, ρi)

∣∣∣(i = 0, . . . , I)
}

(2)

where Ds,j is the dataset for study area s and satellite image j, zi the depth for number i, I is the
maximum number of data points in the satellite image, and ρ is the vector value of the reflectance of
the satellite image, expressed by Equation (3):

ρ =
{
ρb

∣∣∣(b = 1, 2, 3, 4, 5)
}

(3)

where b is the band number. Bands 1, 2, 3, 4, and 5 were used in our study. Table 4 shows the band
number, wavelength, and spatial resolution of the Landsat-8 satellite. The selected band numbers
correspond to visible and near-infrared bands with a 30 m spatial resolution. Landsat-8/SR has mask
images, including cloud information for each pixel. Pixel data which were judged as cloud were
removed from the datasets. The dataset for a study area s (Ds) is expressed as:

Ds =
{
Ds, j

∣∣∣( j = 1, . . . , Js)
}
=

{
(zi, ρi)

∣∣∣(i = 1, . . . , Ns)
}

(4)

where Js is the number of satellite images for area s and Ns is the number of data points in all the
satellite images. The dataset for all five areas (D) was created by binding Ds, as illustrated in Figure 2
and expressed by Equation (5):

D =
{
(s, Ds)

∣∣∣(s = 1, 2, 3, 4, 5)
}
=

{
(s, zi, ρi)

∣∣∣(s = 1, 2, 3, 4, 5)(i = 1, . . . , N)
}

(5)

where s corresponds to Hateruma, Oahu, Guanica, Taketomi, and Efate, and N is the sum of Ns in all
five areas.

Table 4. Landsat-8 sensor specifications.

Band Number Name Wave Length (µm) Spatial Resolution (m)

1 Coastal 0.435−0.451 30
2 Blue 0.452−0.512 30
3 Green 0.533−0.590 30
4 Red 0.636−0.673 30
5 NIR 0.851−0.879 30
6 SWIR-1 1.566–1.651 30
7 SWIR-2 2.107–2.294 30
8 Pan 0.503−0.676 15
9 Cirrus 1.363–1.384 30

10 TIR-1 10.60–11.19 100
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Figure 2. Process followed for dataset creation. Ds is the dataset for a study area s. The dataset for all
five areas (D) was created by binding Ds.

3. Methods

Our proposed SDB method using machine learning and multi-temporal satellite images follows a
three step process (Figure 3). In step 1, the first SDB result is created by an RF analysis of each satellite
image. In step 2, a masking process for pixels, including land, cloud, waves, or deep water is applied.
In step 3, the final SDB result is produced by merging several SDBs for each target area.
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Figure 3. The three steps of the satellite derived bathymetry (SDB) production process.

3.1. Step 1

The radiance recorded by a satellite sensor can be converted into a reflectance at the top of
atmosphere (TOA), which is less influenced by changes in the sun’s irradiance, using Equation (6):

ρi =
Li d2

ES π

Esuni cos(θs)
(6)

where Li is the radiance recorded by the band i satellite sensor, dES is the earth–sun distance, Esuni is
the average solar spectral irradiance recorded by band i, and θs is the solar zenith angle. In shallow
water, TOA reflectance is expressed as a function of the water depth (z) [3,9]:

ρi = tiri exp(−Kdigz) + ρsi + ρgi (7)

where t is a coefficient including the transmittance of the atmosphere and water surface, r is the
bottom reflectance, Kd is the sum of the diffuse attenuation coefficients for upwelling and downwelling
light, g is the coefficient of the optical path length in the water, ρs includes the scattering effect in the
atmosphere, and ρg includes the reflected sunlight contribution at the sea surface. To extract water depth
information, other variables are needless and obstructive. Landsat-8/SR is an atmospherically-corrected
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product, and thus the effects of ρs and t are removed. The areas strongly influenced by ρg are masked
in step 2.

