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Abstract: Three-dimensional (3D) digital technology is essential to the maintenance and monitoring
of cultural heritage sites. In the field of bridge engineering, 3D models generated from point
clouds of existing bridges is drawing increasing attention. Currently, the widespread use of the
unmanned aerial vehicle (UAV) provides a practical solution for generating 3D point clouds as
well as models, which can drastically reduce the manual effort and cost involved. In this study,
we present a semi-automated framework for generating structural surface models of heritage bridges.
To be specific, we propose to tackle this challenge via a novel top-down method for segmenting
main bridge components, combined with rule-based classification, to produce labeled 3D models
from UAV photogrammetric point clouds. The point clouds of the heritage bridge are generated
from the captured UAV images through the structure-from-motion workflow. A segmentation
method is developed based on the supervoxel structure and global graph optimization, which can
effectively separate bridge components based on geometric features. Then, recognition by the use
of a classification tree and bridge geometry is utilized to recognize different structural elements
from the obtained segments. Finally, surface modeling is conducted to generate surface models
of the recognized elements. Experiments using two bridges in China demonstrate the potential
of the presented structural model reconstruction method using UAV photogrammetry and point
cloud processing in 3D digital documentation of heritage bridges. By using given markers,
the reconstruction error of point clouds can be as small as 0.4%. Moreover, the precision and recall of
segmentation results using testing date are better than 0.8, and a recognition accuracy better than
0.8 is achieved.

Keywords: point cloud; heritage bridge; segmentation; recognition; unmanned aerial vehicle

1. Introduction

Ancient bridges in China are an essential part of the world’s material and cultural heritage,
but due to their age, archival information on ancient bridges is seriously scarce, and the number is
sharply decreasing due to natural and human-made disasters. Therefore, each ancient bridge needs
a fast, efficient, and accurate record for permanent preservation, particularly for endangered bridges.

Detailed three-dimensional (3D) reconstruction of ancient bridges provides a new way to solve
this problem. This kind of work can be achieved using either range-based techniques, such as
terrestrial laser scanners (TLS), or image-based techniques, mainly photogrammetry including
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structure-from-motion (SfM) [1,2]. Compared to the range-based approach, the image-based approach
has several advantages, including easy acquisition and low costs. Recently, UAVs have been widely
used to provide a general view for earth sensing reconnaissance and scientific data collection
purposes [3,4]. Compared to terrestrial acquisition and the classic manned aerial acquisition, UAV
imaging possesses the merits of flexibility and limited costs. These merits make these flying
platforms an attracting choice for data acquisition in diverse applications such as 3D modeling [5,6],
urban planning [7,8], natural environment mapping [9–11], and in general, several scene inspection
and monitoring applications [12]. UAVs can acquire high-resolution and close-range images that
can subsequently be processed using SfM and multiview stereopsis workflows (MVS) to generate
detailed 3D point clouds and surface models. The emergence of ready-to-use consumer-grade drones
as well as the development of photogrammetry and computer vision techniques further lead to
significant research interest in 3D modeling and 3D mapping using UAV images in various applications,
such as heritage building documentation [1], landslide monitoring [13], glacial geomorphology [14],
building modeling [15] and change detection [16]. Among all these applications, the UAV-based 3D
reconstruction. Currently, benefiting from photogrammetric triangulation/SfM techniques, 3D point
clouds can be reconstructed from UAV images with satisfactory accuracy. In recent works like [17],
with the help of bundle adjustment-based exterior orientation parameters, the accuracy of reconstructed
points with consumer-grade drones can reach as high as 0.05 m, which is sufficient for the majority
of engineering projects. However, to achieve such a high accuracy of reconstruction, two vital points
should be considered and investigated. The first one is the relative orientation of images [18], which is
essential to the rectification of the image. The quality of relative orientation will directly influence
the success rate of extracting sparse corresponding points and the further rectification of images [19].
The second point is the dense matching technique [2,20], which is a critical step to generate dense point
clouds from the orientated images. Only when problems involving these two points are solved can
qualified point clouds be obtained with high accuracy for further applications. In the field of bridge
engineering, several studies have successfully demonstrated the power of UAV photogrammetry
for bridge inspection and maintenance. Khaloo et al. [21] and Morgenthal et al. [22] produced a 3D
model of a bridge using UAV-captured images and a SfM algorithm to perform structural condition
assessment. Chen et al. [23] proposed a bridge inspection process using point clouds generated from
UAV images and compared this with TLS-based inspection. However, few published works in this
area focus on the reconstruction of a structural 3D model of bridges. As the semantic and structural
information is essential for heritage bridge documentation, automatic recognition of structural elements
from the UAV photogrammetric bridge models using advanced point cloud processing methods is
necessary.

