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Abstract: The accurate and quick derivation of the distribution of damaged building must be
considered essential for the emergency response. With the success of deep learning, there is an
increasing interest to apply it for earthquake-induced building damage mapping, and its performance
has not been compared with conventional methods in detecting building damage after the earthquake.
In the present study, the performance of grey-level co-occurrence matrix texture and convolutional
neural network (CNN) features were comparatively evaluated with the random forest classifier. Pre-
and post-event very high-resolution (VHR) remote sensing imagery were considered to identify
collapsed buildings after the 2010 Haiti earthquake. Overall accuracy (OA), allocation disagreement
(AD), quantity disagreement (QD), Kappa, user accuracy (UA), and producer accuracy (PA) were
used as the evaluation metrics. The results showed that the CNN feature with random forest method
had the best performance, achieving an OA of 87.6% and a total disagreement of 12.4%. CNNs have
the potential to extract deep features for identifying collapsed buildings compared to the texture
feature with random forest method by increasing Kappa from 61.7% to 69.5% and reducing the
total disagreement from 16.6% to 14.1%. The accuracy for identifying buildings was improved by
combining CNN features with random forest compared with the CNN approach. OA increased from
85.9% to 87.6%, and the total disagreement reduced from 14.1% to 12.4%. The results indicate that the
learnt CNN features can outperform texture features for identifying collapsed buildings using VHR
remotely sensed space imagery.

Keywords: earthquake; grey-level co-occurrence matrix texture; convolutional neural network; CNN;
random forest

1. Introduction

Buildings are fundamental for human living. However, they are vulnerable to natural hazards.
Buildings are usually seriously damaged or completely destroyed by earthquakes, such as the Sichuan
(2008), Chile (2010), Haiti (2010), and Nepal (2015) earthquakes. Therefore, it is vital to monitor the
status of buildings and provide high-precision building damage assessment after an earthquake at a
detailed scale to support the emergency response and rescue activities. Considering the demand of
the timely retrieval of disaster damage information, the implementation of satellite-based methods to
assess damage in buildings has raised more and more attention after an earthquake, especially where
the road connections are blocked or destroyed and access became thus difficult [1–3].
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Remote sensing has been widely utilized for various disasters as it can capture affected areas
from space [4,5]. Synthetic aperture radar (SAR), light detection and ranging (LiDAR), and optical
techniques have been adopted to detect and assess damaged buildings after an earthquake and
have achieved great success for comparatively low costs, minimal corresponding fieldwork, large
coverage, digital processing, and quantitative results [6]. SAR is strongly sensitive to surface changes
based on the backscatter coefficient and intensity correlation [7]. In the previous study, object-based
image analysis (OBIA) was proposed in Reference [8] and evaluated on post-event ALOS-2/PALSAR-2
dual polarimetric SAR imagery after the 2015 Nepal earthquake [9]. LiDAR imagery can provide
information of height change, while optical imagery has become an important way to identify damaged
buildings with the improvement of spatial resolution and image quality. It is also possible to integrate
different methods to detect damaged buildings and produce accurate and reliable results. A novel
method was proposed to detect damaged buildings using high-resolution remote sensing images and
three-dimensional GIS data by Tu et al. in Reference [10]. Remote sensing and GIS can be used to not
only detect earthquake damage, but also to monitor the recovery after earthquakes, like how remote
sensing and GIS were applied to monitor the recovery after the 2009 L’Aquila earthquake, Italy [11].

Compared with automatic methods, the visual method [12] is usually time-consuming, which is
disadvantageous for planning rescue and for the generation of building damage maps using satellite or
aerial imageries. OBIA has been applied to detect earthquake damage using remote sensing imagery
since 1988 [13]. The OBIA approach is usually performed in two steps. First, the input image is
segmented, and then each segmented object is assigned to a class by a classification algorithm [14].
OBIA provides an automated method for the analysis of high-resolution imagery by describing the
object using spectral, textural, spatial, and topological properties. An adaptive-network-based fuzzy
inference system (ANFIS) model was designed to attain the building damage degrees, and OBIA
played a key role in detecting damaged buildings using high-resolution imagery after the earthquake in
2004 Bam, Iran [15]. OBIA was already incorporated with random forest classifier to identify damaged
buildings [16]. In high-resolution imagery, the pixel size is significantly smaller than the average
size of the object of interest. OBIA can group pixels into objects based on spectral similarity, and
thus, showed better performance compared to pixel-based classification [17]. The commercial image
segmentation and classification software eCognition has been widely used in detecting earthquake
damage. For earthquake-collapsed building extraction from LiDAR and aerophotograph based on
OBIA, eCognition software was used to segment imagery. Texture features (contrast, dissimilarity, and
variance) were calculated based on the gray level co-occurrence matrix (GLCM), and support vector
machine (SVM) was chosen as the classifier to identify the collapsed buildings [18,19]. eCognition
software was also considered for image segmentation and classification to detect damaged buildings
after the 2010 Haiti earthquake [20]. OBIA has shown the potential for earthquake damage detection,
while the application of convolutional neural networks (CNNs) is still limited and worth to be explored
to discover its advantages.

