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Abstract: This paper studies the use of the Fully Convolutional Networks (FCN) model in the
extraction of water bodies from Very High spatial Resolution (VHR) optical images in the case of
limited training samples. Two different seasonal GaoFen-2 images with a spatial resolution of 0.8
m in the south of the Beijing metropolitan area were used to extensively validate the FCN model.
Four key factors including input features, training data, transfer learning, and data augmentation
related to the performance of the FCN model were empirically analyzed by using 36 combinations of
various parameter settings. Our findings indicate that the FCN-based method can work as a robust
and cost-effective tool in the extraction of water bodies from VHR images. The FCN-based method
trained on a small amount of labeled L1A data can also significantly outperform the Normalized
Difference Water Index (NDWI) based method, the Support Vector Machine (SVM) based method, and
the Sparsity Model (SM) based method, even when radiometric normalization and spatial contexts
are introduced to preprocess the input data for the latter three methods. The advantages of the
FCN-based method are mainly due to its capability to exploit spatial contexts in the image, especially
in urban areas with mixed water and shadows. Though the settings of four key factors significantly
affect the performance of the FCN based method, choosing a qualified setting for the FCN model
is not difficult. Our lessons learned from the successful use of the FCN model for the extraction of
water from VHR images can be extended to extract other land covers.

Keywords: water body; extraction; very high spatial resolution; remote sensing; fully
convolutional networks

1. Introduction

The rapid development of urbanization in the last decades has greatly changed the spatial
distribution and quality of the surface water body in urban areas in China. One noticeable consequence
is the deterioration of water quality due to frequent human activities. Thus, timely water body
spatial distribution and quality information in urban areas is important in the management of public
health and the living environment [1,2]. With the need of high frequency monitoring in large areas,
traditional ground surveying cannot meet current demands due to its high labor cost and low efficiency.
The development of remote sensing technology in recent years has largely improved the quality and
availability of Very High spatial Resolution (VHR) optical remote sensing images (usually <1 m spatial
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resolution), which have great potential for monitoring the fine scale surface water body in urban areas.
However, developing a fast and effective way to extract surface water bodies from VHR images is still
a significant problem.

Over the past decades, various water body mapping methods have been developed for remote
sensing data [3–15]. A commonly used approach is based on water spectral indices such as the
Normalized Difference Water Index (NDWI) [3,4]. The difficulty of using existing water indices is that
the optimal thresholds vary a lot across regions. Although novel methods have been developed to
alleviate this difficulty [5–11], most of them concentrate on low or middle spatial resolution optical
images such as Sentinel-2 and Landsat. Low spatial resolution limits the capability of the data to detect
small or narrow water bodies in urban areas [12]. Additionally, in the case of high spatial resolution
optical images, the prevalence of shadows from tall buildings in urban areas makes the problem more
complex, especially when the sun’s zenith angle is low.

To overcome the limitation of these indices in high spatial resolution images, Huang et al. [13]
made use of a group of information indexes and a machine learning technique to differentiate non-water
responses such as shadows from water bodies. However, this strategy is sensitive to the quality of the
threshold for the indexes and the training data for machine learning techniques. Yao et al. [14] selected
the optimal threshold by a Support Vector Machine (SVM) based learning process to derive an initial
result, and then refined it by a shadow removal process. However, the shadow removal method has a
strong assumption of a rigid geometric relationship between a tall building and its shadow in the VHR
image, which does not always hold true due to the existence of artificial targets with irregular shapes
in urban areas. Recently Wu et al. [15] proposed a Two-Step Urban Water Index to extract water bodies
from high spatial resolution images in a robust way. The method follows a strategy similar to [14]
but it models the spectral features of water and shadows differently by combining an Urban Water
Index (UWI) and an Urban Shadow Index (USI) both of which are established on the basis of spectral
analysis and linear SVM. Although the effectiveness of the method has been extensively validated on
high spatial resolution images from various sites, it heavily relies on atmospheric correction of the test
image and is also not well validated on data from different seasons.

