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Abstract: Surface urban heat islands (SUHIs) have been investigated in many regions around the
world, but little attention has been given with regard to SUHIs in South America. In this study,
Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data was
used to investigate the diurnal, seasonal, and interannual variations in the SUHI intensity (SUHII,
the urban LST minus the rural LST) in 44 South American cities in different climate zones and
types of rural land. To examine the effects of factors that may influence the SUHII, correlations
between the SUHII and the enhanced vegetation index (EVI), urban area, population, altitude, and
anthropogenic heat emissions were performed. The results showed that the SUHI effect was obvious
in South America. The mean daytime SUHII was higher than the mean night-time SUHII in all areas
except for the arid climate zone. In the daytime, the summer displayed a stronger SUHII in the
warm temperate climate zone than the other seasons. The night-time SUHII showed less obvious
seasonal variations. In addition, the surrounding land cover influenced the SUHII. During the day,
the SUHII was therefore stronger in rural areas that were covered by forests than in other types of
rural land. Interannually, most cities showed an insignificant temporal trend in the SUHII from 2003
to 2016. The daytime SUHII was significantly and negatively correlated with the ∆EVI (the urban EVI
minus the rural EVI) across the 44 cities, but a poor relationship was observed at night. In addition,
anthropogenic heat emissions were positively correlated with the night-time SUHII. Urban area,
population, and altitude were weakly correlated with the SUHII, which suggested that these factors
may not have a significant impact on the spatial variations in the SUHII in South America.
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1. Introduction

Accompanying rapid urbanization, the proportion of the global urban population increased
from 45% in 1995, to 54% in 2015, and it will reach up to 66% in 2045 [1]. A series of environmental
problems caused by rapid urbanization have raised public concerns. One of these problems is the
urban heat island (UHI) phenomenon, where the air temperature of an urban area is higher than that
in nearby areas during the night [2]. UHI has negative effects on water and air quality [3], net primary
productivity [4], biodiversity [5], human health [6–8], and climate [9–13]. Generally, UHIs consist of
two types: air UHI as estimated by weather stations and surface UHI (SUHI) as monitored by remote
sensing technology and aircrafts [14]. The air UHI effect is considered to be more closely related to
human health, although both types of UHI are still highly related to health [9,15,16]. Therefore, it is of
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great importance to understand the driving mechanism and ecological effects of SUHI on regional and
global scales.

Many early UHI studies were conducted with weather stations. However, in situ data was
confined because of sparse distributions and spatial discontinuities. SUHI has been widely studied
in recent decades by monitoring the land surface temperature (LST) with remote sensing technology
and aircraft. The highest SUHI intensity (SUHII, the urban LST minus the rural LST) generally occurs
during the daytime, while the UHI peaks at night [17,18]. The UHI is rather weak in the daytime,
but it becomes more pronounced after sunset. Under some specific conditions, studies have found
that some relevant factors (e.g., urban geometry, thermal admittance, and moisture) were important
control factors for the UHI intensity [18–20]. Remote sensors such as the Landsat TM/ETM+/TIRS and
Moderate Resolution Imaging Spectroradiometer (MODIS) play important roles in SUHI research [21].
Generally, Landsat TM/ETM+/TIRS data are more commonly used to analyze SUHI on a fine scale,
because of the higher spatial resolution [22–25]. Meanwhile, many studies have been conducted at
regional or global scales, using MODIS LST products, due to its broad spatial coverage and high
temporal resolution [14,26–31]. Most studies on the topic have shown that SUHIs have obvious diurnal,
seasonal, and spatial variabilities. For example, Pongracz et al. [26] found that the SUHII in nine cities of
central Europe (i.e., Belgrade, Bucharest, Budapest, Milan, Munich, Sofia, Vienna, Warsaw, and Zagreb)
exhibited high monthly variabilities, and that the most intense SUHIs occurred on summer days.
Roth et al. [17] studied satellite-derived UHIs in Vancouver, Los Angeles, and Seattle, and the results
showed that the difference between urban and rural surface temperatures in the daytime was larger
than that in the night. According to Zhou et al. [14], the daytime SUHII in southeastern China was
higher than other regions. Some studies have investigated temporal trends in the SUHII. For example,
Yao et al. [32] investigated interannual variations in the SUHII in China’s 31 major cities from 2001 to
2015; they showed that the SUHII was increasing, and that the SUHI area was expanding. Additionally,
some studies analyzed the underlying influencing factors of the SUHII, such as urban area, vegetation
coverage, meteorological conditions, and anthropogenic heat emissions [12,14,33–38]. For example,
Peng et al. [34] reported that the SUHIIs in 419 global cities had significant and negative relationships
with the vegetation during the daytime, while an insignificant correlation was observed during the
night. These studies have contributed to understanding the specific causes of the SUHI effect.

However, little attention has been paid to SUHI studies in South America. To our knowledge,
only a few areas of South America have been investigated [39,40]; for example, Peres et al. [40] studied
the SUHI in Rio de Janeiro (Brazil) from 1984 to 2015, and the results showed that the area of the SUHI
in 2000–2015 was greater than that in 1984–1999. However, these previous studies mainly focused on
the analysis of SUHI in single cities, and they neglected to consider the influences of potential driving
factors. Therefore, it is necessary to systematically study the associated factors and temporal variations
in the SUHIs of South America.

This research is a comprehensive study of the SUHI phenomenon in South America, and it is
aimed at (1) revealing the diurnal and seasonal variations in the SUHII across 44 South American
cities in different climate zones and types of rural land, from 2003 to 2016; (2) studying the temporal
trends in the SUHII in these 44 cities; and (3) examining the relationship between the SUHII and its
associated influencing factors, including vegetation, urban area, population, altitude, and anthropogenic
heat emissions.

2. Data and Methods

2.1. Study Area

The land area of South America is approximately 17.8 × 106 km2, which makes it the fourth largest
continent in the world, accounting for approximately 12% of the world’s total land area. According
to updated Köppen–Geiger classifications [41], South America has various climate zones, the main
zones being equatorial, arid, and warm temperate climate zones. In South America, areas with an
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annual average precipitation that is above 1000 mm account for approximately 70% of the total area,
and the average temperature during the coldest winter month is above 0 ◦C. In addition, most of
the population is distributed to cities along the northwestern and eastern coasts. In 1980, the urban
population of South America accounted for 68% of the total South American population, and this
number is expected to reach 85% in 2020 [42]. In this study, we chose 44 South American cities (urban
agglomerations) with a 2014 population that was larger than one million, as the study area (Figure 1).
The local information of each city is shown in Table 1.