The RF regression model was selected to build our depth estimation model. All visible Landsat-8
bands were used as predictor variables for RF training. In RF for regression, an arbitrary number of
sub-datasets (a value of 10 was empirically set in our study) were extracted by the random sampling
from our training dataset. A decision tree for water depth estimation was built for each sub-dataset.
To build a tree to precisely and accurately estimate depth, training data should widely and precisely
cover the target depth zone. The RF method estimates depth as the mean of the outputs of these decision
trees. The RF regression model is flexible, however it is highly dependent upon any training data.
It is important that there is a large amount of training data, and that the data cover an objective data
distribution. Thus, large amounts and various types of data must be collected to build a general and
robust water depth estimation model. The training data should include a slightly wider depth zone
than the target zone to obtain information about inapplicable areas. This is the reason that RF modeling
is conducted before the masking process in step 2. In this paper, the bathymetry estimated by the
predictor for each satellite image in step 1 is called SDB-1.

3.2. Step 2

Land, clouds, boats and the sun glint signal can be masked when using the near-infrared
band [9,24]. The surface reflectance of these targets is relatively high, compared with submerged areas,
as the attenuation rate in water is high in this wavelength, and the threshold for masking is decided
based on statistical values in deep water.

Deep water areas were identified by the visual interpretation of satellite images for each area,
and the average and standard deviation of the surface reflectance in near-infrared band (Landsat-8
band 5) was determined for these areas. Using statistical values of the near-infrared band, a threshold
(Tland) for the masking of upland, terrestrial features, and sun glint was calculated by Equation (8):

Tland = ρdeep,N + σdeep,N × α (8)

where ρdeep,N and σdeep,N are the average and standard deviation, respectively, of the surface reflectance in
the near-infrared band in deep water areas; and α is a coefficient; whose value is set empirically as 10.

Transparency in water is high in the blue-green band wavelength. The statistical values of the
blue band (band 2 in Landsat) in deep water were also calculated. Deep water pixels are discriminated
by a threshold (Tdeep), calculated by Equation (9):

Tdeep = ρdeep,B + σdeep,B × β (9)

where ρdeep,B and σdeep,B are the average and standard deviation of surface reflectance in the blue band
in deep water, respectively; and β is a coefficient, whose value is set to 3 to cover deep water at the
99% CI. The result of applying these masking procedures to SDB-1 is called SDB-2.

3.3. Step 3

The final SDB result, which is called SDB-3, was created by merging the SDB-2 images for the
target areas. The median of the SDB-2 values for each pixel was used as the output value. Sea level
depends on satellite observation time. Our hypothesis was that a depth relative to the almost mean sea
level could be obtained by selecting the median value of the estimated depths derived from multiple
satellite images. For each pixel, the number of data points and the standard deviation of SDB-2s were
calculated. Pixels with fewer than Tnum data points, or whose standard deviation was higher than
Tstd, were considered as unreliable results. Here, Tnum was set as 3 to obtain the minimum value for a
calculation of the standard deviation, and Tstd = 5 was set empirically in our study areas.
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3.4. Accuracy Assessment

An accuracy assessment for each SDB step was conducted following the work flow shown in
Figure 4. Data were randomly extracted for each area from the created datasets, the maximum
number of data points was limited to 20,000, and a new dataset (Ds’) was created for each area. Here,
the maximum number is an important parameter, and larger amounts of training data are considered
better for machine learning. However, due to limitation of the calculation cost of GEE, 20,000 was
almost the maximum number for each area. Then, these data were randomly divided into a training
dataset for machine learning (Dts), and an evaluation dataset for accuracy assessment (Des). Regarding
the evaluation data, data with water depth of 0 to 20 m depths were the target, and other data were
removed. The evaluation datasets for the five areas were created by binding these evaluation datasets
as follows:

De =
{
(s, zi, ρi)

∣∣∣(s = 1, 2, 3, 4, 5)(i = 1, . . . , Ne), 0 ≤ zi ≤ 20
}

(10)

where Ne is the number of evaluation data in the five areas. The training data should cover a slightly
wider depth zone than the evaluation data for practical applications. An RF depth estimation model
cannot estimate the depth outside of the depth zone of the training data, therefore it was difficult to
judge whether an area was out of range from the estimated result. To distinguish the applicable area,
training data with a depth of –5 to 25 m were retained. The training datasets for the five areas were
created by binding these training datasets, expressed as:

