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Abstract: Leaf nitrogen concentration (LNC) is an important indicator for accurate diagnosis and
quantitative evaluation of plant growth status. The objective was to apply a discrete wavelet transform
(DWT) analysis in winter wheat for the estimation of LNC based on visible and near-infrared
(400–1350 nm) canopy reflectance spectra. In this paper, in situ LNC data and ground-based
hyperspectral canopy reflectance was measured over three years at different sites during the tillering,
jointing, booting and filling stages of winter wheat. The DWT analysis was conducted on canopy
original spectrum, log-transformed spectrum, first derivative spectrum and continuum removal
spectrum, respectively, to obtain approximation coefficients, detail coefficients and energy values
to characterize canopy spectra. The quantitative relationships between LNC and characteristic
parameters were investigated and compared with models established by sensitive band reflectance
and typical spectral indices. The results showed combining log-transformed spectrum and a sym8
wavelet function with partial least squares regression (PLS) based on the approximation coefficients
at decomposition level 4 most accurately predicted LNC. This approach could explain 11% more
variability in LNC than the best spectral index mSR705 alone, and was more stable in estimating
LNC than models based on random forest regression (RF). The results indicated that narrowband
reflectance spectroscopy (450–1350 nm) combined with DWT analysis and PLS regression was a
promising method for rapid and nondestructive estimation of LNC for winter wheat across a range in
growth stages.
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1. Introduction

Nitrogen (N) is one of the essential elements in plants. N deficiency seriously affects the
photosynthesis process and physiological metabolism and results in poor wheat grain yield and
quality [1,2]. Excessive N over fertilization not only fails to increase crop yield, but also causes the
unnecessary purchase of fertilizer and results in environmental pollution [3,4]. Knowledge of in-season
plant N status is the key to guiding N fertilization for farmers. Leaf nitrogen concentration (LNC) is an
important indicator of N nutrition in crops and is desired to be obtained by a rapid, non-destructive
method [5]. Hyperspectral remote sensing captures continuous and subtle spectral absorption features
of crop canopy from narrow bands, which has been widely applied to differentiate and quantify the
biophysical and biochemical parameters of agricultural crops [6]. Absorption characteristics of N
itself are quite weak and often are expressed by amino acid absorption characteristics in protein. The
sensitive absorption wavelength of N lies in short-wave-infrared (SWIR), which is easily obscured

Remote Sens. 2019, 11, 1331; doi:10.3390/rs11111331 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs11111331
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/11/1331?type=check_update&version=2


Remote Sens. 2019, 11, 1331 2 of 19

by water-vapor absorption characteristics [7,8]. Visible spectrum (VIS) and near-infrared (NIR) band
reflectance are often used to estimate LNC indirectly due to the strong positive correlation with leaf
chlorophyll content and pronounced sensitivity to canopy structures [9–12].

Among the estimating approaches, linear or non-linear regression models are typically analyzed
based on individual input variable of sensitive waveband reflectance. However, the canopy reflectance
spectra and sensitive wavebands of LNC are easily and strongly influenced by the soil background,
vegetation canopy geometry and atmospheric conditions [13]. Spectral transformation techniques such
as first derivative transformation, continuum removal and log-transformation processing techniques
are applied to reduce the effects of the surroundings and to enhance the spectral sensitivity to crop N
content [11,14,15]. However, it remains to be discussed about which spectral transformation is more
effective in canopy N evaluation. Meanwhile, a number of spectral indices sensitive to chlorophyll and
canopy structures with robustness have been developed to minimize spectral noise and to estimate
N-related indicators [16–18]. These include the modified normalized difference (mND705) and the
modified simple ratio (mSR705), which effectively reduce the impact of differences in leaf surface
reflectance and improve the sensitivity of pigment and N content estimation [19]. Chen et al. [20]
developed the three-band double-peak canopy nitrogen index (DCNI) to predict the LNC of maize and
wheat during the critical N management stage. However, these indices are calculated by utilizing a
limited number of wavelengths in specific spectral regions, which have not exploited the entire range
in hyperspectral data [21] and are calibrated against a specific database, which cannot be generalized
to other databases [22]. There is an urgent need to propose an approach that could take advantage of
the entire canopy spectral information as well as diminish the impacts of band autocorrelation and
data redundancy.