Table 1. The local information of each city, including the country, latitude, longitude, altitude, climate
zone, and type of rural land. The climate zone divisions are based on the Köppen–Geiger classifications.

City Country Latitude Longitude Altitude (m) Climate Zone Type of Rural Land

Montevideo Uruguay −34.83 −56.17 26.38 Warm Temperate Grassland
Buenos Aires Argentina −34.61 −58.40 21.04 Warm Temperate Cropland

Santiago Chile −33.46 −70.65 570.17 Warm Temperate Grassland
Rosario Argentina −32.95 −60.64 23.47 Warm Temperate Cropland
Córdoba Argentina −31.41 −64.18 451.06 Warm Temperate Cropland

Pôrto Alegre Brazil −30.03 −51.23 42.95 Warm Temperate Grassland
Florianópolis Brazil −27.60 −48.55 18.35 Warm Temperate Grassland

Joinville Brazil −26.30 −48.85 13.28 Warm Temperate Forest
Curitiba Brazil −25.43 −49.27 915.05 Warm Temperate Forest

Asunción Paraguay −25.30 −57.64 110.81 Warm Temperate Grassland
Baixada
Santista Brazil −23.96 −46.33 13.69 Warm Temperate Forest

São Paulo Brazil −23.55 −46.64 770.25 Warm Temperate Forest
Campinas Brazil −22.91 −47.07 608.43 Warm Temperate Cropland

Rio de
Janeiro Brazil −22.90 −43.21 34.79 Equatorial Grassland

Grande
Vitória Brazil −20.31 −40.31 20.19 Equatorial Grassland

Belo
Horizonte Brazil −19.92 −43.94 870.04 Equatorial Grassland

Santa Cruz Bolivia −17.80 −63.17 411.61 Equatorial Grassland
Cochabamba Bolivia −17.39 −66.16 2628.62 Warm Temperate Grassland

Goiânia Brazil −16.68 −49.25 782.09 Equatorial Grassland
La Paz Bolivia −16.50 −68.15 3862.25 Warm Temperate Grassland
Brasília Brazil −15.78 −47.93 1116.89 Equatorial Grassland

Salvador Brazil −12.97 −38.51 38.42 Equatorial Cropland
Lima Peru −12.04 −77.03 381.30 Arid Bare Soil

Maceió Brazil −9.67 −35.74 51.37 Equatorial Cropland
Recife Brazil −8.05 −34.88 25.47 Equatorial Cropland

João Pessoa Brazil −7.12 −34.86 41.23 Equatorial Cropland
Natal Brazil −5.80 −35.21 49.52 Equatorial Grassland

Fortaleza Brazil −3.74 −38.54 19.83 Equatorial Grassland
Manaus Brazil −3.10 −60.03 56.26 Equatorial Forest

Grande São
Luís Brazil −2.54 −44.28 30.61 Equatorial Grassland

Guayaquil Ecuador −2.17 −79.90 12.91 Equatorial Grassland
Belém Brazil −1.46 −48.48 19.71 Equatorial Forest
Quito Ecuador −0.23 −78.52 2766.80 Warm Temperate Grassland
Cali Colombia 3.44 −76.52 989.71 Equatorial Cropland

Bogotá Colombia 4.61 −74.08 2591.86 Warm Temperate Grassland
Medellín Colombia 6.25 −75.56 1602.91 Equatorial Forest

Bucaramanga Colombia 7.13 −73.12 857.72 Equatorial Forest
Barquisimeto Venezuela 10.07 −69.32 600.40 Equatorial Grassland

Valencia Venezuela 10.16 −68.01 473.51 Equatorial Grassland
Maracay Venezuela 10.25 −67.60 456.26 Equatorial Grassland

Cartagena Colombia 10.40 −75.51 10.98 Equatorial Grassland
Caracas Venezuela 10.49 −66.88 965.61 Equatorial Forest

Maracaibo Venezuela 10.63 −71.64 23.98 Equatorial Grassland
Barranquilla Colombia 10.96 −74.80 35.72 Equatorial Grassland
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Figure 1. The spatial distribution of the 44 South American cities.

2.2. Data

MODIS LST data makes it feasible for diurnal and seasonal variations in the SUHI to be studied,
because of the high temporal resolution of the data. Due to the wide coverage, it is an ideal data source
for studying the SUHI effect at large or global scales. In this study, MYD11A2 data (8-day composite,
1000 m spatial resolution) was used to obtain the LST in South America from 2003 to 2016. According
to Wan [43] and Pablos et al. [44], the absolute deviation of MODIS LST is less than 1 K in most cases.
MOD13A3 data (monthly composite, 1000 m spatial resolution) and MODIS global land cover type
data (MCD12Q1, 500 m spatial resolution) were used to extract vegetation greenness information from
2003 to 2016, and land cover information from 2013, respectively. Some studies have shown that the
enhanced vegetation index (EVI) is more appropriate than the normalized difference vegetation index
(NDVI) for monitoring vegetation variations in urban areas [45,46].

The digital elevation model (DEM) data derived from ASTER GDEM (Version 1, 30 m spatial
resolution), which was provided by Geospatial Data Cloud site, Computer Network Information Center,
Chinese Academy of Sciences (http://www.gscloud.cn), was used to obtain altitude data for each city, and
to eliminate the impacts of elevation on the SUHI. The urban population of each city in 2014 was provided
by the United Nations (https://population.un.org/wup/). In this study, night light (NL) data was used as a
proxy for anthropogenic heat emissions [14,34,47]. The composite VIIRS NL data from 2015 was obtained
from the Earth Observation Group of the National Oceanic and Atmospheric Administration’s National
Geophysical Data Center (NOAA/NGDC, https://www.ngdc.noaa.gov/eog/index.html). Finally, the
urban area of each city was calculated from the MCD12Q1 data.