Different from using traditional expert designed features to capture spatial contexts in images,
Convolutional Neural Networks (CNN) are shown to have great advantages in representing spatial
contexts in images based on an end-to-end learning framework [16,17]. The deep learning model has
gained increasing popularity in the remote sensing community nowadays [18,19]. Various novel deep
learning models have been developed for scene classification and change detection on remote sensing
data [20,21]. Among the developed deep learning models, the recently developed Fully Convolutional
Networks (FCN) [22,23] can perform sematic segmentation and fits well to the pixel-wise classification
of remote sensing data. Based on the FCN architecture, Isikdogan et al. [24] proposed a novel method
to map water from Landsat data. The method can distinguish water from snow, ice, cloud, and terrain
shadows, without requiring a locally varying threshold. However, the model was trained from scratch
and was largely based on the freely available Landsat archives and the global inland water mask layer.
The situation is quite different for VHR images in urban areas in several aspects such as the abundant
availability of free training samples, the stability of spectral reflectance, the characteristics of spatial
contexts, and the range of spectral coverage.

As far as we know, no previous work has seriously studied the extraction of water bodies from
VHR images based on the FCN model. In this paper, we study the capability of the FCN model for
the extraction of water bodies from VHR images, especially in the case of limited training samples.
We extensively evaluate the performance of the FCN based method and compare it with the commonly
used spectral index based method and supervised learning methods. We also empirically analyze
several key factors in the FCN model implementation. Our lessons learned from this study can be
extended to extract other land covers from VHR images.
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2. Materials and Methods

2.1. Data

The study area selected was in the south of the Beijing metropolitan area. The high intensity of
the human activity in this area has brought great attention to the surface water quality. Thus, fine scale
and high frequency surface water body monitoring in this area has now become a routine task. Two
different seasonal images from Chinese GaoFen-2, namely D302 and D609 acquired on March 2th 2017
and June 9th 2017, respectively, were used to extensively validate the FCN model by visual inspection
and quantitative analysis. Each image has four bands (Blue (B), Green (G), Red (R), and Near Infrared
(NIR)) and 0.8 m spatial resolution after pan sharpening. As most absolute methods for atmospheric
correction of VHR images require the properties of atmosphere at the image acquisition time, which are
usually difficult to obtain [25], all images used in the FCN-based method are L1A data products based
on systematic radiometric correction without atmospheric correction for the purpose of generalization.
For training data preparation, major water bodies in D302 were manually interpreted, and a typical
region (namely W1) in D302 with abundant water and shadows was selected. Typical water and
shadow areas in the W1 were also selected. For testing data preparation, 10 subsets (1500 × 1500 pixels
for each) representing typical water and shadow areas, namely T1-T10, were selected based on visual
inspection. Among them, T1-T6 were from D302 and T7-T10 were from D609. Meanwhile, the two full
images were also used in the test to further validate the results by visual inspection. The study data
and the related subsets are illustrated in Figure 1.
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Figure 1. The two upper images are pan-sharpened GaoFen-2 images (namely D302 and D609) and the
related training and test data in our experiment. W1 refers to the training subset. T1 to T10 refer to
subsets for the test, and the size of each test data is 1500 × 1500 pixels. Water areas enclosed by light
green lines in D302 indicate manually interpreted ground truths. The images are aligned based on their
true geographical locations and are displayed with R (NIR)-G (R)-B (G) after being linearly stretched
to [0,255]. The original spatial resolution of the image is 0.8 m. At the bottom, the W1 is specifically
enlarged with its ground truth, and typical water (in red) and shadow samples (in green) selected from
the W1 are displayed on the W1.
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2.2. FCN Based Method

The flowchart of our FCN-based method is illustrated at the top of Figure 2. An input image is
firstly clipped into patches (256×256 in our study). The patches are fed into a trained FCN model as
shown at the bottom of Figure 2. The resulting patches of the FCN inference are spatially aligned
accordingly. The output of the FCN based method is a map referring to water bodies in the input VHR
image. To alleviate the possible boundary effect caused by spatial alignment in the final result, patches
prepared for the inference are also clipped with spatial overlaps of 32 pixels, which are dropped in the
following results alignment. The strategy is illustrated simply in Figure 3.
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Figure 2. Illustration of the FCN-based method. The top refers to the main procedure; the bottom
refers to the FCN model. In the model, the large blue boxes refer to intermediate features whose sizes
are shown in each box. Each color bar above the main connector represents a specific module whose
function is indicated by its color and is explained at the lower-left corner.
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Figure 3. Illustration of the strategy to alleviate the possible boundary effect caused by spatial alignment
in the final result.

