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Abstract: Wetland flooding is significant for the flora and fauna of wetlands. High temporal resolution
remote sensing images are widely used for the timely mapping of wetland flooding but have a
limitation of their relatively low spatial resolutions. In this study, a novel method based on random
forests and spatial attraction models (RFSAM) was proposed to improve the accuracy of sub-pixel
mapping of wetland flooding (SMWF) using remote sensing images. A random forests-based SMWF
algorithm (RM-SMWF) was developed firstly, and a comprehensive complexity index of a mixed
pixel was formulated. Then the RFSAM-SMWF method was developed. Landsat 8 Operational Land
Imager (OLI) images of two wetlands of international importance included in the Ramsar List were
used to evaluate RFSAM-SMWF against three other SMWF methods, and it consistently achieved
more accurate sub-pixel mapping results in terms of visual and quantitative assessments in the two
wetlands. The effects of the number of trees in random forests and the complexity threshold on the
mapping accuracy of RFSAM-SMWF were also discussed. The results of this study improve the
mapping accuracy of wetland flooding from medium-low spatial resolution remote sensing images
and therefore benefit the environmental studies of wetlands.

Keywords: wetland flooding; random forests; spatial attraction models; comprehensive complexity
index; sub-pixel mapping

1. Introduction

Wetlands are among the most diverse and productive ecosystems on the earth, which are created
by the impact of prolonged inundation and are characterized by specific soil quality and diverse flora
and fauna [1,2]. Wetlands are indispensable for many benefits, including freshwater supply, flood
control, groundwater recharge, and climate change mitigation [2]. Wetland flooding is necessary for
the flora and fauna of wetlands and is important for the recovery of the wetland biodiversity [1,2].
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Remote sensing images with high temporal resolutions have been widely used for monitoring flooding,
providing timely flooding distribution information [3–6]. However, these images usually have relatively
low spatial resolutions, which limit the mapping accuracy. One of the popular ways to improve
mapping accuracy is sub-pixel mapping.

Sub-pixel mapping can be employed to improve the mapping accuracy of wetland flooding from
remote sensing images with high temporal resolutions. Sub-pixel mapping can divide a mixed pixel
into multiple sub-pixels to separate the mixed information contents and then obtain an accurate spatial
distribution ration of the mixed information contents, therefore, improving the mapping accuracy.
Various sub-pixel mapping methods have been proposed in recent years, such as methods based on
spatial attraction models (SAM) [7–9], artificial neural networks [10,11], Markov random field [12],
and swarm intelligence [13,14]. However, due to the complexity and uncertainty of remote sensing
images with relatively low spatial resolutions, sub-pixel mapping of wetland flooding (SMWF) is still
difficult and needs further development.

Among the aforementioned sub-pixel mapping methods, SAM has several advantages in terms of
its simplicity and its explicit physical meanings [8]. Spatial attraction is defined in SAM, calculating
the spatial correlation between a sub-pixel and its surrounding pixels. SAM does not require training
samples and prior knowledge on the spatial structure of mixed pixels. However, SAM does not
always obtain satisfactory SMWF results when the situation of the mixed pixels is complex. As a
popular artificial intelligence algorithm, random forests (RF) have attracted extensive attention in
recent years [15–18]. Random forests are a combination of tree predictors where each tree depends on
the values of a random vector sampled independently [19]. Injecting the right kind of randomness
makes random forests accurate classifiers [19]. Random forests generate an internal unbiased estimate
of the generalization error as the forest building progresses and do not overfit as more trees are
added into the forest [20]. Because of their excellent performance in classification and regression,
random forests have been applied to many fields, such as environmental science [21–23], medical
science [24,25], energy [26–28], traffic [29,30], economics [31], and remote sensing [32–34]. SMWF is a
sub-pixel classification issue in essence [5]. The assumption of this study is that the performance of
SMWF should be enhanced if SAM is coupled with random forests.

SMWF based on random forests and spatial attraction models (RFSAM) is relatively rare in
the literature. In this study, a novel RFSAM-based SMWF (RFSAM-SMWF) method is proposed to
improve the mapping accuracy of wetland flooding at a sub-pixel scale from remote sensing images.
The main objectives are: (1) to develop an RF-SMWF algorithm, which is the basis of RFSAM-SMWF;
(2) to formulate a comprehensive complexity index of a mixed pixel and develop the RFSAM-SMWF
algorithm; (3) to compare the results of RFSAM-SMWF to traditional SMWF methods using Landsat 8
Operational Land Imager (OLI) images of two wetlands of international importance included in the
Ramsar List; and (4) to discuss the mapping accuracy of RFSAM-SMWF related to the number of trees
in random forests and the complexity threshold.