2.3. Methods

To maintain consistency with the spatial resolution of the LST data, the MCD12Q1, DEM, and NL
data were first resampled with nearest neighbor to 1000 m. The SUHII was defined as the LST difference

http://www.gscloud.cn
https://population.un.org/wup/
https://www.ngdc.noaa.gov/eog/index.html
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between the urban and rural areas. The urban area was extracted in the MCD12Q1 layer, according to
the IGBP classification. If a nearby suburb had been used as a reference area, the SUHII may have been
underestimated, due to the footprint of the SUHI being larger than the urban areas [48,49]. Therefore,
a 20–25 km buffer was first generated around the urban area [32,46]. An area was excluded from the
20–25 km buffer if it met one of the following conditions: (a) it was classified as a water body or an
urban area; (b) the elevation was outside the range of the average urban elevation ±50 m [46,50,51],
or (c) it was located within another city’s 25 km buffer. The result was defined as being a rural area.
A schematic diagram of the urban and rural areas (with Buenos Aires, Argentina, as an example) is
shown in Figure 2. After the urban and rural areas were determined, the LST and EVI data were
reprojected and mosaicked, using the MODIS Reprojection Tool (MRT). Both the daytime (13:30) and
night-time (1:30) SUHII were computed for each city. Then, the seasonal and annual daytime and
night-time SUHIIs were calculated for the years 2003–2016. In the Northern Hemisphere, spring,
summer, autumn, and winter are defined as being the periods from March to May (MAM), June to
August (JJA), September to November (SON), and December to February (DJF), respectively. In the
Southern Hemisphere, spring, summer, autumn, and winter are defined as SON, DJF, MAM and
JJA, respectively.
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Figure 2. Schematic diagram of urban and rural areas, using Buenos Aires, Argentina as an example.

The NL difference (∆NL) and the EVI difference (∆EVI) were calculated between the urban and
rural areas. The relationship between the SUHII and its associated influencing factors were analyzed
by Pearson correlation analyses that were calculated using SPSS. Temporal trends in the SUHII in the
44 cities from 2003 to 2016 were conducted by linear regression analyses. The updated Köppen–Geiger
classifications [41], which have been frequently used in climate classifications, were used to divide the
44 cities into equatorial, arid, and warm temperate climate zones. Based on updated Köppen–Geiger
classification data, in this study, there were 26, 1, and 17 cities in the equatorial, arid, and warm
temperate climate zones, respectively. In addition, to comprehensively understand the effects of
differences in surrounding land cover types on the SUHI, rural areas were divided into four types
according to the land cover classification: forest, cropland, grassland, and bare soil. If there were
multiple land cover classifications in a rural area, the most common type which was chosen as the
rural land type. In total, 9, 9, 25, and one cities were covered by forest, cropland, grassland, and bare
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soil, respectively. In this study, the diurnal, seasonal, and annual SUHII were calculated for different
climate zones and different rural land types.

3. Results

3.1. Diurnal and Seasonal Variations in the SUHII

Figure 3 shows the annual and seasonal daytime SUHII. Positive daytime SUHII was observed in
40, 39, 39, 40, and 39 out of 44 cities for the annual, spring, summer, autumn, and winter time periods,
respectively. This finding suggests that the SUHI effect is obvious in South America. The annual and
seasonal night-time SUHII values are illustrated in Figure 4. The annual night-time SUHII values over
most cities (36 of 44) were between 0 ◦C and 2 ◦C, which showed that the night-time SUHII was more
stable, with less obvious seasonal variations. This result was similar to that fromPeng et al. [34], who
reported that the annual average night-time SUHII in 95% of cities worldwide was between 0 ◦C and
2 ◦C.
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Different climate zones may cause different patterns in the SUHI. Table 2 shows the mean diurnal
and seasonal SUHIIs in different climate zones. Except for the arid climate zone, the daytime SUHII
was higher than the night-time SUHII in each season. During the daytime, there was an obvious
seasonal difference in the SUHII in the warm temperate and arid zones, but this phenomenon was
not found in the equatorial climate zone. From 17 cities, the mean SUHII in the warm temperate
climate zone was 2.77 ◦C in the annual daytime, which was higher than that in the night-time (1.34 ◦C).
In addition, the mean daytime SUHII values were 2.67 ◦C, 4.06 ◦C, 2.62 ◦C, and 1.77 ◦C in spring,
summer, autumn, and winter, respectively (Table 2), which indicated that a higher SUHII occurred in
summer than in the other seasons. Moreover, the surrounding land cover may have a large difference
on the SUHII. The SUHII values, averaged over different types of rural land, are given in Table 3.
A higher daytime SUHII was found in forest-covered rural areas, compared with the other area types.
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A “cold island” effect occurred in cities where the associated rural areas were covered by bare soil
during the daytime. Similar to the above results, for all types of rural lands, the night-time SUHII was
weaker than in daytime, with fewer observed seasonal variations.
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Table 2. The diurnal and seasonal surface urban heat island intensity (SUHII, ◦C) in different climate
zones of South America.

Climate Zone Spring Summer Autumn Winter Annual

Daytime
Equatorial 3.45 3.93 4.16 3.61 3.80

Arid −2.84 −1.45 −0.67 −1.41 −1.60
Warm temperate 2.67 4.06 2.62 1.77 2.77

Night-time
Equatorial 1.32 1.22 1.15 1.18 1.22

Arid 0.93 0.94 1.15 0.88 1.03
Warm temperate 1.44 1.43 1.30 1.17 1.34

Table 3. The diurnal and seasonal SUHII (◦C) in South America for different types of rural land.

Type of Rural Land Spring Summer Autumn Winter Annual

Daytime

Forest 5.58 6.05 5.32 4.92 5.47
Cropland 1.96 2.60 2.09 1.59 2.06
Grassland 2.59 3.72 3.49 2.55 3.09
Bare soil −6.63 −6.46 −6.51 −5.02 −6.16

Night-time

Forest 1.29 1.11 1.11 1.02 1.13
Cropland 1.85 1.85 1.60 1.54 1.71
Grassland 1.20 1.17 1.11 1.10 1.15
Bare soil 0.99 0.78 1.01 0.60 0.85
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3.2. Temporal Trends in the SUHII in South America from 2003–2016