The FCN model used here can be divided into four parts: a preprocessing layer, an encoder, a
decoder, and an output layer. In the preprocessing layer, the input patch is optionally clipped and
contrast enhanced in a random manner, and then transformed into a 3-channel patch with the same
spatial size of the input patch by a one-to-one convolution. In the encoder, five layers in sequence
similar to those in the VGG-16 model [26] are used to gradually encode each 3-channel patch into a
group of small but informative features. The detail of each layer is illustrated by a sequence of color
bars above each main connector. The two numbers in the color bar refer to the sizes of the filter and
stride, respectively. The output of the encoder is fed into the decoder, which contains a sequence of
upsampling layers to gradually recover spatial contexts of the label. The number of features in each
decoded layer is equal to the number of classes (two in our case, water and non-water). The upsampling
is realized by a transposed convolution with a fixed filter defined by the bilinear interpolation. Two
skip layers are also introduced to enhance the spatial detail of label recovery. Two encoding features
with finer details are convoluted into features with the dimension of the number of classes, and the
convoluted features are added to corresponding decoding layers. In the output layer, a normalized



Remote Sens. 2019, 11, 1162 5 of 19

exponential function, namely softmax, transforms the decoded features into probabilities of water and
non-water, and then argmax selects the label with the highest probability for each location and gets a
pixel-wise map of the water body mask. The one-to-one convolution at the front makes the model
flexible for reusing weights of the VGG-16 model trained on the ImageNet. This is useful in situations
when the number of training samples is small [27].

2.3. Experimental Setup

Our experiments are designed to validate the capability of the FCN-based method for water body
extraction from VHR images and also to analyze key factors affecting its performance. The number of
factors affecting the FCN model’s behavior is quite large. In this study, we focus on the analysis of four
key factors including input features, training data, transfer learning, and input augmentation, while
setting others to default values, as listed in the Table 1.

A total of 36 models with various parameters as listed in Table 2 were trained, and the results
were analyzed in terms of overall performance and for the four selected factors. To be specific, for each
selected factor, each choice of factor is fully studied under different combinations of other parameters.
Additionally, to evaluate the stability of training of the FCN based method, we further selected 3
typical groups of parameters to train the FCN model independently 3 times.

To further validate the effectiveness of the FCN-based method, we compared it with three
classic methods, including the NDWI based method, the SVM-based method, and the Sparsity Model
(SM)-based method. All components of the methods are comparatively described in Table 3. In total,
we used 32 combinations for the three methods compared, as listed in Table 4. Finally, we selected
the combination with the highest average accuracy on the 10 test data for each method. It should be
noted that because the three methods may be sensitive to radiometric changes between training and
testing images, we employed the histogram matching based method [28] and the Iterative Reweighted
Multivariate Alternate Detection (IR-MAD) based method [25] to normalize all images to the same
radiometric level. The three methods also do not exploit spatial context information as the FCN-based
method does in nature. For the NDWI and SVM based methods, we used Simple Linear Iterative
Clustering (SLIC) [29] to segment the image into objects and then used the mean spectral feature of
each object as the input for training and testing. For the SM-based method, we adapted the joint
sparsity model by assuming that all pixels within a small neighborhood share the same group of words
but have different coefficients [30].
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Table 1. Key factors in the model training; we only evaluate factors with multiple choices.

Factors Choices Explanations

Input feature
if1 B-G-R-NIR
if2 G-R-NIR
if3 B-G-R

Transfer learning
tf1 None

tf2 Reusing trained weights of VGG-16 on ImageNet as shown in Figure 2.

Training data
td1

Patches covering at least one pixel of water in the W1; 70 in total; all
patches are extracted based on a moving step that is the same as the

patch size. The following is the same
td2 All patches in the W1; 340 in total

td3 Patches covering at least one pixel of water in the image of D302;
1666 in total

Data augmentation

da1 None

da2 The sequential combination of random clip and contrast enhancement
as shown in Figure 2.