Dt =
{
(s, zi, ρi)

∣∣∣(s = 1, 2, 3, 4, 5)(i = 1, . . . , Nt),−5 ≤ zi ≤ 25
}

(11)

where Nt is the number of training data in the five areas. The training datasets of all five areas (Dt)
were used to create a depth estimation model. For comparison, a model was also created using only the
training dataset of Hateruma. By applying these models to ρi in the training dataset and the evaluation
dataset, assessment data sets for the training dataset and evaluation dataset (Vt and Ve, respectively)
were created, as expressed in Equations (12) and (13), respectively:

Vt =
{
(s, zi, f (ρi))

∣∣∣(s = 1, 2, 3, 4, 5)(i = 1, . . . , Nt′), 0 ≤ zi ≤ 20, 0 ≤ f (ρi) ≤ 20
}

(12)

Ve =
{
(s, zi, f (ρi))

∣∣∣(s = 1, 2, 3, 4, 5)(i = 1, . . . , Ne), 0 ≤ zi ≤ 20, 0 ≤ f (ρi) ≤ 20
}

(13)

where f (ρ) is a function of the depth estimation model, and the result corresponds to SDB-1. Training
data with a depth of 0 to 20 m were selected for comparison with the evaluation data. Accuracy
assessments of SDB-1 for training data and evaluation data were conducted using the Vt and Ve
datasets, respectively. Then, by applying mask processing in step 2 using function A(ρ), an assessment
dataset Ve′ was created, which is expressed by Equation (14):

Ve′ = {(s, zi, f (ρi))
∣∣∣(s = 1, 2, 3, 4, 5)(i = 1, . . . , Ne′), 0 ≤ zi ≤ 20, 0 ≤ f (ρi) ≤ 20, A(ρi)} (14)

where f (ρ) in the dataset Ve’ corresponds to SDB-2. An accuracy assessment of SDB-2 was conducted
using the Ve′ dataset.

SDB-3 was created by merging SDB-2s in each pixel, and cannot be created from the dataset Ve′.
Then, SDB-3 was created by applying steps 1–3 to the original satellite images. The pixels were
randomly sampled, including reference bathymetry data and SDB-3, and an assessment dataset Ve”
was created. The maximum number of data points for each area was limited to 10,000 to match the
maximum number in the evaluation dataset (Des). Ve” is expressed by Equation (15):

Ve′′= {(s, zi, yi)
∣∣∣(s = 1, 2, 3, 4, 5)(i = 1, . . . , Ne′′ ), 0 ≤ zi ≤ 20, 0 ≤ yi ≤ 20

}
(15)

where yi is SDB-3, and Ne′′ is the number of assessment data.
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Figure 4. SDB accuracy assessment process. A new dataset (D’) was created by random sampling from
the original dataset (D). D’ was divided into the training dataset (Dt) and an evaluation dataset (De).
A random forest (RF) depth estimation model was created using Dt. Vt and Ve are assessment data sets
for the training dataset and evaluation dataset of SDB-1, respectively. Ve’ and Ve” are assessment data
sets for evaluation dataset of SDB-2 and SDB-3, respectively. A(ρ) is the function of mask processing.

4. Results

The results of the accuracy assessment for training data from all areas, and for those using data
only from Hateruma, are listed in Tables 5 and 6, respectively. In both tables, the accuracy information,
including number of data points (n), root mean square error (RMSE), mean error (ME), and decision
coefficient (R2), for SDB-1, SDB-2, and SDB-3 for each area and all areas are listed. In the SDB-1 column,
accuracies are listed for both the training data and the evaluation data. Although the water depth zone
of the original training data was –5 to 25 m, the training data, with a depth zone of 0 to 20 m, were
used for accuracy assessment for comparison with the accuracy of the evaluation data. The accuracy
assessment data of SDB-2 were originally the same as the SDB-1 evaluation data, however the number
of data points was different due to the masking process. In Tables 5 and 6, the number of data points
decreases to less than two-thirds of the original number for all areas, demonstrating the impact of
this process.
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Table 5. Accuracies for satellite derived bathymetry (SDB) when all area data were used for RF
training. In the table, the number of data points (n), root mean square error (RMSE), mean error (ME),
and decision coefficient (R2) of SDB-1, SDB-2 and SDB-3 for each area and all areas are listed as accuracy
information. In the SDB-1 column, accuracies are listed for both training data and evaluation data.
Training data for the 0 to 20 m depth zone were used for accuracy assessment, although the depth zone
of the original training data was –5 to 25 m. The number of data points in the original data are also
listed. The accuracies of SDB-2 and SDB-3 were assessed using the evaluation data separated from the
training data used for SDB-1.