Deep learning is able to improve the efficiency of damage recognition because of its high ability of
automatic feature learning and visual pattern recognition [21]. There are many kinds of CNN structures,
including GoogleNet [22] with 22 layers for classification when counting only layers (or 27 layers when
also counting pooling), VGG [23] with 11 to 19 weight layers for large image recognition, AlexNet [24]
with five convolutional layers (some of them followed by max-pooling layers) and three full-connected
layers, which were used to classify 1.2 million high-resolution images in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) into the 1000 different classes. Network in network (NiN) was
proposed by replacing the liner filter and full connected layer with nonlinear multilinear perceptron
and global average pooling, respectively [25]. CNNs have achieved superior results in various tasks
including image classification, speech recognition, and object detection [24,26–29]. However, there are
limited studies related to earthquake-induced building damage mapping using deep learning and its
robustness and applicability of building damage mapping should be explored. A SqueezeNet-similar
CNN structure was adopted to identify the collapsed buildings after the 2010 Haiti earthquake using
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only post-event satellite imagery [30]. CNN and three-dimensional features, both independently
and in combination, were considered to detect damaged buildings, and the results showed that the
integration of CNN and 3D point cloud features significantly improved the model transferability and
achieved accuracy was improved up to a maximum of 7% compared with the result achieved by CNN
features alone [31].

The objective of the present study was to explore the performance of using texture and CNN
features respectively integrated by random forest for building damage assessment using pre- and
post-earthquake VHR satellite imagery. The dataset obtained after the 2010 Haiti earthquake were
used in this study. A neural network containing three convolutional layers were implemented
to automatically learn features. GLCM texture features (including contrast, dissimilarity, entropy,
homogeneity, correlation, and angular second moment) were extracted from pre- and post-event data
using eCognition. Subsequently, random forest was used as the classifier to evaluate the performance
of these two different features. The rest of this paper is organized as follows. Section 2 describes the
study area and dataset. Section 3 introduces the basic concepts of convolutional neural networks,
textural feature extraction, random forest, and evaluation metrics. The results are then provided in
Section 4 and discussed in Section 5. Conclusion is described in Section 6.

2. Study Area

After the earthquake in Haiti on January 12, 2010, there were about 105,000 houses completely
destroyed, especially in its capital, Port-au-Prince, where some important buildings collapsed, such
as the Port-au-Prince Cathedral and the Presidential Palace. Buildings in the study area were highly
vulnerable to earthquakes since little or no seismic design was applied. Building structures in the
capital mainly included concrete structures with flat roofs of varying heights and sizes, wooden or
steel frame buildings with corrugated metal sheet roofs, and low metal sheet shelters (shanty housing)
with very small dwellings [32]. Based on the European Macroseismic Scale 1988 (EMS-98) [33], the
damage of buildings can be classified into five grades as shown in Figure 1.
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The proposed method was applied to the area of Port-au-Prince to distinguish collapsed and
noncollapsed buildings. Considering limited data availability, the pre-event WorldView-2 (WV-2) data
acquired on January 9, 2010 (Figure 2A) and post-event QuickBird (QB) data acquired on January
15, 2010 (Figure 2B) were utilized in this study. The data were obtained via DigitalGlobe open data
program with the identical spatial resampling resolution of 0.5 m. Furthermore, building damage
information was also used to evaluate the performance of the model. The building damage information
was acquired from UNITAR/UNOSAT and created by visual interpretation of high-resolution satellite
images and aerial photos observed after the earthquake [34]. In the present study, the dataset is
randomly divided into training and test dataset, and the number of training and testing buildings is
1074 and 716, respectively.
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3. Methodology