Initializer Xavier Initialize the weight of the network before training [31]

Batch size 1 The number of patch used in each round of training

Patch size 256 The size of input patch

Training step 24000 We output a trained model at each 3000 steps and select the one with the best
performance on the training data

Loss function Cross-entropy Measurement of loss in the optimization

Optimizer Adam Algorithm for updating the weight [32]

Learning rate 0.00001 Key parameter in the Adam

Table 2. List of experimental setups for analyzing overall performance of the FCN-based method and
four key factors of the model, respectively.

Purposes Experiment Setup (the Order of Factor Is Irrelevance)

Analysis of overall performance of the FCN-based method
with all combinations of selected parameters

if1-tf1-td1-da1, if1-tf2-td1-da1, if1-tf1-td1-da2, if1-tf2-td1-da2,
if1-tf1-td2-da1, if1-tf2-td2-da1, if1-tf1-td2-da2, if1-tf2-td2-da2,
if1-tf1-td3-da1, if1-tf2-td3-da1, if1-tf1-td3-da2, if1-tf2-td3-da2,
if2-tf1-td1-da1, if2-tf2-td1-da1, if2-tf1-td1-da2, if2-tf2-td1-da2,
if2-tf1-td2-da1, if2-tf2-td2-da1, if2-tf1-td2-da2, if2-tf2-td2-da2,
if2-tf1-td3-da1, if2-tf2-td3-da1, if2-tf1-td3-da2, if2-tf2-td3-da2,
if3-tf1-td1-da1, if3-tf2-td1-da1, if3-tf1-td1-da2, if3-tf2-td1-da2,
if3-tf1-td2-da1, if3-tf2-td2-da1, if3-tf1-td2-da2, if3-tf2-td2-da2,
if3-tf1-td3-da1, if3-tf2-td3-da1, if3-tf1-td3-da2, if3-tf2-td3-da2

Analysis of which type of input feature is more effective
if1-tf1/tf2-td1/td2/td3-da1/da2
if2-tf1/tf2-td1/td2/td3-da1/da2
If3-tf1/tf2-td1/td2/td3-da1/da2

Analysis of whether transfer learning is useful if1/if2/if3-tf1-td1/td2/td3-da1/da2
if1/if2/if3-tf2-td1/td2/td3-da1/da2

Analysis of which group of training data is more effective
if1/if2/if3-tf1/tf2-td1-da1/da2
if1/if2/if3-tf1/tf2-td2-da1/da2
if1/if2/if3-tf1/tf2-td3-da1/da2

Analysis of whether data augmentation is useful if1/if2/if3-tf1/tf2-td1/td2/td3-da1
if1/if2/if3-tf1/tf2-td1/td2/td3-da2

Analysis of the stability of the training process

if1-tf1-td1-da1-01, if1-tf1-td1-da1-02, if1-tf1-td1-da1-03
if3-tf2-td3-da2-01, if3-tf2-td3-da2-02, if3-tf2-td3-da2-03
if2-tf2-td2-da2-01, if2-tf2-td2-da2-02, if2-tf2-td2-da2-03
-01 indicates round 1 training with if3-tf2-td3-da2-01
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Table 3. List of components of the methods in the comparison.

Component Description

water We randomly select 10000 samples from the W1 and then divide them into water and others based on their labels.

water-shadow
We manually collect typical water and shadows samples in the W1 as illustrated in the lower-left of the Figure 1.
These samples lie near the boundary of decision function and is useful for discriminative methods such as the

NDWI and SVM based methods [13].

norm
norm refers to the IR-MAD based radiometric normalization method. Here we select the atmospherically

corrected Sentinel-2 image spatially coded as T50TMK and acquired on 9 March 2017 as reference. All VHR
images are normalized to the reference.

hm hm refers to histogram matching based radiometric normalization. D302 works as reference and D609 is
transformed in our experiment.

grid-svm
grid-svm refers to the linear SVM model with an optimized penalty C. the linear SVM model is employed here

for its efficiency and effectiveness compared with the RBF based SVM model after rigorous comparisons on
training samples. The C is set by a grid search.

ndwi ndwi refers to the NDWI based method which uses the mean index value of the selected water and other samples
in the training data as the threshold. The index is calculated according to Equation (1).

slic

slic refers to the SLIC method and is used to segment an input image into small objects based on which spatial
contexts can be exploited in the water extraction. SLIC on a large image is computational expensive. Here we cut
a large input image into patches with a size of 500*500 pixels, and then segment each patch into approximately
10000 regions, finally all segmented patched are combined into a single image. To mitigate the boundary effect,

we overlap 200 pixels vertically and horizontally in the patch cutting.

best-sm

best-sm refers to the joint sparsity model. Since it does not scale well with the size of dictionary, we randomly
select 250 samples for water and others, respectively from the training data. To keep the uncertainty brought by
training samples to the minimum level, we run the SM based method for 10 times and select the one with the

best performance.