SDB-1 SDB-2 SDB-3

Training Evaluation Evaluation Evaluation

Area Depth (m) –5 to 25 0 to 20 0 to 20 0 to 20 0 to 20

Hateruma n 10,055 7451 7478 4112 10,197
RMSE (m) - 1.53 2.43 1.97 1.47

ME (m) - 0.38 0.66 0.59 0.69
R2 - 0.934 0.820 0.890 0.932

Oahu n 9974 7682 7500 5406 5810
RMSE (m) - 1.23 2.08 1.77 1.24

ME (m) - 0.42 0.75 0.57 0.65
R2 - 0.935 0.800 0.855 0.931

Guanica n 9972 9575 9758 6136 10,016
RMSE (m) - 1.12 1.95 1.85 1.40

ME (m) - −0.15 −0.26 −0.38 −0.34
R2 - 0.935 0.791 0.828 0.867

Taketomi n 3427 3131 3044 2166 400
RMSE (m) - 1.54 2.44 1.94 1.67

ME(m) - 0.17 0.23 0.11 0.10
R2 - 0.884 0.663 0.743 0.848

Efate n 1199 1130 1123 1013 269
RMSE (m) - 1.21 2.23 1.79 1.48

ME (m) - −0.19 −0.41 −0.51 −0.33
R2 - 0.877 0.527 0.604 0.738

All n 34,627 28,981 28,835 18,719 26,451
RMSE (m) - 1.32 2.21 1.87 1.41

ME (m) - 0.16 0.27 0.16 0.27
R2 - 0.939 0.821 0.875 0.920

Table 6. Accuracies for SDBs when the Hateruma data were used for training.

Area SDB-1 SDB-2 SDB-3

Training Evaluation Evaluation Evaluation

Hateruma n 7617 7461 4114 9989
RMSE (m) 1.52 2.43 1.90 1.37

ME (m) 0.35 0.57 0.48 0.54
R2 0.936 0.826 0.898 0.941

Oahu n - 7318 5259 5780
RMSE (m) - 2.92 2.19 1.32

ME (m) - 0.52 0.10 0.40
R2 - 0.634 0.789 0.927

Guanica n - 9618 5972 10,005
RMSE (m) - 3.99 3.78 2.88

ME (m) - −2.19 −2.15 −1.96
R2 - 0.227 0.319 0.474
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Table 6. Cont.

Area SDB-1 SDB-2 SDB-3

Training Evaluation Evaluation Evaluation

Taketomi n - 3080 2269 400
RMSE (m) - 3.41 2.54 2.39

ME (m) - 0.03 −0.09 −0.33
R2 - 0.213 0.246 0.398

Efate n - 1125 1024 270
RMSE (m) - 2.61 2.28 2.24

ME (m) - −0.34 −0.46 −0.58
R2 - 0.311 0.332 0.221

All n - 28,602 18,638 26,458
RMSE (m) - 3.26 2.79 2.09

ME (m) - −0.47 −0.59 −0.46
R2 - 0.618 0.714 0.824

In all areas, as shown in Table 4, the RMSE of SDB-1/evaluation data is 2.21 m, 1.67 times larger
than the RMSE of the SDB-1/training data (1.32 m). Both the evaluation and training datasets were
collected randomly, and there is almost no statistical difference between these two datasets. One of the
major reasons for a large difference in errors is the overfitting of the training data in the process of
RF learning. Overfitting often occurs in machine learning [25], and it is important to clearly divide
evaluation data from training data.