The purpose of this study is to explore the performance of texture and CNN features for identifying
collapsed buildings after the earthquake. It should be mentioned that it is hard to identify small
dwelling units with metal rooves, even when VHR imagery is used [15]. Therefore, the study mainly
focuses on distinguishing between collapsed and noncollapsed buildings. The damage grades were
classified into binary categories: Collapsed (G5) and noncollapsed (G1–G4) buildings as labels for the
corresponding objects for further study. Building patches were extracted from pre- and post-event
satellite images with manually prepared building footprints. In general, CNNs accept input image
patches with the same dimension. Thus, building patches were scaled to have the same pixel size
of 96 by 96 [30]. Ideally, the CNNs can learn useful task-oriented features from the training data.
Thus, the pre- and post-event data were combined by simply concatenating them. The workflow
was shown in Figure 3 and the main steps were further described in the following sub-sections. The
CNN model was trained and then used as a feature extraction tool to derive CNN features. The basic
concept of CNNs and the adopted CNN structure were presented in Section 3.1. For texture features as
described in Section 3.2, a total of 12 features was calculated for each building object using pre- and
post-event satellite images by means of eCognition software. Random forest was briefly explained
in Section 3.3, which was chosen as the classifier to compare the performance of texture and CNN
features for identifying collapsed buildings after the 2010 Haiti earthquake. Evaluation metrics were
described in Section 3.4.
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3.1. CNNs

Compared to conventional classification methods, CNNs can provide better classification
performance due to its capability of learning high-level features from a large number of training
dataset [35]. To ensure the shift and distortion invariance, three architectural ideas were proposed in
convolutional neural networks including local receptive fields, shared weights, and sometimes spatial
or temporal subsampling [36]. The number of parameters could be reduced using the weight-sharing
technique to solve the problems of sophisticated and complicated hyperparameters in deep neural
networks. The standard CNN structure consists of convolutional, pooling, and fully connected layers.
The convolution layers are used to generate feature maps by linear convolutional filters followed by
nonlinear activation functions such as sigmoid, tanh, softmax, and Rectified Linear Unit (ReLU). The
feature maps obtained after convolutional layers are often subsampled by pooling layers to reduce the
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dimensionality. Max-pooling operation is commonly adopted in the pooling layer, which is a sort of
downsampling where we can preserve the locations of the original image that showed the strongest
correlation to the specific features. Fully connected layer is often used to combine the local features
into the global features. Global average pooling is also proposed to minimize overfitting by reducing
the total number of parameters in the model [37]. It averages all the features within the spatial region.
Given a feature map of the size height × width × depth, global average pooling reduces that to a 1 × 1 ×
depth feature map. Compared to fully connected layers, it is more native to the convolution structure
by enforcing correspondences between feature maps and target categories.

The adopted CNN structure in this study is shown in Table 1. It comprises three convolutional
and activation layers, two max-pooling layers, a global average pooling layer, and a traditional fully
connected layer. Max-pooling operation is utilized following activation layers. The input values of
width, length, and band values are 96, 96, and 3, respectively. The stride is 1 × 1 in the first and second
convolutional layers. The first convolutional layer has 32 filters with the window size of 3 × 3 followed
by a pooling layer of 32 filters of window size 2 × 2, and the second convolutional layer has 64 filters
with the window size of 3 × 3. The window size should be larger than the smallest size of building
or the intermediate output. Thus, the output size after the first pooling operation was 47 × 47 × 32.
The activation feature maps acquired by the activation layer were pooled with a 2 × 2 max-pooling
window, and would be used as the input data for the next convolutional layer. The drop probability
was set to 0.5 in the dropout. ReLU was used as the activation function in the model. The CNN model
was implemented using Keras 2.4 with tensorflow 1.7 as the backend. The model was trained using the
prepared Haiti earthquake dataset and functioned as the feature extractor. The extracted CNN features
were then used as input for the random forest classifier, which was term as CNN-RF for convenience,
to distinguish collapsed and noncollapsed buildings.

Table 1. CNN structure in the present study.