Figures 5 and 6 show the temporal trends in the SUHII for the 44 South American cities monitored
between 2003 and 2016. In the daytime, increasing trends in the SUHII were observed in most cities.
In total, 14, 8, 12, six, and eight cities had significantly increasing trends in the SUHII for the annual,
spring, summer, autumn, and winter time periods, respectively. The highest and significantly increasing
annual, spring, summer, autumn, and winter rates were found in Santa Cruz (Bolivia, 0.12 ◦C/year,
p < 0.05), Florianópolis (Brazil, 0.12 ◦C/year, p < 0.05), Santa Cruz (Bolivia, 0.21 ◦C/year, p < 0.05), Santa
Cruz (Bolivia, 0.11 ◦C/year, p < 0.05), and Maceió (Brazil, 0.12 ◦C/year, p < 0.05), respectively. Moreover,
4, 2, 5, one, and three cities showed significantly decreasing annual, spring, summer, autumn, and
winter trends in the SUHII, respectively. During the night-time, nearly half of the cities experienced
increasing trends in the SUHII over the whole study period. The SUHII increased significantly in a few
cities, as indicated by six, four, two, one, and eight cities for the annual, spring, summer, autumn, and
winter periods, respectively. Furthermore, similarly increasing SUHII rates among these cities were
found during the night-time. The highest and most significantly increasing annual, spring, summer,
autumn, and winter rates were observed in Cali (Colombia, 0.05 ◦C/year, p < 0.05), Goiânia (Brazil,
0.05 ◦C/year, p < 0.05), Campinas (Brazil, 0.03 ◦C/year, p < 0.05), Santiago (Chile, 0.02 ◦C/year, p < 0.05),
and Córdoba (Argentina, 0.08 ◦C/year, p < 0.05), respectively. Three, one, three, one, and two cities
showed significantly decreasing annual, spring, summer, autumn, and winter trends in the SUHII,
respectively. The reason for the significantly decreasing trend is not clear. However, some factors
were not considered in this study: an effect of randomness and a short study period (14 years) may
have caused this phenomenon. For both day and night periods, the number of cities with significantly
increasing trends in the SUHII was larger than those with significantly decreasing trends.
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3.3. Relationships between the SUHII and Its Potential Influencing Factors

The relationships between the SUHII and its potential influencing factors were examined, which
contributed to understanding the specific causes of the SUHI effect. The daytime SUHII was closely
related to the ∆EVI, but a poor correlation was observed at night. The daytime SUHII had a significant
(p < 0.01) and negative relationship with the ∆EVI during each season (Table 4), which suggests that
during the day, as the ∆EVI decreases, the SUHII intensifies. The results of this study were similar to
the results of Zhou et al. [14] and Peng et al. [34], who studied the relationship between the SUHII and
vegetation, in summer and winter, in 32 Chinese cities and 419 global cities, respectively. Compared
with the daytime, the correlations between the night-time SUHII and the ∆EVI were much weaker.
These results were consistent with Zhou et al. [15], who reported an insignificant correlation between
the night-time SUHII and the ∆EVI. In addition, the night-time SUHII values were significantly
and positively related to the night light difference (∆NL) (a proxy of anthropogenic heat emissions).
In contrast, the daytime SUHII values showed insignificant correlations with the ∆NL. For all seasons,
and for both daytime and night-time periods, the SUHII values had poor correlations with the urban
area (except during summer nights), the population, and the altitude, at each season.
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Table 4. Correlations between SUHII and the difference in the enhanced vegetation index (∆EVI),
urban area, population, altitude, and ∆NL during the daytime and night-time, for each season.

Factors
Daytime Night-time

Spring Summer Autumn Winter Spring Summer Autumn Winter

∆EVI −0.81 a
−0.79 a

−0.78 a
−0.80 a

−0.16 −0.25 −0.30 −0.18
Urban area 0.04 0.14 −0.04 −0.10 0.20 0.36b 0.25 0.13
Population 0.08 0.12 −0.01 −0.01 0.15 0.29 0.20 0.10

Altitude 0.17 0.24 0.20 0.13 0.02 −0.08 −0.02 0.01
∆NL 0.21 0.31 0.22 0.12 0.31 0.63a 0.46 b 0.51a

a Significant at the 0.01 level; b Significant at the 0.05 level.

4. Discussion

4.1. Diurnal and Seasonal Variations in the SUHII

The same seasonal and diurnal trends of the SUHII values can be found in previous
studies [14,16,28]. The phenomenon of a higher daytime SUHII compared with the night-time
SUHII is explained by two factors. First, urban areas with artificial impervious surfaces and larger
building densities resulting from urbanization will absorb more solar energy and radiation during the
day [52], which can lead to higher LSTs in urban areas during the daytime. Second, the presence of
vegetation affects the SUHI, due to evaporative cooling during the daytime. In the day, the largest
diurnal differences in the SUHII values occurred in cities with rural areas that were covered by forest
due to the cooler transpiration effect. However, an inverse relationship was found in arid regions.
In arid regions, the LSTs in urban areas are generally lower than those in rural areas, which causes a
negative annual daytime SUHII. Moreover, during the daytime, there were obvious seasonal variations
in the SUHII, except in the equatorial climate zone. In the warm temperate climate zone, more
vegetation coverage, more direct solar radiation, and a longer sunshine duration in summer may
contribute to the obvious seasonal variations [34].

Peng et al. [34] investigated the SUHII values between 2003 and 2008 in 419 large cities worldwide,
and the average 6-year SUHII in South America was weaker than our results (Table 5), except for
summer nights (2.4 ◦C for annual days; 1.1 ◦C for annual nights; 3.0 ◦C for summer days; 1.3 ◦C for
summer nights; 1.7 ◦C for winter days; 0.9 ◦C for winter nights). The reasons for this difference may be
related to the temporal scale and the different methods for defining rural areas. Peng et al. [34] used
nearby areas as referenced areas, which may have underestimated the SUHII, because the footprint of
the SUHI extended beyond the urban areas [49,50,53].

Table 5. The diurnal and seasonal SUHII values of 44 South American cities.