The wavelet transform (WT) is a multi-resolution analysis tool that has found several applications
in signal processing and compression [23], pattern recognition and classification [24], and recently was
involved in precision agriculture applications such as detection of crop-yield-reducing weeds [25],
estimation of leaf chlorophyll content [22], crop residue management [26] and diagnosis of crop
diseases [27]. Discrete wavelet transform (DWT) is capable of decomposing canopy original spectra
into different DWT coefficients in fine-scale detail coefficient (DC) and coarse-scale approximation
coefficient (AC) on the basis of mother wavelet functions. DC provides a detailed view of the input
hyperspectral signal in response to noise and special information inhered in the signal. Low-frequency
AC is an expression of global behavior of the signal, which corresponds to the main and large trend in
a signal. The AC and DC together reflect the time-frequency properties of the canopy spectral signal at
different scales [23–25]. It is considered as a productive tool for hyperspectral feature extraction [25],
and has been successfully used in quantifying pigment concentrations [28], retrieving soil moisture [29],
estimating crop residue mass [26] and leaf area index (LAI) mapping [30]. However, little application of
DWT in crop agronomy parameter evaluation is reported in the literature. Moreover, the relationship
between DWT features and LNC has not yet been studied.

In this study, we focused on the relationship between leaf N concentration and canopy spectral
reflectance to explore the possibilities of using the entire VIS-NIR region (400–1350 nm) for winter
wheat LNC assessment. The objectives of this study were (1) to analyze the impacts of the spectral
transformation type, mother wavelet and decomposition level on feature extraction of the entire canopy
spectra with a DWT analysis; (2) to construct DWT-based LNC estimating models with partial least
squares (PLS) and random forest (RF) regression and (3) to compare the models in (2) with sensitive
band reflectance-based and spectral index-based LNC estimation models (SR-LNC and SI-LNC) to
find a promising LNC monitoring model across a range of wheat growth stages.
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2. Materials and Methods

2.1. Data Acquisition

2.1.1. Experimental Design

The experiments were conducted in Guanzhong region, Shaanxi Province, China. The winter
wheat was planted in mid-October and harvested in mid-June of the following year. In experiment 1,
the commonly adopted wheat cultivar in this region, Xiaoyan 22 was cultivated in 2013–2015 at No.1
experiment station of Northwest Agriculture and Forestry University (108◦03’ E, 34◦17’ N; elevation:
454 m). A total of 24 plots were set and each plot size was 12 m2 (3 m × 4 m) with a planting row
spacing of 0.2 m and a plant density of 185 kgha−1. Six N rates (0, 30, 60, 90, 120 and 150 kg ha−1) and
six P rates (0, 15, 30, 60, 75 and 90 kg ha−1) were employed with two replications. 30 kg ha−1 P2O5 and
60 kg ha−1 N were applied as a basal fertilizer for N and P treatments, respectively. There was no K
fertilizer application due to the K sufficiency in this area. Experiment 2 was conducted at Qian County
(108◦10’ E, 34◦37’ N; elevation: 830 m) in Xianyang City during the years 2014 to 2015. A total of 36
plots were set and each plot was 36 m2 (6 m × 6 m) with a similar cultivar as experiment 1. Six N rates
(0, 45, 90, 135, 180 and 225 kg ha−1), six P rates (0, 22.5, 45, 67.5, 90 and 112.5 kg ha−1) and six K rates
(0, 15, 30, 45, 60 and 75 kg ha−1) were applied and replicated twice. 60 kg ha−1 K2O and 45 kg ha−1

P2O5, 60 kg ha−1 K2O and 90 kg ha−1 N and 90 kg ha−1 N and 45 kg ha−1 P2O5 were applied as a basal
fertilizer for N, P and K treatments, respectively, before planting. For all the treatments, N, P2O5 and
K2O fertilizers were applied as urea, potassium chloride and superphosphate, respectively. All the plot
crop planting and management patterns followed the local standard practices for wheat production.