Layer Shape (N, Width, Length, Bands) No. of Parameters

Conv2d_1 (N, 94, 94, 32) 896
Activation_1 (N, 94, 94, 32) 0

Max_pooling2d_1 (N, 47, 47, 32) 0
Conv2d_2 (N, 45, 45, 64) 18,496

Activation_2 (N, 45, 45, 64) 0
Max_pooling2d_2 (N, 22, 22, 64) 0

Conv2d_3 (N, 20, 20, 64) 36,928
Activation_3 (N, 20, 20, 64) 0

Global_average_pooling2d_1 (N, 64) 0
Dense_1 (N, 32) 2080

Dropout_1 (N, 32) 0
Softmax (N, 2) 66

Total 58,466

3.2. GLCM Texture Features

GLCM has been proven to be a popular statistical method of extracting textural feature from
images. A variety of GLCM derived features have been applied in previous studies related to damaged
buildings induced by an earthquake [37–40]. According to the co-occurrence matrix, Haralick defined
14 texture features measured from the probability matrix to extract the characteristics of texture
statistics of images [19]. In this paper, six texture features (contrast, dissimilarity, entropy, homogeneity,
correlation, angular second moment) that have been correlated with earthquake-induced damaged
buildings in previous studies [16,41–43] were selected and calculated with the eCognition software for
pre- and post-event satellite imagery. A GLCM is a matrix where the number of rows and columns is
equal to the number of gray levels in the image. The eigenfunctions (Equations (1)–(6)) are as follows:
Where i is the row number, j is the column number, p(i, j) is the (i, j)th entry in a normalized GLCM. N
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is the number of gray levels. σi and σ j are the standard deviations for row i and column j. ui and u j are
the means of row i and column j.

GLCM contrast measures local variation among neighbours in the image. If gray value difference
among neighbors is high, the contrast values will be high. It can be calculated as follows:

Contrast =
N−1∑
i=1

N−1∑
j=1

p(i, j) ∗ (i− j)2 (1)

GLCM dissimilarity is similar to the contrast and inversely related to homogeneity. Dissimilarity
is also high when the contrast of area is high. The formula is as follows:

Dissimilarity =
N−1∑
i=1

N−1∑
j=1

p(i, j) ∗
∣∣∣i− j

∣∣∣ (2)

GLCM homogeneity reflects the texture homogeneity. A large value indicates strong texture
homogeneity and elements concentrating on the main diagonal. The equation reads as follows:

Homogeneity =
N−1∑
i=1

N−1∑
j=1

p(i, j)

1 + (i− j)2 (3)

GLCM entropy measures the disorder in an image. High entropy indicates the heterogeneous
texture of the image and low entropy indicates a homogeneous texture [40]. The value is large when
the elements of GLCM are equal. The equation can be expressed as follows:

Entropy = −
N−1∑
i=1

N−1∑
j=1

p(i, j) ∗ lnp(i, j) (4)

GLCM correlation represents the linear dependence of gray levels on those of neighbors and is
calculated as follows:

Correlation =
N−1∑
i=1

N−1∑
j=1

(i− ui)
(
i− u j

)
p(i, j)

σiσ j
(5)

GLCM angular second moment (ASM) is also called energy and measures textural uniformity.
The value will be close to maximum when the image patch is homogeneous. It is expressed as follows:

ASM =
N−1∑
i=1

N−1∑
j=1

p(i, j)2 (6)

3.3. Random Forest

Random forest is an ensemble method consisting of classification and regression trees [44]. The
final classification decision is taken by averaging the class assignment probabilities calculated by
all produced trees [45]. There are two random procedures in random forest. First, the training set
is created for each tree by sampling with replacement (bootstrapping) from the original training
dataset. Second, random features are selected with nonreplacement from the total features when the
nodes of the trees are split [46]. It has been adopted widely since it can increase the robustness and
performance of classification based on bootstrap sampling and random feature combination strategy [9].
Furthermore, it has the capability of handing a number of variables, ranking those variables, evaluating
the importance of variables based on the performance, and finding the computationally optimal number
of trees through testing the algorithm [47,48]. Random forest can overcome the overfitting problem
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of decision trees, and has a strong anti-interference ability for noise and outliers. It has already been
demonstrated to be a powerful classifier to detect the damaged buildings caused by earthquakes using
SAR imagery [49,50]. In this study, random forest was chosen as the classifier to identify collapsed and
standing buildings, and implemented in a production-ready Python library scikit-learn.