The RMSE of SDB-2 is smaller than that of the SDB-1/evaluation data, and the RMSE of SDB-3
is smaller than that of SDB-2. The total number of training data points was 34,627 across all water
depths, and 28,981 in the 0 to 20 m depth zone. The number of data points was different for different
study areas, and was larger in Hateruma, Oahu, and Guanica, where ALB bathymetry data are widely
available. The number of data points was smaller in Taketomi and Efate, where bathymetry data
obtained by single-beam sonar are linearly distributed. However, the effect of the number of data
points seems to be small, since the RMSE of the SDB-1/evaluation data in Efate, where the number of
data points was smallest, was the third smallest.

As can be seen from Tables 5 and 6, the RMSE of SDB-3 for Hateruma, when the Hateruma data
were used for RF training (Table 6), is lower than it is when all area data were used for RF training
(Table 5); however, the difference is only 0.1 m. The RMSE of SDB-3 in all areas when all area data
were used for RF training (Table 5) is 0.68 m lower than it is when the Hateruma data were used for
RF training (Table 6), which is a relatively large difference. Thus, training using data collected from
different areas improves the generality of the RF predictor, and the negative impact on each area seems
to be small.

Scatterplots of the SDB and reference bathymetry data for all areas described in Tables 5 and 6
are shown in Figures 5 and 6, respectively. When SDB data corresponds to the reference bathymetry
data, it is located on the y = x line. In Figure 5a, the SDB-1/training data are gathered close to the
y = x line, and include few data with a large error. In Figure 5b, the SDB-1/evaluation data are more
variable than the training data. The variability of the SDB-2 data (Figure 5c) seems to be smaller than
that of the SDB-1/evaluation data. In the plots of SDB-3/evaluation data (Figure 5d), the data points
are aggregated close to the y = x line, as are the SDB-1/training data, however the number of outliers
seems to be smaller. The plots in Figure 6 look similar to those in Figure 5, however the variability
seems to be larger in the plots in Figure 6 than those in Figure 5.

To determine the relationship between water depth and accuracy, the RMSE and ME for narrower
depth zones were also calculated for SDB-3 (Table 5), and the results are shown in Figure 7. From 1 to
19 m in the reference bathymetry h, RMSE and ME were calculated for the range h ±0.5. The interval of
h was 1 m. RMSE was variable, and ranging from 0.83 to 1.91 m. The maximum value of ME was
1.37 m at a depth of 4 m, and ME decreased with the increase of depth after 4 m.
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Figures 8–12 depict images of SDB and reference bathymetry data in the five study areas.
The original reference bathymetry data obtained from ALB and single-beam sonar are point data,
however, for comparison with SDB, the data were resampled and converted to images adjusted to the
resolution of Landsat-8/SR. Visually, SDB corresponds well with the reference bathymetry images in all
areas. The depth was estimated in the SDB, even in places for which there was no data in the reference
bathymetry images.Remote Sens. 2018, 10, x 12 of 21 
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Figure 5. Scatter plots of SDB versus reference bathymetry data for all areas, when all area data were
used for RF training. (a) SDB-1 for training data. (b) SDB-1 for evaluation data. (c) SDB-2 for evaluation
data. (d) SDB-3 for evaluation data. In each graph, the x-axis expresses water depth (m) in the reference
bathymetry data, and the y-axis expresses water depth (m) in the SDB.
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Figure 6. Scatter plots of SDB versus reference bathymetry data for all areas when the Hateruma area
data were used for RF training. (a) SDB-1 for training data. (b) SDB-1 for evaluation data. (c) SDB-2 for
evaluation data. (d) SDB-3 for evaluation data. In each graph, the x-axis expresses water depth (m) in
the reference bathymetry data, and the y-axis expresses the water depth (m) of SDB.Remote Sens. 2018, 10, x 14 of 21 
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shows the root-mean-square error (RMSE) and mean error (ME) calculated for the range h ± 0.5.
The interval of h was 1 m.