Table 4. List of experimental setups for analyzing overall performance of the three methods in
comparison. The combination in the table is composed by components listed in Table 3. For example,
norm-hm-water-shadow-best-sm indicates a customized SM-based method. The method is trained on
water-shadow samples from the normalized D302 image and is tested on the normalized D302 image
and the preprocessed D609 image. In the preprocessing, the D609 image is firstly normalized to the
Sentinel-2 image, and then has its histogram matched to the normalized D302 image.

The SM Based Method The SVM Based Method The NDWI Based Method

water-best-sm
water-shadow-best-sm

norm-water-best-sm
norm-water-shadow-best-sm

norm-hm-water-best-sm
norm-hm-water-shadow-best-sm

hm-water-best-sm
hm-water-shadow-best-sm

water-grid-svm
water-shadow-grid-svm

norm-water-grid-svm
norm-water-shadow-grid-svm

norm-hm-water-grid-svm
norm-hm-water-shadow-grid-svm

hm-water-grid-svm
hm-water-shadow-grid-svm

water-slic-grid-svm
water-shadow-slic-grid-svm

norm-water-slic-grid-svm
norm-water-shadow-slic-grid-svm

water-ndwi
water-shadow-ndwi

norm-water-ndwi
norm-water-shadow-ndwi

norm-hm-water-ndwi
norm-hm-water-shadow-ndwi

hm-water-ndwi
hm-water-shadow-ndwi

water-slic-ndwi
water-shadow-slic-ndwi

norm-water-slic-ndwi
norm-water-shadow-slic-ndwi

NDWI = (G − NIR)/(G + NIR) (1)

In all experiments, we used the F1 score to assess the performance of each method. The F1 score is
the harmonic average of the precision and recall, as indicated in Equation (2) where an F1 score reaches
its best value at 1 and worst at 0. It is more objective than overall accuracy in our binary classification
case because a water body mostly covers a small portion of the image under evaluation.

F1 score = 2 × (precision × recall)/(precision + recall) (2)

where precision is the number of correct positive pixels divided by the number of all positive pixels
returned by the method, and recall is the number of correct positive pixels divided by the number of
all relevant pixels.
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3. Results and Analysis

3.1. Analysis of the Performance of the FCN Based Method

3.1.1. Overall Performance Analysis of the Trained FCN Models

Figure 4 illustrates the mean and variance of F1 scores on all 10 test data based on the 36 FCN
models with different parameter settings, as listed in Table 2. The mean F1 score has a large dynamic
range from 0 to ~0.92. There are 15 trained models with a mean F1 score above 0.8, and there are 7
trained models with a mean F1 score below 0.5. Meanwhile, the variance of the F1 score varies from 0
to ~0.2 with the models. It can be inferred from Figure 4 that models with large mean values have low
variances. Figure 5 illustrates the mean and variance of F1 scores on the 36 FCN models for each of the
10 test data with different parameter settings as indicated in Table 2. The mean F1 score fluctuates from
~0.5 to ~0.8, and the variance remains relatively stable around 0.1. T5 and T7 are the most and the
least accurately processed test data, respectively. In general, results of the test data (T1-T6) from D302
where training data were collected are better than those from D609 (T7-T10).

The results imply that the performance of the FCN based method is significantly affected by the
parameter setup, though the choice of a qualified parameter setting for the FCN model is not hard
to find. The bad average performance on T7 may be due to the ratio of the area of water bodies to
shadows in this test data being small compared to that of others. Thus few omissions or false alarms
may lead to a large change of the F1 score. The situations for T1, T4, and T5 are largely the opposite.
To further validate the effectiveness of the FCN-based method, we applied a few well-trained FCN
models to the two full images. Consistent results were obtained based on visual inspection of the
resultant water maps.
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Figure 4. Illustration of the mean and variance of F1 scores on all 10 test data based on the 36 FCN
models with different parameter settings, as indicated in Table 2.
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Figure 5. Illustration of the mean and variance of F1 scores on the 36 FCN models for each of the 10
test data with different parameter settings, as indicated in Table 2.