However, to use 3D point clouds for further applications, we need to identify and separate
individual objects from the entire scene [24]. To achieve this, segmentation of the point cloud is usually
required before the recognition [25]. The segmentation of point clouds, aggregating 3D points into
multiple homogeneous groups with common characteristics [26], has been explored for decades.
Conventional segmentation methods like region growing or clustering examine points in the vicinity
of initial seeds or origins and check if they belong to the same group or not according to given criteria.
Euclidean distance [27], density [28,29], normal vector deviation [30,31], smoothness of surfaces [32],
and curvatures [33] of points are representative criteria. Besides, the segmentation can also be
conducted in the feature space. Geometric features or RGB colorinformation with distinctiveness are
also introduced as segmentation criteria [34]. However, all these segmentation methods are easily
influenced by noise and outliers in the dataset, resulting in over- or under-segmentation with different
granularities of the obtained segments. Besides, complex segmentation criteria will significantly
increase the computational cost. All these drawbacks should be solved if we want to achieve a good
partition of objects from the entire scene.

In this paper, we attempt to bridge the gap between the engineering techniques of photogrammetry
and remote sensing and applications from bridge engineering. To this end, an automatic framework for



Remote Sens. 2019, 11, 1204 3 of 20

reconstructing structural surface models of heritage bridges is developed using UAV photogrammetry
and point cloud processing. Detailed point clouds of a heritage bridge are generated from the captured
UAV images through the SfM and MVS workflows. A novel segmentation method based on supervoxel
structure and global graph optimization are proposed to separate the entire point cloud into consistent
segments. Sequentially, the different structural elements are clustered using a classification based
on a classification tree and bridge geometry, and the structural surface model is finally created by
a Poisson surface reconstruction algorithm. To be specific, we utilize the graph-based segmentation
method for the application of bridge engineering. The reason for using the graph-based method is that
graph structure, which is a statistical context model, is commonly used for modeling the geospatial
relationship between neighboring 2D/3D points. Since the graph structure has a natural relation
with 3D topology, compared with other data structures (e.g., regular 3D grids for structured point
clouds), a graphical model can encode not only the features of points in the local context but also the
interactions between the point and its surrounding neighbors when constructing the weighted edges
of the graph. The weights of edges encapsulate the dependency and affinity between connecting nodes.
Using the optimization (e.g., partition) of the graphical model of the point cloud, the segmentation of
the bridge point cloud can be easily achieved.The performance of the presented framework is validated
via experiments with two bridges in China.

2. Methodology

The framework of 3D structural model generation is illustrated in Figure 1, which consists of five
main steps, i.e., UAV flight path planning and image acquisition, image rectification, 3D reconstruction,
point cloud segmentation, and structural elements recognition. The point cloud segmentation and
structural elements recognition, which involves classifying different structural components of the
bridge from the obtained point clouds, are the main contributions of our structural model generation
framework. Details of these five steps are briefly presented in the following.

Figure 1. The entire workflow of the presented structural model generation framework.
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2.1. UAV Flight Path Planning and Image Acquisition

Planning a flight path requires an awareness of multiple factors such as distance from target,
speed, overlap, and pattern. According to the principle of photogrammetry and 3D reconstruction,
higher information redundancy can improve the quality of the solution. In order to obtain better
reconstruction results, the flight path should be properly planned before take-off to ensure a high
overlap rate between images. According to the recommendation in [21], the following rules are initially
determined:

• Shooting according to a serpentine route;
• The overlap ratio of the heading should be greater than 60%, and 90% is recommended;
• The side overlap ratio should be greater than 30%, and 60% is recommended.

The distance between the UAV and the bridge is determined by factors including camera field of
view, sensor resolution, and safety. In this study, the distances from the bridge are divided into three
scales: near, middle, and far, which are about 2 m, 5 m and 8 m, respectively. Taking the 2 m scale as
an example, the flight path planning is shown in Figure 2.

Figure 2. Planning graphs for the flight path. (a) Viewing directions along the flight direction. (b) Sketch
of flight trajectory (side view).