Spring Summer Autumn Winter Annual Average

Daytime 2.86 3.74 3.34 2.67 3.15
Night-time 1.34 1.28 1.21 1.16 1.25

The “cold island” effect occurred in Montevideo (−0.11 ◦C), La Paz (−0.35 ◦C), Córdoba (−0.67 ◦C),
and Lima (−6.19 ◦C) in the annual daytime. This phenomenon may relate to low vegetation disturbances
in rural areas, as indicated by the higher annual average ∆EVI of these four cities mentioned above,
compared to the other 40 cities (an average of −0.14 for the 40 cities): Lima (0.01), Córdoba (−0.06),
La Paz (−0.05), and Montevideo (−0.12). Almost no forested areas were found in these four cities.
In Lima, the associated rural area was covered by desert with a high LST, which caused a significant
cold island effect. Additionally, Lima is located near mountainous terrain, and it was possible that the
slope of the mountains relative to the sun resulted in cold islands, due to the fixed monitoring times of
the MODIS products.
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For all of the cities studied, the highest annual daytime SUHII was observed in Medellín (Colombia,
8.48 ◦C), followed by Manaus (Brazil, 6.86 ◦C), São Paulo (Brazil, 6.60 ◦C), Cali (Colombia, 6.25 ◦C),
Quito (Ecuador, 6.11 ◦C), and Bogotá (Colombia, 6.02 ◦C). The high SUHII values in these six cities
may be caused by high vegetation coverage in the rural areas. According to Yao et al. [36], rural
greening will increase the SUHII during the daytime. The mean proportion of forested areas in the six
cities accounted for 52%, while the proportion in other cities was only 20%. The mean rural EVI and
∆EVI in the six cities and other cities over different climate zones are given in Table 6. The average
absolute values of both the rural EVIs and ∆EVIs in the six cities were higher than in the other cities.
Insignificant differences in the rural EVIs between the six cities and the equatorial cities were observed,
but there was a smaller ∆EVI among the six cities, which helped to enlarge the difference in LST
between the urban and rural areas. Vegetation plays a key role in attenuating the SUHI during the day,
especially during the growing season [34]. This phenomenon can lead to higher SUHII values in these
six cities. Additionally, the SUHII values in these six cities were high for each season (Figure 7), and
this phenomenon was not observed in other cities. Although the geographical positions of these six
cities were different, they are all located near the equator. The percentages of evergreen forest in the six
cities were all above 95%, which caused the mean rural EVIs and ∆EVIs to stabilize for each season.
This may thus have caused fewer differences in seasonal variations for the SUHII.

Remote Sens. 2019, x, x FOR PEER REVIEW  12 of 16 

 

 

Figure 7. The average SUHII values from 2003–2016 for six cities: Medellín (Colombia), Manaus 
(Brazil), São Paulo (Brazil), Cali (Colombia), Bogotá (Colombia), and Quito (Ecuador). The gray and 
black columns represent the daytime and night-time SUHII, respectively. 

4.2. The Effects of Each Factor on SUHII 

The relationship between the SUHII and vegetation was significant during the day, due to the 
evaporative cooling effect by vegetation [34]. The correlation for winter days was significant and 
negative between the ∆EVI and SUHII in this study, which was different to the results of other 
previous studies [14,34]. This phenomenon may be caused by a larger portion of evergreen 
vegetation being present in South America than in other regions, as some cities are located in the 
equatorial zone. Therefore, the vegetation of these cities is less affected by seasons, and so a 
decreasing ∆EVI can intensify the SUHII, even in winter. According to Zhou et al. [14] and Arnfield 
[9], the lack of vegetative transpiration during the night-time leads to an insignificant relationship 
between the ∆EVI and SUHII. It is inferred that vegetation plays an important role in mitigating the 
SUHI effect. Hu and Jia [54] found that the proportion of urban vegetation in Guangzhou, China 
decreased by 16% from 1990–2007, which caused the LST to increase by 2.5 °C.  

In this study, anthropogenic heat emissions were positively correlated with SUHII during the 
night, which was consistent with some previous studies [14,34]. However, an insignificant 
relationship was found during the day. According to Oke et al. [2,55], the energy balance of urban 
surfaces can be expressed as: net all-wave radiation + anthropogenic heat flux = sensible heat flux + 
latent heat flux + net storage heat flux + net heat advection. Additionally, the net radiation is much 
larger than the anthropogenic heat flux during the day. Thus, anthropogenic heat emissions may be 
masked by net radiation, which would result in an insignificant relationship between the daytime 
SUHII and the anthropogenic heat emissions. However, during the night, anthropogenic heat 
emissions can contribute to the SUHI effect [56,57]. In this study, the link between the SUHII and 

Figure 7. The average SUHII values from 2003–2016 for six cities: Medellín (Colombia), Manaus
(Brazil), São Paulo (Brazil), Cali (Colombia), Bogotá (Colombia), and Quito (Ecuador). The gray and
black columns represent the daytime and night-time SUHII, respectively.



Remote Sens. 2019, 11, 1212 12 of 16

Table 6. The average rural EVI and ∆EVI for the six high-SUHII cities and the other 38 cities, in
different climate zones. The six cities are Medellín (Colombia), Manaus (Brazil), São Paulo (Brazil), Cali
(Colombia), Quito (Ecuador) and Bogotá (Colombia).

Spring Summer Autumn Winter Annual

Rural EVI
Six cities 0.43 0.46 0.44 0.43 0.44

Equatorial cities 0.36 0.43 0.45 0.39 0.41
Warm temperate cities 0.32 0.42 0.38 0.30 0.36

Arid cities 0.06 0.06 0.05 0.06 0.06
∆EVI

Six cities −0.19 −0.20 −0.19 −0.19 −0.20
Equatorial cities −0.12 −0.15 −0.16 −0.14 −0.14

Warm temperate cities −0.09 −0.13 −0.12 −0.10 −0.11
Arid cities 0.01 0.01 0.02 0.00 0.01

4.2. The Effects of Each Factor on SUHII

The relationship between the SUHII and vegetation was significant during the day, due to the
evaporative cooling effect by vegetation [34]. The correlation for winter days was significant and
negative between the ∆EVI and SUHII in this study, which was different to the results of other previous
studies [14,34]. This phenomenon may be caused by a larger portion of evergreen vegetation being
present in South America than in other regions, as some cities are located in the equatorial zone.
Therefore, the vegetation of these cities is less affected by seasons, and so a decreasing ∆EVI can
intensify the SUHII, even in winter. According to Zhou et al. [14] and Arnfield [9], the lack of vegetative
transpiration during the night-time leads to an insignificant relationship between the ∆EVI and SUHII.
It is inferred that vegetation plays an important role in mitigating the SUHI effect. Hu and Jia [54]
found that the proportion of urban vegetation in Guangzhou, China decreased by 16% from 1990–2007,
which caused the LST to increase by 2.5 ◦C.