3.1.2. Comparing the FCN-Based Method with Classic Methods

Figure 6 shows the mean accuracies on all 10 test data and on test data T7-T10 of all combinations
as listed in Table 4. Generally, the classic methods performed better on test data T1-T6 than on test
data T7-T10. The boundary training samples, namely water-shadow, did not necessarily improve
the accuracy of the methods, nor did the SLIC and radiometric normalization. Nevertheless, the
best combinations for each of the three methods are norm-water-slic-ndwi, hm-water-grid-svm, and
water-best-smc, respectively, and the mean F1 scores on all 10 test data of the three best combinations
are about 0.85, 0.88 and 0.89. This implies that the strategies employed in our experiments such as
radiometric normalization and segmentation are helpful for improving the three methods on the
extraction of water from VHR. However, we did not find a single best strategy for all three methods.
Here, we focus on the best combination from each of the three methods. Deeper analysis of the classic
methods is beyond the scope of this paper.

Figure 7 shows the comparison of the best FCN-based method with the best SM-based method
(best-SM), the best SVM based method (best-SVM), and the best NDWI (best-NDWI) based method in
terms of per test data F1 score. Figure 8 illustrates the extracted water body maps from 10 test data
by all 4 methods. From Figure 7, best-FCN outperforms the other three methods, especially on the
test data T2, T7, and T8. Best-SM achieves slightly better results than best-SVM, while best-NDWI
is comparatively the worst in terms of overall accuracy. According to Figure 8, there are plenty of
small false alarms in the results except that of best-FCN. However, the distribution of false alarms
for each of the three methods differs a lot on specific test data. Overall best-FCN is obviously more
effective than the other three methods, as a result of a prominent advantage for dealing with areas
mixed with water and shadow. This advantage of best-FCN comes from its ability to exploit the spatial
context in the image so as to discriminate the shadows of high-rising buildings from water bodies and
becoming largely invariant to the radiometric change. The latter merit is quite distinct as the input to
the FCN-based method is in L1A level.

Figure 9 illustrates the mean sample spectrum of water in W1 and four typical test data from D609.
The radiometric differences between W1 and other test data are quite clear in L1A data. hm and norm
as described in Table 3 do reduce radiometric changes between images acquired in different conditions,
especially for hm. Their effects will be more distinct if the whole images are taken into consideration.
However, due to hm being a nonlinear point operator concentrating on matching the global histogram
between different images, it may not be helpful to discriminate between water and shadow, which are
located at the low end of the radiometric range and share similar spectral features that vary a lot from
space and time. The situation is the same for norm, which also works on the whole image. The effect
of slic on radiometric normalization is not as distinct as that of the other two strategies, but it may help
in reducing spatial noises in the image.
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Figure 6. Illustration of the mean and variance of the F1 scores on all 10 test data based on the 32
combinations from the three classic methods, as indicated in Table 4.
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Figure 7. Comparison of best-FCN with best-SM, best-SVM, and best-NDWI in terms of per test data
F1 score.
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Figure 9. Each group of spectra refers to the mean spectrum of water samples from W1 and T7-T10
(D609). From left to right, they are from L1A data, hm enhanced image, slic enhanced image, norm
enhanced image, norm-hm enhanced image, and norm-slic enhanced image. Refer to Table 3 for a
detailed explanation of those terms. Values on the y-axis refer to the digital number for the first three
groups and reflectance with a scale factor of 10000 for the last three groups.

3.2. Analysis of Key Factors of the FCN-Based Method

3.2.1. Analysis of the Input Feature

Figure 10 shows the average F1 scores of 10 test areas for 12 groups of models with different input
features, as explained in Table 2. Figure 11 shows the average F1 scores of 12 models for 10 test data
with different input features. For each group of models, the model parameters used in the training are
the same except for the input feature, as indicated in Figure 10. Overall, input feature 2 clearly gives
better performance than that of input future 1 and input feature 3. Input feature 1 is also slightly better
than input feature 3. The results indicate that the NIR band may contribute most to the water body
extraction, while the blue band may be least helpful or even harmful to the water body extraction. This
phenomenon can be explained based on the fact that the blue band is more sensitive to atmospheric
scattering as well as suspended matters on the surface of the water when compared with the NIR band.
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Figure 10. Average F1 scores of 10 test areas for 12 groups of models with different input features, as
explained in Table 2.
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Figure 11. Average F1 scores of 12 models for 10 test data with different input features.