2.2. Image Rectification

This step includes scale estimation and camera calibration. Since the 3D model normally obtained
by SfM is initially generated in an arbitrary reference system, it is necessary to transform this initial
arbitrary datum into a predefined coordinate reference system. For the purpose of heritage bridge
digitization, the absolute position and orientation are not critical, but the absolute scale is indispensable.
In this study, three pairs of mark points with the known distance are arranged on the bridge. As shown
in Figure 3, Mark-1 and Mark-2 are located on the bridge deck, and Mark-3 is located on the bridge
side railing. According to the ratio of the model distance and the actual distance between the mark
points, the whole model can be synchronously scaled.

Figure 3. Locations of markers on the bridge.

Camera calibration is the process of estimating the internal geometry of a camera and has the
most significant influence on the accuracy and reliability of photogrammetric measurements. Typically,
there are two general strategies for calibration, i.e., pre-calibration and self-calibration. The influence
of the calibration method on the quality of point clouds derived using UAV photogrammetry has been
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investigated in [35]. In this study, we pre-calibrate the camera shortly before the flight, by modeling
the focal length, principal point coordinates, and distortion coefficients using Brown’s distortion
model [36]. The estimated interior camera parameters are used to undistort and thus correct the raw
images prior to the following process. To be specific, the camera was calibrated immediately prior
to capturing the surface of interest. The pre-calibration was realized using a plane-based calibration
method implemented by EOS PhotoModeler Scanner software. The planar calibration pattern with
circle targets and coded targets is supplied by PhotoModeler Scanner software, as show in Figure 4.
It is a flexible, robust and low-cost method to obtain stable camera parameters.

Figure 4. Camera calibration and markers on the UAV image. (a) Markers on the UAV image.
(b) Zoomed in view of white box area in (a). (c) Calibration pattern used in PhotoModeler.

2.3. 3D Reconstruction

The 3D reconstruction to generate the photogrammetric point clouds is achieved via SfM and MVS
workflows [13]. To be specific, this process includes two major steps, i.e., sparse reconstruction and
dense matching [37]. The sparse reconstruction involves the identification and matching of homologous
feature points as well as the reconstruction of the geometric image acquisition configuration and
generation of the sparse point clouds. Dense matching is then conducted to increase the density of
the 3D point cloud using the projection relationship recovered by sparse reconstruction. In this study,
all processes are implemented with Agisoft PhotoScan software. A description of the SfM and MVS
workflows in PhotoScan and commonly used parameters is provided in [38]. Moreover, a statistical
outlier removal filtering (SOR) [39] is applied to these point clouds before the point cloud processing.
The SOR filter we used is provided by the PCLlibrary. It computes first the average distance of each
point to its neighbors, considering k-nearest neighbors for each. Then, it rejects the points that are
farther than the average distance considering the standard deviation.

2.4. Point Cloud Segmentation

The segmentation step groups all the points into multiple consistent regions having one or several
common characteristics [26], playing a vital role for separating the entire point cloud into meaningful
geometric primitives in the presented framework. A novel segmentation method for point clouds based
on the supervoxel structure and global graph optimization is proposed. The workflow of the proposed
segmentation method is shown in Figure 5 and can be divided into three steps: supervoxelization,
global graph construction, and graph-based clustering.
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Figure 5. Workflow of the proposed segmentation method.

2.4.1. Supervoxelization of Point Clouds

For the supervoxelization of point clouds, we adopt the octree-based data structure to discretize
the entire point cloud with 3D voxels, which allows the indexing of the unorganized point cloud with
octree structure and simplifies the dataset with a grid-based representation [30]. As stated in [40],
the selection of the voxel size should be carefully considered since we need to have a good balance
between the processing time and the quality of preserved details.

Based on the voxel structure, supervoxels are further generated using the VCCS method [41],
which groups candidate voxels according to their distance to seed points within a feature space
comprising centroid positions, normal vectors, geometrical features, and RGB colors. The major
advantage of VCCS is its ability to preserve boundaries, through which we can obtain supervoxels
whose boundaries coincide with the edges of objects in the scene. For the performance of VCCS,
parameters like the voxel size and the seed resolution will significantly influence the quality of
segments. It is noteworthy that in this study, when generating the supervoxel, no color information is
considered (i.e., only the spatial distance and normal vectors are used). The parameters are empirically
set according to densities of points and distances between the sensor and objects within the scene.