3.4. Evaluation Metrics

In this study, in order to accurately assess the performance of building damage, allocation
disagreement (AD) and quantity disagreement (QD), overall accuracy (OA), user accuracy (UA),
producer accuracy (PA), and Kappa were adopted as evaluation metrics. OA is the proportion of
buildings that are correctly identified. It is one of the most popular agreement measures. However, it
is pointed out that it has different thresholds for image classification in different scenarios [51–53], so it
is difficult to define acceptable threshold values of OA. PA is the probability that a value in a given
class was classified correctly. UA is the probability that a value predicted to be in a certain class really
is that class. Kappa indices are common evaluation parameters in the remote sensing literature, since
they also compare two maps that show a set of categories. Recent studies, however, suggested that
Kappa has some limitations, and Pontius Jr. and Millones [54] state that standard Kappa is frequently
complicated to compute, difficult to understand and unhelpful to interpret, and recommend that
Kappa should be replaced by QD and AD. The QD is defined as the amount of difference between the
reference and the observed maps because of the imperfect match in the proportions of the damaged
building classes, and the AD is the amount of difference between the reference and observed maps
because of the imperfect match in the spatial allocation of damaged building classes [38]. AD and QD
can be calculated by Equations (8) and (9), respectively. The proportion of agreement C is estimated by
Equation (10). The total disagreement D is the sum of AD and QD. Where qg and ag are the quantity
disagreement and the allocation disagreement of land use class g; J is the number of damaged building
categories; pi j is the number of sample classified as i and referenced as j; pig is the estimated proportion
of study area classified as i and referenced as g; Ni is the number of buildings damage class i [55].

pi j =

 ni j∑J
j=1 ni j


 Ni∑J

i=1 Ni

 (7)

QD =
1
2

J∑
g=1

qg =
1
2

J∑
g=1

∣∣∣∣∣∣∣∣
 J∑

i=1

pig

−
 J∑

j=1

pgj


∣∣∣∣∣∣∣∣ (8)

AD =
1
2

J∑
g=1

ag = 2min


 J∑

i=1

pig − pgg

,

 J∑
j=1

pgj

− pgg

 (9)

C =

J∑
g=1

p j j (10)

D = 1−C = QD + AD (11)

4. Results

4.1. Performance of CNN-RF

The CNN model should be established before using it as a feature extractor. For the training
parameters, the Adam optimizer [56] was used with a learning rate parameter of 0.001 and 500 epochs.
The batch size was set to 64. Each building object was scale to 96 × 96 pixels. Validation/training losses
and accuracies of the model are depicted in Figure 4. Both validation and training losses could be
significantly reduced after 300 epochs, while the accuracies could increase correspondingly. Thus, an
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early-stopping technique could be considered to reduce the amount of training time and also to avoid
overfitting. The curves are fluctuating, as we used a mini-batch training method.
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Convolutional neural networks can automatically learn robust and representative features layer
by layer. The performance of output features from intermediate layers is shown in Figure 5. The
accuracies with output features from the third layer, sixth layer, eighth layer, and ninth layer were
obtained by the random forest classifier. It is clear that the values of OA and Kappa consistently
increased along with the depth of layers, while D (the sum of AD and QD) values showed an opposite
tendency. The QD and AD values gradually decreased except the AD in the eighth layer and QD in the
sixth layer which increased compared to the previous layer. Especially, the performance improved
significantly when intermediate layer outputs were combined with the aggressive global pooling
operation (low resulting dimensionality). Finally, using features from the ninth layer (global average
pooling layer) as input for the random forest classifier, the best result was achieved with 87.6%, 72.5%,
and 12.4% for OA, Kappa, and D, respectively. Features of high-level layers are an abstraction of those
of low-level layers and more discriminative for the classification task.
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The output vector of the global average pooling layer was then used as the input for the random
forest classifier and the results were shown in Table 2. The achieved accuracy of OA is 87.6% with
a Kappa of 72.5%. There are 52 collapsed buildings misclassified as noncollapsed ones and 37
noncollapsed ones that failed to be identified. The UA and PA measures were obtained more than 70%
for noncollapsed and collapsed building, which indicated the success of this classification technique
applied in this study for damaged building detection. More collapsed buildings, which affected the
corresponding PA percentage, were misclassified compared to noncollapsed ones. The greater values
of PA (91.8%) and UA (89.1%) stemmed from noncollapsed buildings, which demonstrated that the
model performed better on identifying noncollapsed buildings than collapsed ones. Regarding the
building structures, some steel or wooden frame buildings collapsed during/after the earthquake with
no visible deformation or textural changes visible on their roofs, in which cases the collapsed buildings
were hard to discriminate from overhead imagery. Two components of disagreement (QD and AD)
were calculated. The sum of them is the total disagreement, which equals to 1 minus OA. The lower
QD and AD are, the better the model performs. The QD and AD were 2.1% and 10.3%, respectively.
Figure 6 shows the classification map achieved by CNN-RF.