In this study, anthropogenic heat emissions were positively correlated with SUHII during the
night, which was consistent with some previous studies [14,34]. However, an insignificant relationship
was found during the day. According to Oke et al. [2,55], the energy balance of urban surfaces can
be expressed as: net all-wave radiation + anthropogenic heat flux = sensible heat flux + latent heat
flux + net storage heat flux + net heat advection. Additionally, the net radiation is much larger than
the anthropogenic heat flux during the day. Thus, anthropogenic heat emissions may be masked by
net radiation, which would result in an insignificant relationship between the daytime SUHII and
the anthropogenic heat emissions. However, during the night, anthropogenic heat emissions can
contribute to the SUHI effect [56,57]. In this study, the link between the SUHII and urban area and
population was insignificant. Urban area and population are surrogates for other urban planning
variables, which could have indirect effects on the SUHI phenomenon. In this study, the effects of urban
area and population on the SUHII may be masked by other factors, as the 44 cities are located within
different climate zones, and they have different economic statuses and different rural environments.
Thus, the effects of population and urban area on SUHII are weakened. Cities that were located in the
equatorial climate zone and in rural areas covered by forest were chosen to test whether population
and urban area were related to the SUHII. It was found that the annual daytime SUHII values of these
cities exhibited significant and positive relationships with the population (R2 = 0.51, p < 0.05) and
urban area (R2 = 0.47, p < 0.05). Meanwhile, the altitude has little effect on the SUHII [58–60]. In this
study, vegetation and anthropogenic heat emissions played a larger role in interpreting variations in
the daytime and night-time SUHII values, respectively.
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4.3. Uncertainties

Some uncertainties exist in this study. First, the length of the study period (14 years) may have
been too short a timeframe to properly study the temporal trends in the SUHII, because of the short
time series of the MODIS LST products, which may have led to some biases in the analysis. Longer
time-series data should be used in future studies on the interannual variation in the SUHII. Second,
other factors that may influence SUHII, such as the soil moisture and the landscape configuration,
were not conducted, due to problems with data availability. To explore these effects on the SUHII,
factors that are related to the SUHII should be systematically analyzed in future works. Finally, it is
not clear why some cities had significant decreasing trends. This result may be related to the short
study period, or random effects or other factors that were not considered in this study.

5. Conclusions

In this study, the diurnal, seasonal, and interannual variations in the SUHIIs for 44 South American
cities were investigated, using statistical data and remote sensing data from 2003 to 2016. Correlation
analyses were conducted to reveal the relationships between the SUHII and ∆EVI, and urban area,
population, altitude, and anthropogenic heat emissions.

The results showed that the daytime SUHII values were higher than the night-time SUHII, except
in the arid climate zone. Seasonal variations were observed in the warm temperate and the arid climate
zones. In the warm temperate climate zone, the highest SUHII was observed in summer (4.06 ◦C).
At night, the SUHII values were between 0 ◦C and 2 ◦C in most cities, and there were no obvious
seasonal variations. Additionally, the type of surrounding land cover affects the SUHII. A stronger
daytime SUHII was observed in cities with forest-covered rural areas, compared with other types of
rural land. Interannually, although the SUHII showed different temporal trends among the 44 cities, an
insignificant temporal trend was found in most cities for the period from 2003–2016.

The SUHII and ∆EVI were significantly and negatively correlated during the daytime, but they
were not significantly correlated during the night-time. In addition, anthropogenic heat emissions
were positively correlated with the night-time SUHII. There was an insignificant correlation between
the SUHII and the urban area, the population, and the altitude in this study.

Due to the significant SUHI effects observed in South America in recent years, variations in the
urban thermal environment and the related ecological responses should be comprehensively analyzed.
This study exhaustively investigated the diurnal, seasonal, and temporal trends, and the potential
influencing factors for the SUHII in South America, which is an important reference for understanding
the spatiotemporal variations in the SUHI effect, and the interactions between human activities and
land-surface ecosystems. However, some uncertainties still remain, and other factors (e.g., landscape
configurations and soil moisture) that are associated with the SUHI phenomenon should be thoroughly
studied in future works.

Author Contributions: X.W. and L.W. designed the study; G.W., R.Y. and X.G. performed the experiments and
analyzed the data; X.W. wrote the manuscript; L.W., D.Y., X.G., G.W., and R.Y. revised the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China (No.41601044),
the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences, Wuhan
(Nos.CUGCJ1704, CUGL170401).

Acknowledgments: We thank Zigeng Niu (China University of Geosciences) for constructive comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. United Nation. World Urbanization Prospects: The 2018 Revision; United Nation: San Francisco, CA, USA, 2017.
2. Oke, T.R. The Urban Energy Balance. Prog. Phys. Geogr. 1988, 12, 471–508. [CrossRef]

http://dx.doi.org/10.1177/030913338801200401


Remote Sens. 2019, 11, 1212 14 of 16

3. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change
and the ecology of cities. Science 2008, 319, 756–760. [CrossRef]

4. Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Ricketts, T. The consequences
of urban land transformation on net primary productivity in the United States. Remote Sens. Environ. 2004,
89, 434–443. [CrossRef]

5. Reid, W.V. Biodiversity hotspots. Trends Ecol. Evol. 1998, 13, 275–280. [CrossRef]
6. Gong, P.; Liang, S.; Carlton, E.J.; Jiang, Q.; Wu, J.; Wang, L.; Remais, J.V. Urbanisation and health in China.

Lancet 2012, 379, 843–852. [CrossRef]
7. O’Loughlin, J.; Witmer, F.D.; Linke, A.M.; Laing, A.; Gettelman, A.; Dudhia, J. Climate variability and conflict

risk in East Africa, 1990–2009. Proc. Natl. Acad. Sci. USA 2012, 109, 18344–18349. [CrossRef]
8. Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human

health. Nature 2005, 438, 310–317. [CrossRef]
9. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and

water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [CrossRef]
10. Dixon, P.G.; Mote, T.L. Patterns and causes of Atlanta’s urban heat island-initiated precipitation. J. Appl.