2.4.2. Construction of Global Graph

We use a supervoxel graph-based method of point cloud segmentation. The supervoxel structure
of a point cloud can be represented by an undirected k-nearest neighbors graph G = (V, E), in which
the nodes represent the supervoxels and the edges encode their relationship. Each edge (vi, vj) ∈ E has
a corresponding weight wij, which is a non-negative measure of the similarity between neighboring
supervoxels vi and vj. To identify the weight of the edge, each node v is assigned with an attribute
vector representing geometric attributes formed by all points within v, relating to three groups of
attributes: spatial positions, geometric features, and normal vectors [42]. To be specific, the spatial
positions are the spatial coordinates X of the centroid p of supervoxel v. The geometric features are
eigenvalue-based features representing the 3D distribution of points inside v, including linearity
Le, planarity Pe, scattering Se, and change in curvature Ce [43]. The normal vector N is estimated
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using points within v. Based on the attributes of nodes, three types of geometric cues (i.e., proximity,
similarity, continuity) representing binary features between neighboring supervoxels vi and vj are
estimated. The proximity Wp

ij relates to the spatial distance between vi and vj. The similarity Ws
ij

measures the consistency between geometric features of vi and vj. The continuity Wc
ij combines the

smoothness Wm
ij and the convexity Wo

ij of supervoxel surfaces, and is estimated by normal vectors
and direction vectors between vi and vj [40,44]. To judge the continuity, we assume four types of
connected surfaces between supervoxels: smooth, “stair-like”, convex, and concave. Sketches of these
four types of connections are shown in Figure 6. The smoothness Wm

ij relates to the difference in angles
between normal vectors Ni and Nj. The convexity Wo

ij relies on the local configuration of the surfaces
of adjacent supervoxels. If the local configuration is convex, adjacent supervoxels are considered to
be highly connective. The local configuration (i.e., convex or concave) is judged by angles αi and
αj (see Figure 6c,d), and is calculated by the angle between Ni and Nj and the vector Dij linking Xi

and Xj, where Dij = (Xj − Xi)/||Xi − Xj||2. As stated in [44], if αi − αj > θ, the surface connectivity is
defined as a convex connection, and vice versa. Here θ is the threshold for judging convexity, which
is a given threshold. The surface continuity Wc

ij is calculated according to Equation (1) [42], giving
a higher continuity to convex or smooth connected surfaces:

Wc
ij =

{
(αi − αj)

2 + π2 , αi > αj + θ

(αi − αj)
2 + (αi + αj − π)2 , αi ≤ αj + θ.

(1)

Finally, the weight wij can be defined by considering all Wk
ij , k ∈ [p, s, c] as:

wij = ∏
k∈[p,s,c]

exp(−
(Wk

ij)
2

2λ2 ), (2)

where λ controls the weight of the spatial distance, the similarity, and the continuity. In this work,
all of these three lambda parameters are set to one.

Figure 6. Connection types between neighboring supervoxels [45]. (a) Smooth, (b) “stair-like”,
(c) convex, and (d) concave connections.

2.4.3. Global Graph-Based Clustering

To aggregate supervoxels into an entire segment, we formulate the aggregation process into
a clustering work based on the graphical model. As stated in [46], the graphical model can explicitly
represent 3D points with a mathematically sound structure and employs contextual information to deduce
hidden information from given observations [47]. Thus, by constructing and partitioning the graphical
model, we can obtain the connection information between supervoxels. To be specific, graph-based
clustering aims to divide a dataset into disjointed subsets with members similar to each other from
the affinity matrix. In [42], the use of the local graph structure for the description of the 3D geometry
with the supervoxel structure was tested. The use of the local graph model can make the clustering
process quite efficient and available for parallel computing when combined with a region-growing
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strategy. However, the local graph structure can merely encode the local geometry information,
which can hardly represent the optimal in the global scale, so that over-segmentation frequently occurs
when dealing with surfaces with irregular geometric shapes (e.g., points of vegetation). To tackle the
drawbacks of the local graph model, we developed global graph-based clustering, which constructs
a global graph model to describe the regional characteristics of 3D scenes with different complexities,
and details of objects are preserved among the clustered nodes. Specifically, once the global graph of all
supervoxels is constructed, we can optimize the connection between supervoxels by partitioning the
global graph into several subgraphs. To solve this graphical model, we utilize the method introduced
in [48], in which the Min-cut algorithm achieves a foreground–background separation. Different from
the original work of [48], in our solution each supervoxel is regarded as the seed of the foreground
and is compared with the background consisting of the local neighborhood. The foreground and
background of the supervoxel builds a local graphical structure that is solved by the Min-cut algorithm.
In Figure 7, we illustrate the built local graphical structure in the entire graphical model. Once the
Min-cut algorithm is applied, the local graphical structure is separated into the foreground and
background, and the edges linking these two parts are regarded as disconnected. When all the
supervoxels have been checked, the entire global graphical model is separated into disconnected
subgraphs by considering the connection of edges. For the supervoxels V in the same subgraph C,
these are merged into a single segment S of points.