2. Methods

2.1. Principle of SMWF

The intention of SMWF is to obtain the most likely sub-pixel spatial distributions of wetland
flooding within a mixed pixel, while maintaining the original proportion of wetland flooding and
maximizing spatial dependence. An illustration of SMWF with two classes representing wetland
flooding and non-flooding is shown in Figure 1. A fraction image of wetland flooding is shown in
Figure 1a, which is the input to SMWF. The fraction value does not specify the distributions of flooding
sub-pixels; hence, there could be many possible compositions of flooding and non-flooding sub-pixels.
Figure 1b–d shows three possible flooding distributions in the central mixed pixel. The scale factor is 3
and the fraction value of the central mixed pixel is 55.6%; therefore, there are 5 flooding sub-pixels and
4 non-flooding sub-pixels in the central mixed pixel. According to the spatial dependence, the most
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likely distribution of sub-pixels among the three distributions should be Figure 1d. That is because
the two 100% flooded pixels nearby give a higher likelihood of flooding by proximity. However, it is
usually difficult to find the most likely sub-pixel distributions from numerous possible distributions in
the actual SMWF.
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Figure 1. An illustration of SMWF (scale factor = 3). (a) Fraction image of wetland flooding; (b) Possible
flooding distribution 1. (c) Possible flooding distribution 2. (d) Possible flooding distribution 3.

2.2. SAM-SMWF Algorithm

SAM-SMWF uses SAM to obtain the spatial distributions of wetland flooding at a sub-pixel scale.
The rationale of SAM is as follows [35]:

(1) SAM is based on the fraction values in neighboring pixels acting towards sub-pixels inside a
central mixed pixel.

(2) A sub-pixel can be attracted only by pixels surrounding the central pixel. A maximum of eight
neighboring pixels can be considered for attraction.

(3) Other pixels are assumed too distant to exercise the attraction.
The flooding attraction value (FAV) and non-flooding attraction value (NAV) for a sub-pixel px,y

are calculated as follows [35]:

FAV(px,y) =

N∑
n=1

FFV(P(n))/d(px,y, P(n))

N
(1)

NAV(px,y) =

N∑
n=1

(1− FFV(P(n)))/d(px,y, P(n))

N
(2)

d(px,y, P(n)) =
√
[x + 0.5− s(i + 0.5)]2 + [y + 0.5− s( j + 0.5)]2 (3)
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where N is the number of the neighboring pixels, s is the scale factor, FFV(P(n)) is the flooding fraction
value of the pixel P(n), d(px,y, P(n)) is the distance between a sub-pixel px,y and a neighboring pixel
P(n), i, j are the row and column of the neighboring pixel P(n) relatively to the central pixel, respectively,
and x, y are the row and column of the sub-pixel px,y in the central mixed pixel, respectively.

If FAV(px,y) ≥ NAV(px,y), then the sub-pixel px,y is classified as wetland flooding. Otherwise the
sub-pixel px,y is classified as non-flooding.

2.3. RFSAM-SMWF Algorithm

In this study, we first developed an RF-SMWF method as the basis of RFSAM-SMWF. Random
forests are a classifier consisting of a collection of tree-structured classifiers [19,20]. While training, a
random third of all training samples are excluded from the training set for each tree, called “out-of-bag”.
The remaining two-thirds generate a single tree. Each descendant node is split from a parent node
for the growth of a tree, using a random subset of the input variables. The “out-of-bag” samples are
an independent test set for evaluating the tree internally. To classify a new sample, the input vector
of the sample is put down each of the trees in the forest. Each tree gives a classification, and the tree
“votes” for that class. The forest chooses the classification which has the most votes over all the trees
in the forest. SMWF is a sub-pixel classification issue in essence [5]. In RF-SMWF, a set of random
forests is trained to describe the relationship between the fractions of the eight neighboring pixels
of a mixed pixel and sub-pixels within the mixed pixel. The number of random forests is equal to
the number of sub-pixels in a mixed pixel. The input to the set of random forests is the fractions of
the eight neighbors of a mixed pixel. The output of the set of random forests is the classification of
sub-pixels of a mixed pixel.