Remote Sens. 2019, 11, 1155 14 of 19
Remote Sens. 2018, 10, x 15 of 21 

 

 
Figure 8. SDB (a) and reference bathymetry image (b) for Hateruma. In each image, the color scale 
expresses water depth of 0 to 20 m. White pixels represent areas with no data. 

 
Figure 9. SDB (a) and reference bathymetry image (b) for Oahu. In each image, the color scale 
expresses water depths of 0 to 20 m. White pixels represent areas with no data. 

Figure 8. SDB (a) and reference bathymetry image (b) for Hateruma. In each image, the color scale
expresses water depth of 0 to 20 m. White pixels represent areas with no data.

Remote Sens. 2018, 10, x 15 of 21 

 

 
Figure 8. SDB (a) and reference bathymetry image (b) for Hateruma. In each image, the color scale 
expresses water depth of 0 to 20 m. White pixels represent areas with no data. 

 
Figure 9. SDB (a) and reference bathymetry image (b) for Oahu. In each image, the color scale 
expresses water depths of 0 to 20 m. White pixels represent areas with no data. 

Figure 9. SDB (a) and reference bathymetry image (b) for Oahu. In each image, the color scale expresses
water depths of 0 to 20 m. White pixels represent areas with no data.



Remote Sens. 2019, 11, 1155 15 of 19
Remote Sens. 2018, 10, x 16 of 21 

 

 
Figure 10. SDB (a) and reference bathymetry images (b) for Guanica. In each image, the color scale 
expresses water depths of 0 to 20 m. White pixels represent areas with no data. 

 

Figure 11. SDB (a) and reference bathymetry images (b) for Taketomi. In each image, the color scale 
expresses water depths of 0 to 20 m. White pixels represent areas with no data. 

Figure 10. SDB (a) and reference bathymetry images (b) for Guanica. In each image, the color scale
expresses water depths of 0 to 20 m. White pixels represent areas with no data.

Remote Sens. 2018, 10, x 16 of 21 

 

 
Figure 10. SDB (a) and reference bathymetry images (b) for Guanica. In each image, the color scale 
expresses water depths of 0 to 20 m. White pixels represent areas with no data. 

 

Figure 11. SDB (a) and reference bathymetry images (b) for Taketomi. In each image, the color scale 
expresses water depths of 0 to 20 m. White pixels represent areas with no data. 

Figure 11. SDB (a) and reference bathymetry images (b) for Taketomi. In each image, the color scale
expresses water depths of 0 to 20 m. White pixels represent areas with no data.
Remote Sens. 2018, 10, x 17 of 21 

 

 

Figure 12. SDB (a) and reference bathymetry images (b) for Efate. In each image, the color scale 
expresses water depths of 0 to 20 m. White pixels represent areas with no data. 

5. Discussion 

A depth estimation model was created employing RF machine learning, using a large amount 
of training data, and accuracies were evaluated for SDB derived from multiple satellite images. The 
accuracy of single-scene satellite image analysis corresponds to the accuracy of SDB-2 in our study. 
The accuracies of SDB-2 were calculated for SDBs derived from more than 10 scenes of satellite 
images for each study area. 

The RMSE of SDB-2 for each study area ranged from 1.77 to 1.97 m and 1.87 m for all areas. These 
errors are similar to the results obtained for single-scene analysis in previous studies [6,9,13], 
although conditions were different, and therefore the results cannot be directly compared. The 
accuracy of SDB was improved by merging multiple SDBs, and RMSE was reduced to 78% (1.41/1.87) 
in all area assessments. RMSE varied depending on the water depth, however there was no 
systematic relationship between RMSE and water depth. The observed decreases in ME with 
increasing water depth indicate that the error due to underestimation increases in deeper water. 