Figure 7. Node clustering in the graphical model.

2.5. Structural Element Recognition

Once the segments are achieved, a rule-based classification method is applied to recognize
different structural elements from segments. Here, the recognition step consists of the refinement of
segments, the recognition of elements, and surface modeling.

2.5.1. Refinement of Segments

The refinement of obtained segments is needed for the supervoxel-based segmentation, the results
of which always suffer from the “zig-zag” effect since the basic element of segments is the cubic-shaped
voxel [49]. To overcome this drawback, we propose a boundary refinement of the achieved segment,
consisting of two major steps: the detection of points of boundary supervoxels and the refinement
of these boundary points. In the first step, for each segment containing several supervoxels, if one of
the supervoxels is adjacent to the supervoxels of other segments, this supervoxel will be identified
as the boundary one, and all of its points will be regarded as boundary points. Then, in the second
step, the normal vectors of the boundary points and the supervoxel at the boundary are estimated.
Based on the estimated normal vectors, a local k-mean clustering is conducted between the boundary
point and the centers of neighboring supervoxels (see Figure 8).
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Figure 8. Refinement of boundary points of segments.

Here, the clustering is governed by a distance measure calculated in the feature space, considering
the normal vectors N and the spatial distance between centroids X:

D =

√
wn

Ni ·Nb
|Ni||Nb|

+ wd(|Xi| − |Xb|), (3)

where wn and wd are weight factors controlling the contribution of normal vectors and spatial distances.

2.5.2. Recognition of Elements

For recognizing structural elements from the segments, a rule-based classification method is
introduced that utilizes the saliency of segments to determine the label of segments (i.e., the type
of object that it belongs to) [50]. The saliency of the segment is defined by its geometric properties,
which include the following aspects:

• The height Sh indicating the spatial position;
• The angle Sv between the horizontal direction and the normal vector of the segment;
• The size Ss of segments relating to the spatial length, width, and height.

To be specific, the saliency for a given segment Ssal is a vector that is computed as follows:

Ssal = [
Sh

maxk=1,...,n(Sk
h)

, (1− Ss

maxk=1,...,n(Sk
s)
),

Sv

π/2
], (4)

where n is the total number of segments in the point clouds. The saliency of each segment is ranked
in decreasing order as the input to the decision for recognizing structural elements. In this work,
three types of structural elements are considered, namely decks, fences, and walls of the bases. Once the
saliency of all of the segments is calculated, a sequential classification is applied with given thresholds
in a classification tree (see Figure 9). The segments with saliency values falling into particular branches
are recognized as particular structural elements.

Figure 9. Classification tree for recognition.
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2.5.3. Surface Modeling

A Poisson surface reconstruction algorithm [51] is adopted for surface modeling. The input for
Poisson surface reconstruction is the point cloud and its normal vector. The point represents the
position of the object surface, and its normal vector stands for the direction. Surface reconstruction is
achieved using an implicit function framework, which computes a 3D indicator function and considers
all of the points at once. Considering a region M with its boundary δM and an indicator function
XM, for any point p ∈ δM, we define ~NδM(p) as the inward surface normal vector. F̃ is a Gaussian
smoothing filter, and F̃p(q) = F̃(q− p) is a translation of F̃ to the point p. As XM is generally not
well-derived, the available gradient of XM ∗ F̃ is approximated as

5 (XM ∗ F̃)(q0) =
∫

δM
F̃p(q0)~NδM(p)dp. (5)

The indicator function can be calculated by Equation (5), and the reconstructed surface M is
obtained by extracting an appropriate isosurface. Finally, a 3D mesh model with vertices and faces
is achieved.