RFSAM-SMWF obtains the spatial distributions of wetland flooding at a sub-pixel scale based
on random forests and spatial attraction models. The complexity of mixed pixels is computed based
on the comprehensive complexity index (CCI) in RFSAM-SMWF. CCI of a mixed pixel considers the
complexity of the mixed pixel itself and the complexity of the neighboring pixels of the mixed pixel. It
is formulated as follows:

CCI = (CIS + CIN)/2 (4)

CIS = choose(m, k s)/choose(m, int(m/2)) (5)

CIN =
1
N

N∑
n=1

choose(m, k n)/choose(m, int(m/2)) (6)

where CIS represents the complexity index of the mixed pixel itself, CIN represents the complexity
index of the neighboring pixels of the mixed pixel, N is the number of the neighboring pixels of
the mixed pixel, ks is the number of flooding sub-pixels of the mixed pixel, and kn is the number
of flooding sub-pixels of the neighboring pixel. The function choose(m, k) = m!/((m− k)!k!) is the
binomial coefficient, where m is the number of sub-pixels of a mixed pixel. The function int(x) obtains
the nearest integer less than or equal to x.

If a mixed pixel is in a complex situation according to CCI, RFSAM-SMWF constructs a RF-SMWF
model to obtain the sub-pixel distributions of wetland flooding. Otherwise, RFSAM-SMWF obtains the
sub-pixel distributions of wetland flooding using SAM. The situation of a mixed pixel is considered as
complex if its CCI value is larger than the complexity threshold. Setting the complexity threshold is
therefore critical to the performance of RFSAM-SMWF and is discussed in the Discussion section. A
flow chart of RFSAM-SMWF is shown in Figure 2.
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Figure 2. A flow chart of RFSAM-SMWF.

3. Case Study

3.1. Study Materials

Two comparative study areas were selected from two representative wetlands designated by the
Ramsar Convention as wetlands of global importance [36]. The first wetland is East Dongting Lake
Wetland, which is located in Hunan Province, China, and was listed on 31 March 1992. The second
wetland is Honghu Wetland, which is located in Hubei Province, China, and was listed on 2 February
2008. The two wetlands experienced significant floods in July 2017 and July 2016, respectively.
Corresponding Landsat 8 OLI images were obtained for the two wetlands. Key characteristics of the
study areas are summarized and shown in Table 1.

Locations of the two study areas are shown in color composite images (R6G3B2) in Figure 3.
The flooding reference images were obtained from the corresponding Landsat 8 OLI images using the
modified normalized difference water index (mNDWI) [37,38]. The resolution of the flooding reference
images was 30 m. The flooding fraction images were obtained by aggregating the corresponding
flooding reference images. The scale was set at 5. Therefore, the resolution of the flooding fraction
images was 150 m. The value of the aggregated pixel equaled the proportion of flooding pixels inside
the corresponding 5 × 5 window. The flooding fraction images were the inputs to the SMWF methods.
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Table 1. Key characteristics of the two comparative study areas.

Study Area 1 Study Area 2

Location East Dongting Lake Wetland, Hunan Province, China Honghu Wetland, Hubei Province, China
Ramsar site number 551 1729

Ramsar designation date 31 March 1992 2 February 2008
Experimental data Landsat 8 OLI imagery Landsat 8 OLI imagery

Image date 26 July 2017 23 July 2016
Image size 500 × 500 pixels 500 × 500 pixels

Image resolution 30 m 30 m
Area 225 km2 225 km2
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Wetland flooding has its own spatio-temporal characteristics. To apply and verify the
RFSAM-SMWF algorithm, ideally, we should have two sets of multispectral remote sensing images
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with different spatial resolutions acquired at the same time over the study area: a low resolution
image from which the flooding fraction image would be derived, and another higher resolution image
from which the flooding reference image could be obtained. However, although there are many
remote sensing satellites orbiting, it was challenging to find valid images from two different satellite
sensors at a close enough time in the specific study area. In that case, areas covered by high spatial
resolution satellite data would be the primary option since we could obtain a low spatial resolution
flooding fraction image by aggregating a higher resolution flooding reference image, but not vice versa.
The scale was set at 5, which was an empirical option that had been proved effective for applying
sub-pixel algorithms and had also been adopted by other studies [10,39].