3.2.2. Analysis of the Training Data

Figure 12 shows the average F1 scores of 10 test areas for 12 groups of models with different
training data, as explained in Table 2. Figure 13 shows the average F1 scores of 12 models for 10 test
data with different training data. For each group of models, the model parameters used in the training
are the same, except for training data, as indicated in Figure 12. Overall, training data 2 and training
data 1 clearly show better performance than that of training data 3. Training data 2 is also slightly better
than training data 1. The results largely indicate that representativeness is more important than the
amount of size in terms of the quality of training data in our experiment. The high quality of training
data 2 may be due to it containing samples covering water body areas as well as typical high-rising
building areas with plenty of shadows in a balanced manner. The shadow is quite spectrally similar
with the water body but has a different spatial context. Although the size of the samples in the training
data 3 is larger than that of the samples in training data 2, the bad performance of training data 3
may be due to its lack of balance in the amount of samples covering water body areas and other low
reflectance targets such as shadows. This should be taken into consideration in the application of deep
learning models in remote sensing data when the total amount of training samples is relatively small.
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Figure 12. Average F1 scores of 10 test areas for 12 groups of models with different training data as
explained in Table 2.
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Figure 13. Average F1 scores of 12 models for 10 test areas with different training data.

3.2.3. Analysis of the Transfer Learning

Figure 14 shows the average F1 scores of 10 test data for 18 groups of models with and without
transfer learning. Figure 15 shows the average F1 scores of 18 models for 10 test data with and without
transfer learning. For each group of models, the model parameter used in the training is the same,
except for transfer learning, as indicated in Figure 14. In nearly all cases, a model with transfer learning
is better than the one without it in terms of the performance measured by the F1 score. Introduction of
the transfer learning in the training process increases the F1 score by about 10% for the FCN-based
method, as indicated in Figure 15. We consider that the merit of the transfer learning is based on the
similarity of the spatial context between VHR images and natural images. For model training without
transfer learning, the model initialization plays an important role. Xavier [24], used in our experiment,
initializes weights with a properly scaled uniform distribution and has been proven to be substantially
helpful for increasing the training convergence. That may be the reason that, in a few cases, trained
models without transfer learning can still achieve very good results. As shown in Figure 14, the trained
model with the best mean F1 score on all test data was actually achieved without transfer learning.
Overall, taking the stability of the training into consideration, the inclusion of transfer learning in the
FCN model training for processing VHR images is strongly suggested in practical use.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 20 
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Figure 14. Average F1 scores of 10 test data for 18 groups of models with and without transfer learning.
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Figure 15. Average F1 scores of 18 models for 10 test data with and without transfer learning.

3.2.4. Analysis of the Data Augmentation

Figure 16 shows the average F1 scores on 10 test data for 18 groups of models with and without
data augmentation. Figure 17 shows the average F1 scores on 18 models for 10 test data with and
without data augmentation. For each group of models, the model parameter used in the training is the
same, except data augmentation, as indicated in Figure 16. Overall, data augmentation does not show
clear advantages over the original input data in our experiment. However, trained models without
data augmentation perform slightly better for test data for images where training data is collected,
but the situation is vice versa for test data in another image. The result shows weak support for the
effectiveness of data augmentation in the training. However, the typical contrast enhancement does not
work in a distinct way as it works for natural images. This may due to the remote sensing image being
relatively physical calibrated in its quantity compared with natural images and also the self-similarity
of geometric structures being represented in the remote sensing image prevailing on the earth surface.
The latter would confuse the trained model by targets that show similar textures of the water body but
have different spectral properties from the water body such as soil and large roofs.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 20 
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Figure 16. Average F1 scores of 10 test areas for 18 groups of models with and without data augmentation
as explained in Table 2.
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Figure 17. Average F1 scores of 18 models for 10 test areas with and without data augmentation.