Meteorol. 2003, 42, 1273–1284. [CrossRef]
11. Jin, M.; Dickinson, R.E.; Zhang, D.A. The footprint of urban areas on global climate as characterized by

MODIS. J. Clim. 2005, 18, 1551–1565. [CrossRef]
12. Hung, T.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects

in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48.
13. Jin, M.; Shepherd, J.M.; King, M.D. Urban aerosols and their variations with clouds and rainfall: A case 390

study for New York and Houston. J. Geophys. Res. Atmos. 2005. [CrossRef]
14. Zhou, D.C.; Zhao, S.Q.; Liu, S.G.; Zhang, L.X.; Zhu, C. Surface urban heat island in China’s 32 major cities:

Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [CrossRef]
15. Zhou, D.C.; Zhang, L.X.; Li, D.; Huang, D.; Zhu, C. Climate–vegetation control on the diurnal and seasonal

variations of surface urban heat islands in China. Environ. Res. Lett. 2016, 11, 074009. [CrossRef]
16. Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls.

Remote Sens. Environ. 2013, 134, 294–304. [CrossRef]
17. Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the

utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [CrossRef]
18. Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field

observations. J. Climatol. 1981, 1, 237–254. [CrossRef]
19. Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384.

[CrossRef]
20. Bonafoni, S.; Baldinelli, G.; Verducci, P.; Presciutti, A. Remote Sensing Techniques for Urban Heating Analysis:

A Case Study of Sustainable Construction at District Level. Sustainability 2017, 9, 1308. [CrossRef]
21. Huang, Q.; Lu, Y. Urban heat island research from 1991 to 2015: A bibliometric analysis. Theor. Appl. Climatol.

2017, 131, 1055–1067. [CrossRef]
22. Tu, L.L.; Qin, Z.H.; Li, W.J.; Geng, J.; Yang, L.C.; Zhao, S.H.; Zhan, W.F.; Wang, F. Surface urban heat island

effect and its relationship with urban expansion in Nanjing, China. J. Appl. Remote Sens. 2016, 10, 026037.
[CrossRef]

23. Zhao, M.Y.; Cai, H.Y.; Qiao, Z.; Xu, X.L. Influence of urban expansion on the urban heat island effect in
Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [CrossRef]

24. Parlow, E.; Vogt, R.; Feigenwinter, C. The urban heat island of Basel seen from different perspectives. J. Geogr.
Soc. Berl. 2014, 145, 96–110.

25. Qiao, Z.; Tian, G.; Zhang, L.; Xu, X. Influences of Urban Expansion on Urban Heat Island in Beijing during
1989–2010. Adv. Meteorol. 2014, 2014, 11. [CrossRef]

26. Pongracz, R.; Bartholy, J.; Dezso, Z. Application of remotely sensed thermal information to urban climatology
of Central European cities. Phys. Chem. Earth 2010, 35, 95–99. [CrossRef]

27. Shastri, H.; Barik, B.; Ghosh, S.; Venkataraman, C.; Sadavarte, P. Flip flop of Day-night and Summer-Winter
Surface Urban Heat Island Intensity in India. Sci. Rep. 2017, 7, 40178. [CrossRef]

28. Wang, J.; Huang, B.; Fu, D.J.; Atkinson, P.M. Spatiotemporal Variation in Surface Urban Heat Island Intensity
and Associated Determinants across Major Chinese Cities. Remote Sens. 2015, 7, 3670–3689. [CrossRef]

http://dx.doi.org/10.1126/science.1150195
http://dx.doi.org/10.1016/j.rse.2003.10.015
http://dx.doi.org/10.1016/S0169-5347(98)01363-9
http://dx.doi.org/10.1016/S0140-6736(11)61878-3
http://dx.doi.org/10.1073/pnas.1205130109
http://dx.doi.org/10.1038/nature04188
http://dx.doi.org/10.1002/joc.859
http://dx.doi.org/10.1175/1520-0450(2003)042&lt;1273:PACOAU&gt;2.0.CO;2
http://dx.doi.org/10.1175/JCLI3334.1
http://dx.doi.org/10.1029/2004JD005081
http://dx.doi.org/10.1016/j.rse.2014.05.017
http://dx.doi.org/10.1088/1748-9326/11/7/074009
http://dx.doi.org/10.1016/j.rse.2013.03.008
http://dx.doi.org/10.1080/01431168908904002
http://dx.doi.org/10.1002/joc.3370010304
http://dx.doi.org/10.1016/S0034-4257(03)00079-8
http://dx.doi.org/10.3390/su9081308
http://dx.doi.org/10.1007/s00704-016-2025-1
http://dx.doi.org/10.1117/1.JRS.10.026037
http://dx.doi.org/10.1080/13658816.2016.1178389
http://dx.doi.org/10.1155/2014/187169
http://dx.doi.org/10.1016/j.pce.2010.03.004
http://dx.doi.org/10.1038/srep40178
http://dx.doi.org/10.3390/rs70403670


Remote Sens. 2019, 11, 1212 15 of 16

29. Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a
global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf.
2019, 74, 269–280. [CrossRef]

30. Yang, Q.; Huang, X.; Tang, Q. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends
and associated factors. Sci. Total Environ. 2019, 655, 652–662. [CrossRef]

31. Weng, Q.H.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat
and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [CrossRef]

32. Yao, R.; Wang, L.C.; Huang, X.; Niu, Z.G.; Liu, F.F.; Wang, Q. Temporal trends of surface urban heat islands
and associated determinants in major Chinese cities. Sci. Total Environ. 2017, 609, 742–754. [CrossRef]

33. Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological
conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban
Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [CrossRef]

34. Peng, S.S.; Piao, S.L.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F.M.; Nan, H.J.; Zhou, L.M.; Myneni, R.B.
Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [CrossRef]
[PubMed]

35. Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship
for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [CrossRef]

36. Yao, R.; Wang, L.; Huang, X.; Gong, W.; Xia, X. Greening in Rural Areas Increases the Surface Urban Heat
Island Intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [CrossRef]

37. Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto,
Canada. Energy Build. 2016, 114, 2–19. [CrossRef]

38. Fan, H.; Sailor, D. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia:
A comparison of implementations in two PBL schemes. Atmos. Environ. 2005, 39, 73–84. [CrossRef]

39. Palme, M.; Lobato, A.; Carrasco, C. Quantitative analysis of factors contributing to urban heat island effect in
cities of latin-American Pacific coast. Procedia Eng. 2016, 169, 199–206. [CrossRef]

40. Peres, L.D.; de Lucena, A.J.; Rotunno, O.C.; Franca, J.R.D. The urban heat island in Rio de Janeiro, Brazil, in
the last 30 years using remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 104–116. [CrossRef]

41. Rubel, F.; Kottek, M. Observed and projected climate shifts 1901-2100 depicted by world maps of the
Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [CrossRef]

42. United Nation Population Division. Available online: https://esa.un.org/unpd/wup/DataQuery/ (accessed on
3 July 2018).