2.1.2. Canopy Spectral Measurement

All canopy spectral measurements were collected by a field portable spectrometer (SVC HR-1024I,
USA) whose sensor could collect the canopy spectrum from 350–2500 nm with a sampling interval of
3.5 nm for 350–1000 nm, 3.6 nm for 1000–1850 nm and 2.5 nm for the 1850–2500 nm spectral region. Each
spectral measurement was obtained with a 25◦ field-of-view operating from a height of 1.3m above the
ground under clear sky conditions between 10:00 and 14:00 local time. Before each measurement, a
white BaSO4 calibration panel was used to calculate the black and baseline reflectance. To minimize
the effects caused by the surroundings, the canopy spectrum in each plot was obtained by randomly
selecting three sampling sites, and then averaging these into a single spectral sample. Each sample
consisted of an average of ten scans at an optimized integration time. Canopy spectral data were
measured during the main growth stages in each growing season. A total of 84, 84, 74 and 73 samples
were obtained in tillering, jointing, booting and filling growth stages.

2.1.3. Leaf Nitrogen Concentration Measurement

Samples for LNC determination were collected immediately after measurements of the canopy
spectra. Wheat plants from an area of 0.08 m2 (0.2 m × 0.4 m) and 0.25 m2 (0.5 m × 0.5 m) of each
plot in experiments 1 and 2 were cut respectively at ground level. All green leaves were separated
from stems, sealed in plastic bags and transferred to the laboratory with ice chests. Then, the samples
were oven-dried at 105 ◦C for 30 min, followed by oven drying at 80 ◦C until a constant weight was
achieved. Finally, dried leaves were finely ground and a subsample of ground leaves was taken to
analyze for LNC (g per 100 g dry weight, %) using the Kjeldahl method [31].

2.2. Spectral Transformation

The spectral response in VIS-NIR bands at 400–1350 nm was used to monitor the wheat LNC in
this study. All the canopy spectral reflectance curves were resampled at 1 nm spectral interval, and then
the Savitzky–Golay smoothing procedure [32] with a nine-point moving window and a second-order
polynomial fitting was applied to each spectrum. The smoothed canopy spectrum was labeled as
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the original spectrum (OS). After that, three kinds of commonly used spectral transformations were
calculated to compare with OS, including a log-transformed spectrum (LOGS), first derivative spectrum
(FDS) and continuum removal spectrum (CRS). LOGS was determined by calculating a log function of
the spectral reflectance’s reciprocal [14]. FDS was derived through calculating differences in reflectance
between adjacent wavebands [33]. CRS was obtained by normalizing the absorption valley in the
spectral curve onto the continuum line of the absorption valley [34].

2.3. Analytical Methods

2.3.1. Discrete Wavelet Transform Analysis

The background and principle of discrete wavelet transform (DWT) can be found in the
literature [25]. It can be described as a set of inner products between a finite-length signal and
a discretized wavelet basis made by scaled and transformed versions of a mother wavelet. The result
is known as the DWT coefficient. The mathematical expression is as follows,

Wi,k =
〈

f (λ),φi,k(λ)
〉
, (1)

φi,k(λ) =
1
√

2i
ψ(
λ

2i − k), (2)

where Wi,k is a DWT coefficient; f (λ) is a signal; ϕi,k(λ) is the discretized wavelet basis used to fit
optimally the signal; i is the ith decomposition level or step and k is the kth wavelet coefficient at the
ith level. With DWT analysis, signals are analyzed over a discrete set of scales, typically being dyadic
(2i, i = 1, 2, 3, . . . i is the decomposition level) [25,28,30].