Although RMSE and ME were calculated as accuracy indexes in our study, S-44 1b and ZOC, 
defined by the IHO, are the standards of the maximum allowable error at the 95% CI. When RMSE is ∆ and ME is 0, the error range at the 95% CI is ±1.96∆, and this range becomes smaller with 
increasing ME. Then the result has a maximum allowable error of ±ε at the 95% CI, when ∆ ≤ ε/1.96 
is fulfilled. In our study, the RMSE of the estimated water depth was 1.41 m, and the positioning 
accuracy of Landsat-8 is 65 m circular error at the 90% CL [26]. These accuracies do not meet the IHO 
S-44 1b standards. Regarding the ZOC standards, the accuracies of our results meet the ZOC/C 
standards, which state that the errors for position and water depth are ±500 m at 95% CI and ±2.00 
m + 5% z at 95% CI (where, z is the water depth in meters), respectively. The required accuracies for 
ZOC/B for position and water depth are ±50 m at the 95% CI and ±1.00 m + 2 % z at the 95% CI, 
respectively, and our results do not meet these standards. To meet the standards of S-44 1b or ZOC/B, 
satellite images with a higher spatial resolution would need to be analyzed, such as those from 
Sentinel-2 or WorldView-3. 

International bathymetry mapping projects include the Seabed 2030 project, a collaborative 
project between the Nippon Foundation (Minato-ku, Tokyo, Japan) and the General Bathymetric 
Chart of the Oceans (GEBCO). It aims to create bathymetric map data all over the world with a 100 
m mesh size by the year 2030. The SDB maps created in this study have a resolution of 30 m, and 
contribute to the project for shallow water mapping. 

The unique elements of our study include using machine learning and multi-temporal satellite 
images for water depth estimation. Machine learning has a superior flexibility, and can be used to 
create suitable models if large amounts of training data are available. Previously, collecting sufficient 
training data was difficult. Today however, GEE enables efficient analysis of satellite images on a 

Figure 12. SDB (a) and reference bathymetry images (b) for Efate. In each image, the color scale
expresses water depths of 0 to 20 m. White pixels represent areas with no data.



Remote Sens. 2019, 11, 1155 16 of 19

5. Discussion

A depth estimation model was created employing RF machine learning, using a large amount
of training data, and accuracies were evaluated for SDB derived from multiple satellite images.
The accuracy of single-scene satellite image analysis corresponds to the accuracy of SDB-2 in our study.
The accuracies of SDB-2 were calculated for SDBs derived from more than 10 scenes of satellite images
for each study area.

The RMSE of SDB-2 for each study area ranged from 1.77 to 1.97 m and 1.87 m for all areas.
These errors are similar to the results obtained for single-scene analysis in previous studies [6,9,13],
although conditions were different, and therefore the results cannot be directly compared. The accuracy
of SDB was improved by merging multiple SDBs, and RMSE was reduced to 78% (1.41/1.87) in all
area assessments. RMSE varied depending on the water depth, however there was no systematic
relationship between RMSE and water depth. The observed decreases in ME with increasing water
depth indicate that the error due to underestimation increases in deeper water.

Although RMSE and ME were calculated as accuracy indexes in our study, S-44 1b and ZOC,
defined by the IHO, are the standards of the maximum allowable error at the 95% CI. When RMSE is ∆
and ME is 0, the error range at the 95% CI is ±1.96∆, and this range becomes smaller with increasing ME.
Then the result has a maximum allowable error of ±ε at the 95% CI, when ∆ ≤ ε/1.96 is fulfilled. In our
study, the RMSE of the estimated water depth was 1.41 m, and the positioning accuracy of Landsat-8
is 65 m circular error at the 90% CL [26]. These accuracies do not meet the IHO S-44 1b standards.
Regarding the ZOC standards, the accuracies of our results meet the ZOC/C standards, which state
that the errors for position and water depth are ±500 m at 95% CI and ±2.00 m + 5% z at 95% CI (where,
z is the water depth in meters), respectively. The required accuracies for ZOC/B for position and water
depth are ±50 m at the 95% CI and ±1.00 m + 2 % z at the 95% CI, respectively, and our results do not
meet these standards. To meet the standards of S-44 1b or ZOC/B, satellite images with a higher spatial
resolution would need to be analyzed, such as those from Sentinel-2 or WorldView-3.