Table 2. Accuracy achieved by CNN-RF.

Ground Truth

Collapsed Noncollapsed UA (%) OA (%) Kappa (%) QD (%) AD (%)

Predicted
Collapsed 203 37 84.6

Noncollapsed 52 424 89.1
PA (%) 79.6 91.8

87.6 72.5 2.1 10.3
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4.2. Performance of Texture-RF

Texture features (including contrast, dissimilarity, entropy, homogeneity, correlation, and ASM)
of the pre- and post-event imagery based on GLCM were calculated. The violin plot synergistically
combines the box plot and the density trace (or smoothed histogram) into a single display that reveals
structure found within the data [57]. The distributions of derived pre- and post-event features based
on the violin plot are shown in Figure 7. The violin plot shows quantiles for 0.25 (the first quantile)
and 0.75 (the third quantile). It highlights data density and extends to the most extreme data points.
The white dot indicates the median inside the plot. Edges of the vertical lines show the minimum and
maximum values. The textural features (ASM and homogeneity) from pre-event imagery show greater
distributions than those from post-event imagery. However, ASM and homogeneity from post-event
imagery are more stable and concentrated than those from pre-event imagery.
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Figure 7. Violin plots showing the distribution of textural features obtained from pre- and
post-event data.

Table 3 lists the error matrix and accuracy of collapsed and noncollapsed buildings using the
Texture-RF method. The OA value of the result was 83.4% with a Kappa value of 61.7%. There were 29
for noncollapsed buildings and 90 for collapsed buildings were misclassified. It is possible to define
noncollapsed buildings as the better-detected class by analyzing UA and PA for each class. The number
of correctly identified collapsed buildings decreases due to the difficulty to identify changes of steel
or wood frame buildings with steel roof. QD (8.5%) and AD (8.1%) are similarly important in the
Texture-RF model. Figure 8 shows the classification map achieved by Texture-RF.

Table 3. Error matrix and accuracy achieved by Texture-RF.

Ground Truth

Collapsed Noncollapsed UA (%) OA (%) Kappa (%) QD (%) AD (%)

Predicted
Collapsed 165 29 85.1

Noncollapsed 90 432 82.8
PA (%) 64.7 93.7

83.4 61.7 8.5 8.1
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5. Discussion

This study showed that random forest classifier with CNN features performed better than with
GLCM texture features. To further explore the difference between these two kinds of features, Section 5.1
discussed the ability of separating the collapsed and noncollapsed buildings with different features
via feature visualization. The intermediate CNN features for selected collapsed and noncollapsed
buildings were also presented. Section 5.2 explored the relative important variables provided by the
random forest classifier, and Section 5.3 further compared the performance of CNNs, CNN-RF, and
Texture-RF for identifying collapsed buildings after the earthquake.

5.1. Feature Visualization

The t-distributed stochastic neighbour embedding (t-SNE) algorithm was proposed to visualize
high-dimensional data by giving each data-point a location in a two- or three-dimensional map, which
is similar to the principal component analysis by reducing data dimensionality [58]. To compare the
difference between derived texture and CNN features, t-SNE was employed to visualize embedded
texture and CNN features using the first three components (Figure 9). Raw data were also considered
for the comparison. Red color represents collapsed buildings in the plots, and green color indicates
noncollapsed ones.



Remote Sens. 2019, 11, 1202 13 of 20

Remote Sens. 2019, 5, x FOR PEER REVIEW 13 of 21 

 

Basically, there are no visible clusters for t-SNE plots generated from raw data. All building 
objects are completely mixed up and it is hard to distinguish these two groups. Therefore, it is vital 
to extract informative features to identify collapsed buildings from satellite imagery. From the plots 
obtained by texture features, it can be seen that collapsed objects tend to cluster on the extreme left 
and right side of the first two plots. High levels regarding the features extracted from CNN contain 
more abstract information. T-SNE separates the different building objects and forms clustered groups 
of similar ones using CNN features. There is a slight improvement over texture features, especially 
for the plots using the second and third t-SNE components. Although texture and CNN features cn 
separate these two groups to some extent, there are still many buildings mixed up. It remains a 
challenge to distinguish collapsed and noncollapsed objects after earthquakes using satellite imagery. 