In practice, the wavelet basis performs as a set of high-pass and low-pass filters to decompose
the signal into low-scale, high-frequency detail coefficients (DCs) and high-scale, low-frequency
approximation coefficients (ACs) according to scale. The length of the ACs and DCs is related to the
type of mother wavelet and decomposition level. In a multi-level decomposition, the filtering process
can be iterated with successive approximations being decomposed in turn, so that the signal is broken
down into many lower resolution components (Figure 1). Through the DWT, not only can the detailed
behavior be separated from the macroscopic behavior, but also the dimensionality of hyperspectral
data is reduced. All the information in the original signal is contained in the ACs at a particular
decomposition level i (Li) plus the DCs at decomposition level 1 to level j (L1–Li).
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Figure 1. Process of multi-level discrete wavelet transform decomposition of signal S. ACi and DCi

denote the approximation coefficient (AC) and detail coefficient (DC) at the ith decomposition level (Li).
Taking L3 for example, the output wavelet decomposition vectors include AC3, DC1, DC2 and DC3. The
size of each box demonstrates the length of the successive approximation and detail coefficients vectors.

Considering the canopy spectrum as a signal changing with wavelength, the ACs and DCs after
multi-level DWT decomposition were investigated as feature parameters of canopy spectra to find
whether it is a productive tool for LNC estimation in this paper. DWT analysis could be implemented
with the function ‘wavedec’ in MATLAB Wavelet Toolbox. The function, ‘wrcoef’, was used to
reconstruct the spectral signal so as to find out how ACs delineate the canopy spectral information.
Energy value (EV) [30] is a set of compressed ACs and DCs, which tries to take advantage of ACs and
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DCs to characterize the whole signal information. It also can be considered as a feature parameter of
canopy hyper-spectral signal and can be obtained through the expression (3):

EVi =

√√√
1
K

K∑
k=1

wi,k
2, (3)

where EVi denotes the wavelet energy value of the ith decomposition level (Li), wi,k is the kth wavelet
coefficient at Li and K represents the total number of wavelet coefficients under each level. As shown
in Figure 1, EV3 will be calculated with the AC3, DC1, DC2 and DC3 according to expression (3). Five
mother wavelet functions including db10, sym8, coif5, bior6.8 and rbio6.8 from the Daubechies, Symlet,
Coiflet, Biorthogonal and Reverse biorthogonal wavelet families, respectively, were assessed in this
study, which are commonly tested wavelet families in the canopy spectra decomposition [25–28,30].

2.3.2. Existing Spectral Indices Calculation

A total of ten correlated hyperspectral indices from three categories were selected and examined for
comparison with the DWT approach, including (1) chlorophyll indices: Modified red edge simple ratio
index (mSR705), MERIS terrestrial chlorophyll index (MTCI), structurally insensitive pigment index
(SIPI) and normalized pigment chlorophyll index (NPCI); (2) nitrogen indices: Nitrogen reflectance
index (NRI), normalized difference red-edge index (NDRE) and double-peak canopy nitrogen index
(DCNI); (3) greenness indices: Green normalized difference vegetation index (GNDVI), optimized
soil-adjusted vegetation index (OSAVI) and modified triangular vegetation index (MTVI2). The
definitions and reference sources for these ten spectral indices are summarized in Table 1.

Table 1. The definitions and reference sources of narrowband spectral indices tested in this study.

Category Index Formula Developed by

Chlorophyll indices

mSR705 (R750 – R445)/(R705 − R445) [19]
MTCI (R754 − R709)/(R709 − R681) [35]
SIPI (R800 − R445)/(R800 − R680) [36]

NPCI (R430 − R680)/(R430 + R680) [36]

Nitrogen indices
NRI (R570 − R670)/(R570 + R670) [37]

NDRE (R790 − R720)/(R790 + R720) [38]
DCNI (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) [20]

Greenness indices
GNDVI (R750 − R550)/( R750 + R550) [39]
OSAVI 1.16(R800−R670)/(R800 + R670 + 0.16) [40]

MTVI2
1.5(1.2(R800 − R550) − 2.5(R670 − R550))/sqrt((2R800

+ 1)2
− (6R800 − 5sqrt(R670)) − 0.5) [41]

Ri is the reflectance at i nm wavelength

2.3.3. Modeling Method

The ordinary least squares (OLS) regression analysis was used to construct the LNC estimation
model based on sensitive-band reflectance and spectral index. Two types of multivariate models,
partial least squares (PLS) regression and random forest (RF) regression, were carried out to establish
the estimation model on the basis of wavelet coefficients and energy values.