3.2. Results and Analysis

The four SMWF methods for comparison are SMWF (BP-SMWF) based on a back-propagation
neural network [40], SAM-based [35] SMWF (SAM-SMWF), decision tree-based [40] SMWF (DT-SMWF),
and RFSAM-SMWF. The four methods were coded in Matlab. RFSAM-SMWF was coded using the
TreeBagger function in Matlab, which implements the random forests algorithm [40]. The number of
trees was set at 20 and the complexity threshold was set at 0.1 in RFSAM-SMWF. The same neighboring
type of mixed pixels was used for the four methods. Twenty percent of the mixed pixels in the
flooding fraction images were randomly selected as training samples for BP-SMWF, DT-SMWF, and
RFSAM-SMWF. The hidden layer number was one in BP-SMWF.

Visual comparisons of the four SMWF methods for the two wetlands are shown in Figures 4
and 5. To provide clarity, the same small regions of the reference images and the four SMWF results are
zoomed in. As shown in Figure 4, RFSAM-SMWF obtained the best SMWF result for East Dongting
Lake Wetland. RFSAM-SMWF integrates SAM with random forests for SMWF and therefore further
improves the performance of SMWF. From Figure 5, we can see that RFSAM-SMWF also gave the best
visual SMWF result for Honghu Wetland.

The quantitative assessments of the four SMWF methods are shown in Table 2. The results were
evaluated based on overall accuracy (OA), Kappa coefficient (KC), average producer’s accuracy (APA),
and average user’s accuracy (AUA) [41,42]. Only mixed pixels in the flooding fraction images were
included when calculating the evaluation indices. RFSAM-SMWF obtained the highest evaluation
indices for both wetlands. For example, the OA values of BP-SMWF, SAM-SMWF, DT-SMWF, and
RFSAM-SMWF are 72.8%, 75.8%, 75.5%, and 80.2% for East Dongting Lake Wetland, respectively.
The OA values of BP-SMWF, SAM-SMWF, DT-SMWF, and RFSAM-SMWF are 70.1%, 73.3%, 70.2%,
and 76.7% for Honghu Wetland, respectively.
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Table 2. Quantitative metrics for each SMWF method.

Methods
East Dongting Lake Wetland Honghu Wetland

OA (%) KC APA (%) AUA (%) OA (%) KC APA (%) AUA (%)

BP-SMWF 72.8 0.454 72.7 72.7 70.1 0.393 69.6 69.7
SAM-SMWF 75.8 0.513 75.5 76.1 73.3 0.447 71.9 73.7
DT-SMWF 75.5 0.508 75.4 75.4 70.2 0.397 69.9 69.8

RFSAM-SMWF 80.2 0.601 80.0 80.2 76.7 0.527 76.3 76.4

4. Discussion

4.1. Choosing the Number of Trees in RFSAM-SMWF

The number of trees (NT) is a key parameter of random forests, which affects the classification
ability of random forests and therefore affects the sub-pixel mapping accuracy of RFSAM-SMWF.
The sub-pixel mapping accuracy of RFSAM-SMWF related to NT was analyzed. The Landsat 8 OLI
image for East Dongting Lake Wetland in the case study was used with different NT values. The other
parameters of RFSAM-SMWF were the same as those in the case study. The sub-pixel mapping accuracy
of RFSAM-SMWF for each NT value is shown in Figure 6. It shows that the higher the NT value, the
higher the OA value. The OA value increases from 79.8% to 80.5% when the NT value rises from 10 to
50. The KC, APA, and AUA values have a similar increasing trend as the OA value. That is because
random forests are a combination of tree predictors and high NT value increases the classification
ability of random forests, which is favorable to increase the accuracy of RFSAM-SMWF. However, we
can also see that the values of the evaluation indices have no obvious increase when the value of NT is
larger than 40. Therefore, an NT value larger than 40 is unnecessary in this SMWF application.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 16 
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KC represents Kappa coefficient, APA represents average producer’s accuracy, and AUA represents
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4.2. Setting the Complexity Threshold in RFSAM-SMWF

The complexity threshold (CT) determines the number of complex mixed pixels (NCMP) processed
by random forests, which affects the sub-pixel mapping accuracy of RFSAM-SMWF. The sub-pixel
mapping accuracy of RFSAM-SMWF related to CT was analyzed. The Landsat 8 OLI image for East
Dongting Lake Wetland in the case study was used with different CT values. Other parameters of
RFSAM-SMWF were the same as those in the case study. Sub-pixel mapping accuracy of RFSAM-SMWF
for each CT value is shown in Table 3, where NMP represents the number of mixed pixels in the
flooding fraction image and PCMP represents the percentage of complex mixed pixels. It indicates that
the higher the CT value, the lower the OA value. The OA value decreases from 80.7% to 76.9% when
the CT value rises from 0.05 to 0.50. The KC, APA, and AUA values have a similar decreasing trend
as the OA value. That is because a high CT value decreases the number of mixed pixels processed
by random forests and increases the number of mixed pixels processed by SAM. Although SAM has
several advantages in terms of its simplicity and its explicit physical meanings [8], random forests
have a stronger ability to obtain satisfactory SMWF results than SAM in the complex situation.