3.2.5. Analysis of the Stability in the Training of FCN-Based Method

Figure 18 shows the average F1 scores on 10 test data for 9 trained models as indicated in the
last row of Table 2. It can be seen that the stability of the model training is relatively weak. This is
especially true for models without transfer learning. With a better input feature such as input feature
2, the stability of the training can also be largely enhanced. The randomness of the results is mainly
brought by the stochastic method exploited in the model training. The results encourage the inclusion
of transfer learning and good input features to weaken the side-effect of randomness in the FCN-based
method, meanwhile, any parameter setting should be tried at least twice before rejection.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 20 
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Figure 18. Average F1 scores on 10 test data for 9 trained models in the last row of Table 2.

4. Discussion and Conclusions

In this paper, we study the use of the FCN model to extract water bodies from VHR images.
To better adapt to the property of remote sensing data, we introduce a flexible one-to-one convolution
layer in the typical FCN model. Two seasonal representative Chinese GaoFen-2 images with a spatial
resolution of 0.8 m experimentally validated the FCN based method in the extraction of water bodies
from VHR images. Meanwhile, we selected and analyzed four key factors using 36 FCN models with
different parameter settings with the purpose of understanding the contribution of each key factor and
how to make good choices of them in practical use.

The FCN-based method can work as a robust and effective tool in the extraction of water bodies
from VHR images. If properly trained with a small number of labeled samples, the FCN based method
can also significantly outperform the SM-based method, the SVM-based method, and the NDWI-based
method on either capability or transferability, especially for urban areas with mixed water and shadows.
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The advantage of the FCN based method remains even when radiometric normalization and spatial
context information are introduced to preprocess the input data for the other three methods. This
is largely due to the capability of the FCN model to exploit the spatial context in VHR images well.
This capability also makes the FCN-based method withstand radiometric changes, which is a quite
challenging task for typical feature extraction methods [13–15]. It should be noted that the high
accuracy of the FCN-based method in our experiments is at the expense of efficiency compared with
the NDWI based method. We still consider that the NDWI is the best choice in appropriate sceneries
when efficiency is more important than precision.

Our study supports the prevalent existence of the qualified FCN models with various parameter
settings. Although the randomness in the training is unavoidable due to the nature of the optimization
method for the FCN, and the performance of the FCN-based method is easily affected by model
parameter settings, a well-trained FCN model for water body extraction from VHR images is not
hard to find and the choice of a qualified parameter setting for the FCN model varies. This eases the
difficulty of the selection of the optimal parameter setting in the use of the FCN model. Empirical
results encourage the selection of the input feature, the inclusion of transfer learning, and the use of
training data with balanced positive and negative samples to improve the stability and accuracy of
the FCN based method. These findings help to build a stable and accurate FCN-based method in real
applications. Finally, due to the holistic nature of remote sensing data, the extraction of a specific type
of target from VHR images covering a large area is commonly seen in real remote sensing applications.
Though the appearance of the type of target in the image may diverge a lot depending on applications,
our lessons learned from the successful use of the FCN model in the water body extraction from VHR
images can be extended to extract other land covers especially in cases with limited training samples.

We obtained FCN models with satisfactory results based on relatively small training data. However,
our experimental images were acquired with clear sky and flat terrain. These criteria may not always
be fulfilled in practical use. The remote sensing image may be contaminated by vapor and haze.
Shadows of mountains may be different from that of buildings. One research direction is to enrich
the training data by accounting for more situations. As the manual interpretation of water body from
VHR images from scratch is quite tedious work, we may collect the training data in an iterative way by
using extracted results. However, the representativeness of the samples should be kept in mind in the
preparation of the training data.

Our experiments were carried out on 0.8 m GaoFen-2 images. The feasibility of the proposed
FCN-based method on more images from other VHR sensors with different specifications should be
validated further because short-term temporal monitoring of water bodies needs collaborative data
from multiple sensors in practice, but the accuracy of water body extraction is sensitive to minor spatial
resolution changes [33] of the data. Very narrow rivers also are not extracted well by the FCN-based
method in our experiments. We are considering improving this by introducing an advanced FCN
model [34]. This will be studied in the future. Last but not least, treating water bodies as a single class
like in our experiments is not enough in practical use. Our next step is to work on extracting more
subtle types of water bodies with different depths and turbidity.
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