PLS regression is a bilinear multivariate regression method. It compresses the input data into
a number of independent latent variables (LVs) and maximizes the covariance between the LV
scores and dependent variables. The operation makes it possible to avoid high collinearity among
multi-variables and shows better prediction performance when compared with stepwise regression
or principal component regression [21,42]. The basic PLS algorithm could be obtained in Geladi
and Kowalski [43]. The number of latent variables is selected on the basis of the standard error of
leave-one-out cross-validation. Parameter optimization and modeling were implemented with the PLS
Toolbox based on MATLAB® 7.0 (MathWorks, Inc., Natick, MA, USA).
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RF regression is an ensemble machine learning algorithm based on regression trees [44,45]. It uses
the bootstrap sampling method and randomized subspace method to build decision trees, in which
only randomly selected predictors are used for each tree. The final prediction result is determined by
the average of all decision trees. Two parameters need to be optimized in RF: ‘ntree’, the number of
regression trees grown based on a bootstrap sample of the observations; ‘mtry’, the number of different
predictors (independent variables) tested at each node. The random forest library developed in the R
package (R Development Core Team 2008) was employed to implement the RF algorithm in this study.
The parameter ‘mtry’ was set as 1/3 of the number of independent variables and the ‘ntree’ was set at
500 as suggested by Breiman [43].

2.3.4. Calibration and Validation

In order to ensure the range of LNC is represented in both datasets, all the observations were
pooled together and then divided into calibration and validation dataset according to LNC values in an
ascending sort order with a proportion of 4:1 [46]. The calibration and validation data sets were evenly
distributed (Table 2). LNC ranged from 0.22% to 3.87% across all growth stages, with an average value
of 1.47%. The coefficient of variation (CV) was 52.03% indicating a moderate temporal variation.

Table 2. The statistical description of leaf nitrogen concentration (%) across all growth stages.

Data Set No. of Samples Min Max Range Mean SD Variance Skewness Kurtosis CV (%)

Whole 315 0.22 3.87 3.64 1.47 0.77 0.59 0.76 2.98 52.03
Calibration 252 0.22 3.60 3.38 1.46 0.76 0.58 0.73 2.88 51.88
Validation 63 0.35 3.87 3.52 1.5 0.79 0.63 0.86 3.26 53.00

The coefficient of determination (R2), root mean square error (RMSE), relative error (RE, %) and
the ratio of prediction to deviation (RPD) were used to measure the predictive performance of each
estimation model by different methods. Higher values of R2 and RPD, and lower values of RMSE and
RE indicate better dependability and accuracy of the regression model in predicting LNC [21,47,48].
RPD is a ratio of standard deviation to RMSE. RPD values greater than 2.0 indicate a stable and accurate
predictive model, an RPD value between 1.4 and 2.0 indicates a fair model that could be improved by
more accurate prediction techniques and a value less than 1.4 indicates poor predictive capacity [21].
Rc2, Rv2, RMSEc, RMSEv, REc, REv, RPDc and RPDv in this paper represented R2, RMSE, RE and RPD
in the calibration and validation data set, respectively. A 1:1 plot of observed vs. estimated values was
drawn to demonstrate the degree of model fit.