3. Results and Discussion

In the experiments section, we first introduce our bridge testing data, with two bridge field
sites introduced. The generation of point clouds for these two bridges is also stated. Then,
experiments using benchmarks are carried out to assess the performance of our proposed segmentation
methods. Field tests using point clouds of the two bridges mentioned above are conducted, and the
corresponding results are analyzed and discussed.

3.1. Testing Data of Bridges

To test the performance of the presented framework, two bridges were selected as testing sites.
The first one is the Hongde Bridge, located in Hongsan Village, Tang Town, Shanghai, China. It was
built in the Qianlong period of the Qing dynasty and has been around for more than 250 years. It is
a single-span stone bridge with a span of 4.9 m, a bridge length of 14.5 m, and a bridge deck width of
2 m. The second one, the Tongxin Bridge, is located at Tongji University, Shanghai, China. It is a brick
double-arch bridge, that was built over 50 years ago, with a length of 9.5 m and a bridge deck width of
5 m. In Figure 10, views of the testing bridges are shown.

Figure 10. Testing bridges. (a) Hongde Bridge. (b) Tongxin Bridge.

The UAV used was a DJI Phantom 3 Professional, which is a consumer-grade quadcopter.
A total of 763 and 575 images, respectively, were collected with a 1/2.3′′ complementary metal
oxide semiconductor sensor with 12 megapixels, for each of the two bridges. The camera was mounted
on a three-axis stabilization gimbal. Although more advanced UAVs and cameras are available,
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the purpose of this flight was to demonstrate the presented framework for bridge digitization in
a real scenario.

3.2. Generated Point Clouds

According to the matching results of the feature points and the orientation parameters, point
clouds of the Hongde Bridge and Tongxin Bridge were generated, as shown in Figure 11a–d. It is
clear that the sparse point cloud reflects the main contour of the Hongde Bridge, including the outer
edges of the bridge deck, the pier, the stone lion, and so on. The number of sparse points was about
300,000. Then, using the results of MVS, all of the pixels were re-projected to obtain the dense point
cloud model shown in Figure 11b,d. It can be seen that the overall structure and texture of the bridges
was fully restored. The point number of the final point cloud is around 18 million. The point cloud
of the Tongxin Bridge was generated in the same way. The number of points in the sparse point
cloud was 37,000, which is much smaller than that of the Hongde Bridge. For the dense point cloud,
there was a total of 2.5 million points generated. The root mean square (RMS) of reprojection errors
was 0.715 pixels and 1.010 pixels for the point clouds of the Hongde Bridge and the Tongxin Bridge,
respectively.

Figure 11. Generated point clouds of the Hongde Bridge and the Tongxin Bridge. (a,c) Sparse point
cloud. (b,d) Dense point cloud.

To evaluate the quality of the point cloud reconstructions, in the point clouds of the Hongde
Bridge, we measured the distance between three pairs of marker and compared them with the ground
truth distance. The result is given in Table 1. As seen from the table, we find that when using all the
UAV images from different scales, the error of reconstruction can be as small as 0.4%, which could be
regarded as sufficient for the documentation of heritage bridges.

Table 1. Reconstruction accuracy of different scales.

Scale UAV Distance to Bridge (m) Measured Distance (m) Ground Truth Distance (m) Error

Small 2.0 0.504 0.5 0.8%
Middle 5.0 0.515 0.5 3.0%
Large 8.0 0.523 0.5 4.6%

All – 0.502 0.5 0.4%

3.3. Quality of Segmentation

The performance of the segmentation plays an essential role in the recognition of structural
elements. For this reason, we assessed the segmentation method by conducting a comparison
between the achieved segments and the manually generated segments from reference data. For the



Remote Sens. 2019, 11, 1204 12 of 20

reference dataset, we utilized the one used in [42], which is a manually segmented point cloud of
a single building. The results generated by three point- or voxel-based segmentation algorithms,
namely the smoothness-based Region Growing (RG) [32], Supervoxel- and Graph-based Segmentation
(SVGS) [42], and Locally Convex Connected Patches (LCCP) [44] algorithms, were used as baselines
for further comparison.

In these experiments, the voxel size (used in our method, SVGS, and LCCP) and the neighborhood
size (for estimating normal vectors) of RG were set to 0.15 m, ensuring that the normal vectors used
in all the methods were calculated by almost the same number of points. For the supervoxelization
process used in our segmentation method, SVGS, and LCCP, the seed resolution of VCCS was set to
0.5 m. The threshold for tolerating the angle difference between normal vectors was set to 0.26 rad,
empirically. For SVGS, the threshold for efficient graph-based segmentation was 0.75.