Table 3. Sub-pixel mapping accuracy of RFSAM-SMWF related to the complexity threshold (CT) for
East Dongting Lake Wetland, where NCMP represents the number of complex mixed pixels, NMP
represents the number of mixed pixels in the flooding fraction image, and PCMP represents the
percentage of complex mixed pixels.

CT NCMP NMP PCMP (%) OA (%) KC APA (%) AUA (%)

0.05 1423 2058 69.1 80.7 0.613 80.6 80.7
0.10 991 2058 48.2 80.2 0.601 80.0 80.2
0.20 563 2058 27.4 78.9 0.575 78.6 79.0
0.50 177 2058 8.6 76.9 0.534 76.5 77.1

4.3. Evaluating SMWF Algorithms with Data from a Large Area

One large area located in East Dongting Lake Wetland was selected for further evaluation and
analysis of the SMWF algorithms. The materials of the large area (3500 × 2000 pixels) and the mapping
results of different methods are shown in Figure 7. The location is shown in a color composite (R6G3B2)
Landsat 8 OLI image. The reference image was obtained from the corresponding Landsat image using
mNDWI. The parameters of the four SMWF methods are the same as those in the case study. Table 4
shows the performances of BP-SMWF, SAM-SMWF, DT-SMWF, and RFSAM-SMWF in terms of the
accuracy obtained from the large area. RFSAM-SMWF obtained the best flooding mapping results
among the four SMWF methods in the large area. It exhibited the highest values of OA, Kappa, APA,
and AUA. For example, the OA values of BP-SMWF, SAM-SMWF, DT-SMWF, and RFSAM-SMWF are
74.1%, 78.3%, 79.4%, and 82.9%. SMWF is a complex multidimensional issue because there could be
many possible sub-pixel distributions in the mixed pixels. Random forests can generate an internal
unbiased estimate of the generalization error as the forest building progresses and do not overfit as
more trees are added into the forest [20]. Therefore, RFSAM-SMWF can obtain satisfactory results in
the complex situation and is suitable for both small and large areas.
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Table 4. Quantitative comparisons of the performances of different methods in the large area (3500 × 2000 pixels).

Methods
East Dongting Lake Wetland

OA (%) Kappa APA (%) AUA (%)

BP-SMWF 74.1 0.397 68.8 71.6
SAM-SMWF 78.3 0.492 73.1 77.3
DT-SMWF 79.4 0.542 76.8 77.4

RFSAM-SMWF 82.9 0.606 79.1 82.1

5. Conclusions

Wetland flooding is necessary for the flora and fauna of wetlands and is important for the recovery
of the wetland biodiversity. In this study, a novel method called RFSAM-SMWF was proposed to
improve the mapping accuracy of wetland flooding at a sub-pixel scale from remote sensing images.
The RM-SMWF algorithm was first developed, and the comprehensive complexity index of a mixed
pixel was formulated. Then the RFSAM-SMWF algorithm was developed. The RFSAM-SMWF
algorithm was evaluated using Landsat 8 OLI images of two wetlands of international importance
included in the Ramsar List. RFSAM-SMWF was compared to three other SMWF methods, and it
consistently achieved more accurate sub-pixel mapping results in terms of visual and quantitative
assessments in the two wetlands. For example, the OA values of BP-SMWF, SAM-SMWF, DT-SMWF,
and RFSAM-SMWF are 72.8%, 75.8%, 75.5%, and 80.2% for East Dongting Lake Wetland, respectively.
And the OA values of BP-SMWF, SAM-SMWF, DT-SMWF, and RFSAM-SMWF are 70.1%, 73.3%, 70.2%,
and 76.7% for Honghu Wetland, respectively. RFSAM-SMWF can obtain satisfactory results in the
complex situation and is suitable for both small and large areas. The results of this study improve the
mapping accuracy of wetland flooding from medium-low spatial resolution remote sensing images
and therefore benefit the environmental studies of wetlands.
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