 
Figure 9. Visualization of the utilized dataset using t-distributed Stochastic Neighbor Embedding (t-
SNE). 

Once the CNN model is established, it is also possible to visualize outputs of convolutional 
neural network layers, which provides a better understanding of what happened to the input 
building object after each operation. Figure 10 shows outputs of intermediate layers for selected 
collapsed and noncollapsed building objects. The third layer is the first pooling layer with 32 filters, 
which was used to reduce the dimensions of the image and keep the important features for further 
processing. There are 64 filters in the sixth layer (the second pooling layer) and eighth layer (the 
activation layer). The third layer acts as a collection of various change detectors by accepting the 
inputs of post-event data subtracted by pre-event data. It tends to retain the full shape of the building, 
although there are several filters that are not activated and left blank for the noncollapsed building 
objects. The obviously changed pixels have higher values. As the layer goes deeper, the activations 

Figure 9. Visualization of the utilized dataset using t-distributed Stochastic Neighbor Embedding
(t-SNE).

Basically, there are no visible clusters for t-SNE plots generated from raw data. All building objects
are completely mixed up and it is hard to distinguish these two groups. Therefore, it is vital to extract
informative features to identify collapsed buildings from satellite imagery. From the plots obtained by
texture features, it can be seen that collapsed objects tend to cluster on the extreme left and right side
of the first two plots. High levels regarding the features extracted from CNN contain more abstract
information. T-SNE separates the different building objects and forms clustered groups of similar ones
using CNN features. There is a slight improvement over texture features, especially for the plots using
the second and third t-SNE components. Although texture and CNN features cn separate these two
groups to some extent, there are still many buildings mixed up. It remains a challenge to distinguish
collapsed and noncollapsed objects after earthquakes using satellite imagery.

Once the CNN model is established, it is also possible to visualize outputs of convolutional
neural network layers, which provides a better understanding of what happened to the input building
object after each operation. Figure 10 shows outputs of intermediate layers for selected collapsed and
noncollapsed building objects. The third layer is the first pooling layer with 32 filters, which was
used to reduce the dimensions of the image and keep the important features for further processing.
There are 64 filters in the sixth layer (the second pooling layer) and eighth layer (the activation layer).
The third layer acts as a collection of various change detectors by accepting the inputs of post-event
data subtracted by pre-event data. It tends to retain the full shape of the building, although there are
several filters that are not activated and left blank for the noncollapsed building objects. The obviously
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changed pixels have higher values. As the layer goes deeper, the activations become increasingly
abstract and less visually interpretable. The sparsity of the activations increases with the depth of the
layer. In the third layer, most of the filters are activated by the input data. For the following layers,
more and more filters are blank, which means the pattern encoded by the filter is not found in the input
image. The features extracted by a layer become increasingly abstract with the depth of the layer. The
activations of higher layers retain less information present in the specific input, and more information
about the target.
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5.2. Relative Importance Variables

A benefit of the random forest algorithm is that it can provide the estimation of variable importance
from the trained model. For classification, the importance of input variable can be calculated based
on mean decrease impurity, which is defined as the total decrease in node impurity (weighted by the



Remote Sens. 2019, 11, 1202 15 of 20

probability of reaching that node) averaged over all trees of the ensemble. For Texture-RF, Figure 11a
demonstrates the relative importance of texture features generated from pre- and post-event imagery.
It can be seen that the dissimilarity feature (except entropy) from the post-event data made the greatest
contribution to the random forest model. Especially, four out of the top five variables are from
post-event data. Features calculated from post-earthquake data are more important to distinguish
collapsed and noncollapsed buildings. Looking at the variable, its importance can give you a sense of
which variable has the highest effect on the model. It is possible to make use of such information to
engineer new features or drop out features that look like noise. For CNN-RF, Figure 11b also displays
the relative importance variables for neural nodes representing features extracted from the global
average pooling layer. However, variables in the global average pooling layer are too abstract to
be interpretable.
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5.3. Comparison between CNNs, CNN-RF, and Texture-RF

Considering the number of limited training data, we simply adopt three convolutional, activation,
and pooling layers in the structure of CNN. According to the results, random forest classifier with
features extracted from the sixth layer achieved similar performance compared to texture features
with the sample Kappa value of 61.7% and OA values of 83.0% and 83.4%, respectively. The accuracy
increases progressively along with the depth of the layers [26]. The number of convolutional filters for
the first convolutional layer is 32, and the number for the second and third convolutional layers is
64. It is pointed out that larger number of filters can lead to an increase in performance. However,
utilization of larger number of filters can increase training time and overfit the training data if the
model is not regularized properly [29].