The precision and recall were selected as the basic evaluation metrics for assessing the performance
of our method, which are calculated via Equations (6) and (7), by the use of true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). Here, precision is used to estimate the
ratio of correctly segmented points in the segmentation results, while recall is used to assess the ration
of correctly segmented points in the reference data [30].

precision =
|TP|

|TP|+ |FP| . (6)

recall =
|TP|

|TP|+ |FN| . (7)

In Figure 12, the segmentation results using different baseline algorithms is given. It is noted
that to handle outliers and isolated points, we removed the supervoxels that had too few points,
namely, those that did not satisfy the minimum number (at least three points) of required points when
estimating the normal vector. As seen from the figure, it is clear that our segmentation method can
generate outstanding results. To be specific, not only are planar surfaces (e.g., roofs and walls) well
separated, but irregular shapes (e.g., bushes and fences) are also segmented. By contrast, the results of
LCCP are more like over-segmentation, with small patches appearing at edges. With RG, the areas of
planes are well segmented, but for curved surfaces and irregular objects, they are more likely to be
over-segmented as well. As for the results of SVGS, irregular objects like bushes are well segmented,
but it seems that under-segmentation frequently happens for nearby objects.

To thoroughly investigate the potential of our segmentation method, we created the
precision–recall (PR) curves (see Figure 13) for all baseline algorithms by changing thresholds based
on the reference data. The tendencies of the PR curves show that our method can achieve better
segmentation and a good compromise between accuracy and recall. Specifically, according to the
PR curve, we find that when the recall value is greater than 0.7, the proposed method has better
performance than other methods. However, since the RG method is a point-based method that tends
to generate over-segmentation, the results of the RG method can achieve better precision values
than our method, but with smaller recall values. For the results of the LCCP method, since the
smoothness and convexity criteria used in the LCCP method are more suitable to segment planes and
box-shaped structures [40], when dealing with rough and irregular-shaped surfaces (e.g., roofs) and
linear structures (e.g., fences), we can observe a similar over-segmentation like that of RG, showing
discontinuous patches of segments. In this work, the size of voxels is determined according to the
demands of application, namely the subdivision of the octree is stopped according to the divided
size of voxels. In each voxel, there should remain at least three points to estimate the eigenvectors.
In Figure 14, we illustrate the relation between the voxel sizes and the segmentation performance.
Here, the segmentation result is evaluated via the F1 score. In this test, with a fixed threshold for
partitioning the graphical model, the voxel size ranges from 0.1 m to 1.0 m, and the seed resolution of
corresponding supervoxels is three times larger than the voxel size. The test results shows that with



Remote Sens. 2019, 11, 1204 13 of 20

appropriate voxel sizes (i.e., 0.2 m–0.4 m), our segmentation method can achieve good results, with F1

scores ranging from around 0.8 to 0.67.

Figure 12. Segmentation results using the reference data. (a) Original point cloud. (b) Result of the
Region Growing (RG) algorithm. (c) Result of the Supervoxel- and Graph-based Segmentation (SVGS)
algorithm. (d) Result of the Locally Convex Connected Patches (LCCP) algorithm. (e) Result using our
method. (f) Ground truth.

Figure 13. Precision–recall (PR) curves of segmentation results.
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Figure 14. The influence of different voxel sizes on the segmentation results.

The segmentation results of point clouds of real bridges are given in Figures 15 and 16, while the
number of generated segments is given in Table 2. We find that the major components of the bridges
are well separated from the entire point cloud. However, for the boundaries of the obtained segments,
there are still some errors, especially for the area without a good quality of points (e.g., the points are
too sparse or include too many outliers). In some area, over-segmentation also happens, for example,
in Figure 15b, the wall on the base of the bridge is over-segmented into two parts. Moreover, for some
connection areas between the decks and fences, the edges are not clear and incorrect. However, for the
majority of the segments, the edges are satisfactory.

Figure 15. Segmentation results for the Hongde Bridge. (a) Original point cloud. (b) Segmentation results.

Figure 16. Segmentation results for the Tongxin Bridge. (a) Original point cloud. (b) Segmentation results.
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Table 2. Segmentation results for the Hongde Bridge and Tongxin Bridge.