43. Wan, Z.M. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products.
Remote Sens. Environ. 2008, 112, 59–74. [CrossRef]

44. Pablos, M.; Martinez-Fernandez, J.; Piles, M.; Sanchez, N.; Vall-Ilossera, M.; Camps, A. Multi-Temporal
Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations.
Remote Sens. 2016, 8, 587. [CrossRef]

45. Dallimer, M.; Tang, Z.; Bibby, P.R.; Brindley, P.; Gaston, K.J.; Davies, Z.G. Temporal changes in greenspace in
a highly urbanized region. Biol. Lett. 2011, 7, 763–766. [CrossRef]

46. Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation
phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [CrossRef]

47. Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy
consumption in Brazilian Amazonia using DMSP night-time satellite data. Comput. Environ. Urban Syst.
2005, 29, 179–195. [CrossRef]

48. Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. The footprint of urban heat island effect in China. Sci. Rep.
2015, 5, 11160. [CrossRef]

49. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on
vegetation phenology. Geophys. Res. Lett. 2004. [CrossRef]

50. Yao, R.; Wang, L.C.; Huang, X.; Niu, Y.; Chen, Y.S.; Niu, Z. The influence of different data and method on
estimating the surface urban heat island intensity. Ecol. Indic. 2018, 89, 45–55. [CrossRef]

51. Yao, R.; Wang, L.; Huang, X.; Chen, J.; Li, J.; Niu, Z. Less sensitive of urban surface to climate variability than
rural in Northern China. Sci. Total Environ. 2018, 628–629, 650–660. [CrossRef]

52. Kjelgren, R.; Montague, T. Urban tree transpiration over turf and asphalt surfaces. Atmos. Environ. 1998, 32,
35–41. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2018.09.015
http://dx.doi.org/10.1016/j.scitotenv.2018.11.171
http://dx.doi.org/10.1016/j.rse.2014.02.003
http://dx.doi.org/10.1016/j.scitotenv.2017.07.217
http://dx.doi.org/10.1016/j.scitotenv.2016.07.012
http://dx.doi.org/10.1021/es2030438
http://www.ncbi.nlm.nih.gov/pubmed/22142232
http://dx.doi.org/10.1016/j.rse.2003.11.005
http://dx.doi.org/10.1029/2018GL081816
http://dx.doi.org/10.1016/j.enbuild.2015.06.046
http://dx.doi.org/10.1016/j.atmosenv.2004.09.031
http://dx.doi.org/10.1016/j.proeng.2016.10.024
http://dx.doi.org/10.1016/j.jag.2017.08.012
http://dx.doi.org/10.1127/0941-2948/2010/0430
https://esa.un.org/unpd/wup/DataQuery/
http://dx.doi.org/10.1016/j.rse.2006.06.026
http://dx.doi.org/10.3390/rs8070587
http://dx.doi.org/10.1098/rsbl.2011.0025
http://dx.doi.org/10.1016/j.rse.2016.02.010
http://dx.doi.org/10.1016/j.compenvurbsys.2003.09.004
http://dx.doi.org/10.1038/srep11160
http://dx.doi.org/10.1029/2004GL020137
http://dx.doi.org/10.1016/j.ecolind.2018.01.044
http://dx.doi.org/10.1016/j.scitotenv.2018.02.087
http://dx.doi.org/10.1016/S1352-2310(97)00177-5


Remote Sens. 2019, 11, 1212 16 of 16

53. Han, G.; Xu, J. Land surface phenology and land surface temperature changes along an urban-rural gradient
in Yangtze River Delta, China. Environ. Manag. 2013, 52, 234–249. [CrossRef]

54. Hu, Y.; Jia, G. Influence of land use change on urban heat island derived from multi-sensor data. Int. J. Climatol.
2009, 30, 1382–1395. [CrossRef]

55. Oke, T.R.; Cleugh, H.A.; Grimmond, C.S.B.; Schmid, H.P.; Roth, M. Evaluation of spatially-averaged fluxes of
heat, mass and momentum in the urban boundary layer. Weather Clim. 1989, 9, 14–21.

56. Memon, R.A.; Leung, D.Y.C.; Liu, C.H. An investigation of urban heat island intensity (UHII) as an indicator
of urban heating. Atmos. Res. 2009, 94, 491–500. [CrossRef]

57. Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban
environment. Int. J. Climatol. 2011, 31, 189–199. [CrossRef]

58. Ye, X.; She, B.; Benya, S. Exploring Regionalization in the Network Urban Space. J. Geovisualization Spat. Anal.
2018, 2, 4. [CrossRef]

59. Rongali, G.; Keshari, A.K.; Gosain, A.K.; Khosa, R. Split-window algorithm for retrieval of land surface
temperature using Landsat 8 thermal infrared data. J. Geovisualization Spat. Anal. 2018, 2, 14. [CrossRef]

60. Achour, H.; Toujani, A.; Rzigui, T.; Faïz, S. Forest cover in Tunisia before and after the 2011 Tunisian
revolution: A spatial analysis approach. J. Geovisualization Spat. Anal. 2018, 2, 10. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00267-013-0097-6
http://dx.doi.org/10.1002/joc.1984
http://dx.doi.org/10.1016/j.atmosres.2009.07.006
http://dx.doi.org/10.1002/joc.2106
http://dx.doi.org/10.1007/s41651-018-0013-y
http://dx.doi.org/10.1007/s41651-018-0021-y
http://dx.doi.org/10.1007/s41651-018-0017-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Study Area 
	Data 
	Methods 

	Results 
	Diurnal and Seasonal Variations in the SUHII 
	Temporal Trends in the SUHII in South America from 2003–2016 
	Relationships between the SUHII and Its Potential Influencing Factors 

	Discussion 
	Diurnal and Seasonal Variations in the SUHII 
	The Effects of Each Factor on SUHII 
	Uncertainties 

	Conclusions 
	References