International bathymetry mapping projects include the Seabed 2030 project, a collaborative project
between the Nippon Foundation (Minato-ku, Tokyo, Japan) and the General Bathymetric Chart of the
Oceans (GEBCO). It aims to create bathymetric map data all over the world with a 100 m mesh size by
the year 2030. The SDB maps created in this study have a resolution of 30 m, and contribute to the
project for shallow water mapping.

The unique elements of our study include using machine learning and multi-temporal satellite
images for water depth estimation. Machine learning has a superior flexibility, and can be used to
create suitable models if large amounts of training data are available. Previously, collecting sufficient
training data was difficult. Today however, GEE enables efficient analysis of satellite images on a
cloud computing system, in which the process of downloading satellite images can be skipped and
satellite images can be analyzed directly on the cloud system. Aside from GEE, Amazon Web Services
(AWS), operated by Amazon.com, Inc. (Seattle, WA, USA), also provides a satellite image analysis
environment on a cloud computing system. Computing cost limits the number of datasets that can be
used in GEE. A limited amount of data is a cause of overfitting in RF training. If a larger amount of data
is made available by improvements to the analysis environment, and the efficiency of programming
for implementation, further increases in the accuracy of SDB will be expected.

There are several other machine learning methods aside from RF. For example, the support vector
machine (SVM) method was applied to produce SDB by Misra et al. [27], who achieved a performance
that was comparable to the method of Lyzenga et al. [9]. Additionally, deep learning methods, such as
convolutional neural networks (CNNs), have produced notable results in many fields [28], and are
also considered to be useful for producing SDB.

Only a few studies have focused on the analysis of multi-temporal satellites for water depth
estimation. GEE improves the efficiency of the analysis of multi-temporal satellite images. When
analyzing a single satellite image, moving objects such as clouds and ships prevent underwater
information from being obtained. Figure 13 shows the number of SDB data points created for each
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pixel in the Hateruma area, and indicates that multiple SDBs help to reduce the amount of missing
data. In shallow water between 0 and 20 m in depth, many pixels have about 10 or more data points.
Not all of the SDB results are effective; however, unexpected results were also obtained, especially in
deep water. In step 3 of our SDB method, the threshold for the number of SDB data points was set
to three; however, if more SDB data points are available, choosing a larger number for the threshold
may effectively exclude unreliable results. Figure 14 shows the standard deviations of the SDB data
points for each pixel in the Hateruma area. The figure indicates that the standard deviation is low
for shallow water, and high for water around 20 m in depth. In areas with high standard deviations
of SDB, the estimation of water depth is difficult, and such areas could have been removed by the
masking based on values of standard deviation. In our study, the threshold value of standard deviation
for masking was empirically determined as five, however the proper value may depend upon analysis
conditions such as the number of satellite images, the types of satellite sensor, and the environment of
the target area.
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6. Conclusions

In this study, a new depth estimation method using machine learning and multi-temporal satellite
images was proposed with the aim of creating a robust depth estimation model for high-transparency
coastal waters. The RMSE of the final SDB products in all five studied areas for water depths of 0 to
20 m was 1.41 m.

GEE was an essential analysis environment to complete this research. Satellite image analysis
systems based on cloud computing, such as GEE and AWS, will accelerate researches in many fields
which require analysis of machine learning and multi-temporal satellite images.

The SDB production system developed in our study is expected to be applicable to various highly
transparent shallow waters regions, which is the advantage of our method compared with traditional
bathymetry measurement methods.

One of the problems in the analysis of multi-temporal satellite images for the purpose of water
depth estimation is the tide level. We hypothesize that the water depth relative to the almost mean sea
level could be obtained by selecting the median value of the estimated water depths derived from
multiple satellite images. The validation of this hypothesis, and the improvement of accuracy by
compensating for tide effect, are subjects for future study.

The depth estimation model used in this study was constructed using training data from highly
transparent water. For less transparent water, another model may have to be built. Further studies
including parameters of optical properties of the water column, such as chlorophyll-a, could lead to
the improvement of our model.

We expect that the SDB obtained using our proposed method will contribute to various fields that
require shallow water bathymetry.
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