Name Number of Points Number of Segments

Hongde Bridge 18,114,743 30
Tongxin Bridge 5,613,422 15

3.4. Recognition and Modeling of Structural Elements

Once the segmentation of the point cloud is achieved. The segments are classified into three
groups by the saliency values. In Figure 17, the saliency values of segments from two different datasets
are given. As seen from these saliency values, it is evident that segments of different structural elements
will generate significantly different saliency values; for example, the decks and bases of the bridge will
have totally different height and direction values.

Figure 17. Segment saliency of the (a) Hongde Bridge and (b) Tongxin Bridge.

Based on these saliency values, the classification tree mentioned above was applied to group the
segments. The results are shown in Table 3 and the corresponding saliency values of each segment
are shown in Figure 18. Concerning the saliency values, we find that the height and direction values
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dominate the distinguishing process. As seen from the recognition results, it is clear that the majority
of the major structures have been correctly recognized, and especially large elements. However,
small patches belonging to the decorations are occasionally recognized incorrectly. To be specific,
for Hongde Bridge, there are eight segments recognized as decks, while for Tongxin Bridge, only two
segments are recognized as decks. For the bases, there are eight and four segments recognized as bases
of the two bridges, respectively. For the rest of the segments, they are all regarded as parts of fences.
Nevertheless, there are still some segments of the fences that are recognized incorrectly as parts of
the base, which can be seen in Figure 19b. In Table 4, we also give an evaluation of the recognition
results compared with the ground truth from manual recognition. The evaluation result reveals that
our recognition method can reach an overall accuracy (OA) greater than 0.8 for both bridges.

Table 3. Recognition results for Hongde Bridge and Tongxin Bridge.

Name Total Segments Segments of Decks Segments of Bases Segments of Fences

Hongde Bridge 30 8 8 14
Tongxin Bridge 15 2 4 9

Table 4. Evaluation of the recognition result.

Hongde Bridge Tongxin Bridge

Truth Predict Decks Bases Fences Decks Bases Fences
Decks 6 0 2 2 0 0
Bases 1 8 1 0 3 2

Fences 1 0 11 0 1 7
Overall accuracy (OA) 0.83 0.8

Figure 18. Recognition results for (a) Hongde Bridge and (b) Tongxin Bridge.

In Figure 19, we illustrate the modeling results of the recognized structural elements. As seen
from the figure, it is apparent that the quality of segments significantly influences the modeling quality.
For segments with clear and accurate boundaries, the surfaces are well reconstructed. The generated
surface models provide a comprehensive documentation of these historical bridges, with the size,
the orientation, and the geometric properties estimated and recorded. However, we should also
note that in this work, we only categorize the structural elements of the bridge into three types,
namely decks, fences, and bases, which is not sufficient to fully describe the 3D information of
historical bridges.
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Figure 19. Surface modeling results for (a) Hongde Bridge and (b) Tongxin Bridge.

4. Conclusions

In this work, we present an automatic method for generating surface models of structural
elements of heritage bridges. To be specific, we tackle this challenge via a novel top-down method for
segmenting main bridge components, combined with rule-based classification, to generate labeled
models from point clouds. This study focuses on using UAV photogrammetric point clouds associated
with heritage bridges in China. The segmentation method is developed based on voxel structure and
global graph optimization, which can effectively separate bridge components based on geometric
features. Then, classification based on a classification tree and bridge geometry is utilized to recognize
different structural elements from the obtained segments. Finally, surface modeling is conducted to
generate surface models of the recognized segments. Experiments using Hongde Bridge and Tongxin
Bridge demonstrate the potential for using UAV photogrammetry in 3D digital documentation of
cultural heritage sites, with promising results achieved. To be specific, primary structural elements
are recognized from 30 and 15 segments of the two bridges, respectively. Surface models are also
created based on the recognized segments, which can provide solid documentation for the further
preservation of these bridges. Moreover, experimental results using benchmark datasets also reveal
that our proposed segmentation algorithm is promising for the separation of structural elements in
the field of civil engineering. In the future, we will focus on optimizing 3D reconstruction algorithms
for more complicated bridge structures and developing better noise removal techniques. In addition,
the improvement of the quality of UAV-based point clouds should also be considered, which could be
helped by acquiring better position and orientation information based on internal (GPS) and inertial
measurement units systems.
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