Figure 12 shows the comparison of the classification results achieved by CNNs, CNN-RF, and
Texture-RF. Apart from Kappa and OA, in the present study, the metrics of allocation disagreement and
quantity disagreement were also considered. The disagreement percentage for CNN and CNN-RF was
mainly due to the component of AD (12.8% and 10.3% for CNN and CNN-RF, respectively) rather than
QD (1.3% and 2.1% for CNN and CNN-RF, respectively). Although texture-RF achieved the lowest AD
with 8.1%, its QD (8.5%) is the highest one which is also an important part to affect the classification
results. A decrease of the D value that entails an increase of OA and Kappa. If the value of D is small,
there is a high agreement between training data and test data. Although the lowest values of AD and
QD were produced by Texture-RF and CNN respectively, the lowest D was obtained using CNN-RF.
Thus, in the present study, when viewed from the perspective of evaluation metrics including D, OA
and Kappa, CNN-RF outperformed CNNs and texture-RF.
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The result achieved by CNNs (OA = 85.9%, Kappa = 69.5%, and D = 14.1%) is slightly worse
than CNN-RF. It demonstrated that CNN-RF is able to improve the accuracy by replacing the softmax
function with random forest as the final classifier. Softmax is a generalization of the binary logistic
function, and it is used as a cost function for probabilistic multi-class classification. As a classifier, the
random forest classifier more complex than the softmax, and it is an excellent model for classification
tasks. A simple decision tree is not very robust, so ensemble methods like random forest are proposed
to run many decision trees and aggregate their outputs for prediction. This process controls overfitting
and can often produce a very robust, high-performing model. Besides, the random forest classifier
does not require much pre-processing, and can handle both categorical and numerical variables as
the input.



Remote Sens. 2019, 11, 1202 17 of 20

Texture features play a key role in remote sensing image analysis. Texture-based descriptors
characterize spectral variations that can provide supplementary information for high-resolution image
analysis. In the present study, the result acquired by texture features with the random forest classifier
was worse than CNNs and CNN-RF. Handcrafted features like texture features are designed based
on expert knowledge about the problem, which only reflects limited aspects of the problem, while
deep learning can automatically learn robust and representative features layer by layer. Deeply learnt
features are generally more general and robust, and they were proven to be more effective for the
identification of collapsed buildings after the 2010 Haiti earthquake.

6. Conclusions

Remote sensing imagery has been widely adopted to assess damaged buildings induced by an
earthquake. In this study, we compared the performance of texture and CNN features with the random
forest classifier to distinguish collapsed and noncollapsed buildings after the 2010 Haiti earthquake
using pre- and post-event satellite imagery. The result directly obtained by a simple CNN model was
also considered. Deep learning has proven its value for many problems, and is sometimes even able
to surpass human ability to solve highly computational tasks, such as ImageNet Large Scale Visual
Recognition Competition (ILSVRC) image classification and the highly mediatized Go match [59,60].
Motivated by these exciting advances, deep learning is becoming the model of choice in remote sensing,
and has been successfully applied to land use and land cover classification, building detection, data
fusion, and 3D reconstruction. Detailed summaries can be found in References [61,62]. It provides a
promising approach for building damage assessment after the earthquake. The trained CNN model
can be used as a feature descriptor and learnt features were combined with the random forest classifier.
CNN-RF achieved the highest accuracy (OA = 87.6%, Kappa = 72.5%, and D = 12.4%). The learnt
features from the CNN model showed better performance than texture features calculated from pre-
and post-event satellite data. However, it still remains a challenge to identify collapsed buildings using
remotely sensed data. Although buildings could be obscured by other features (e.g., trees, clouds) in
the imagery, some collapsed buildings with metal sheet roofs showed basically no visible distortion in
the overhead imagery. Thus, more data should be considered if available such as airborne oblique
imagery revealing cracks on the building façade and LiDAR data providing failure geometrics of
earthquake-affected buildings.
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