3. Results

3.1. LNC Estimation Models (SR-LNC) Based on Sensitive-Band Reflectance

3.1.1. Correlations Between Canopy Spectra and LNC

In general, winter wheat canopy reflectance was more significantly correlated with LNC at VIS
than NIR wavelengths (Figure 2). The absolute values of the correlation coefficient were greater
than 0.6 at 400–750 nm. Correlations were similar from 614 to 640 nm, with the strongest negative
value of −0.75. The correlation between FDS and LNC changed rapidly at 400–1300 nm. It was
slightly better at 435–465 nm than other wavelengths, and the best correlation coefficient was −0.76 at
447 nm. A weak negative correlation between LOGS and LNC was found in the near-infrared region
(750–1300 nm), whereas a strong positive correlation was observed at 400–750 nm, which significantly
improved the relationship between OS and LNC at 600–700 nm. The highest correlations appeared at
642–648 nm with a correlation coefficient of 0.83. Correlation between CRS and LNC was better at
400–765 nm, 934–1050 nm, 1124–1290 nm and 1304–1350 nm than that between OS and LNC. Moreover,
the correlation coefficients were greater than 0.6 at 400–760 nm and 1180–1270 nm, and the best
correlation coefficient was −0.85 at 721–727 nm. As reflectance at 640 nm was affected by chlorophyll
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absorption [8], and 725 nm within the red-edge wavelength region was highly related with canopy
nitrogen content [17], 640 nm and 725 nm were selected as the bands of OS and CRS most sensitive to
LNC, respectively. According to the best correlation with canopy spectra, 447 nm and 645 nm (center
part of 642–648 nm) were regarded as the bands of FDS and LOGS most sensitive to LNC, respectively.
The spectral reflectance of sensitive bands is used to establish LNC estimation models.
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Figure 2. Correlation coefficients between leaf nitrogen concentration and transformed canopy spectra,
including original spectrum (OS), first derivative spectrum (FDS), log-transformed spectrum (LOGS)
and continuum removal spectrum (CRS).

3.1.2. Construction of SR-LNC Estimation Models

The calibration and validation accuracy of FDS at 447 nm and OS at 640 nm were similar to
each other (Figure 3; Figure 4). LOGS at 645 nm and CRS at 725 nm significantly improved the LNC
prediction accuracy relative to the FDS and OS models, and the Rc

2s in exponential prediction models
were 0.73 and 0.79, respectively. The Rv

2s in validation samples were 0.72 and 0.85, RMSEvs were
0.42 and 0.35 and REvs were 28.38 and 20.65 for LOGS and CRS, respectively. Scatter plots between
predicted and measured LNC values indicated that higher LNC values were underestimated (Figure 4).
CRS was superior to other spectra in predicting LNC at sensitive reflectance bands, with predicted and
measured LNC values falling close to the 1:1 line.
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Figure 3. Leaf nitrogen concentration prediction models based on sensitive band reflectance. The solid
line represents the exponential fitting.
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Figure 4. Scatter plots between the measured and predicted leaf nitrogen concentration based on
sensitive band reflectance. The dash line is the 1:1 line.

3.2. LNC Estimation Models (SI-LNC) Based on Spectral Indices

All the spectral indices were significantly correlated with LNC as shown in Table 3. The mSR705

index was the best of ten spectral indices, which could explain 83% variability in LNC. The higher
Rv

2 (0.86), lower RMSEv (0.28) and REv (18.81) also illustrated a better performance of mSR705. The
NDRE index was the best of three nitrogen indices, which could explain 80% of variability in LNC. The
GNDVI was the best among the three greenness indices. Both GNDVI and NDRE were exponentially
related to LNC, while the accuracy of GNDVI was slightly worse than NDRE.

Table 3. Estimation models and prediction errors of leaf nitrogen concentration based on the spectral
indices. ** at 0.01 significance level.

Category Index Correlation
Coefficient Equation Rc

2 Rv
2 RMSEv REv

Chlorophyll
indices

mSR705 0.91 ** LNC = 0.2702x − 0.6773 0.83 0.86 0.28 18.81
MTCI 0.89 ** LNC = 0.5454x − 1.0901 0.78 0.84 0.31 20.94
SIPI 0.79 ** LNC = 1E − 06e15.28x 0.71 0.69 0.57 37.80

NPCI 0.80 ** LNC = 1.9583e4.13x 0.70 0.71 0.45 30.13

Nitrogen indices
NRI 0.70 ** LNC = 6.2342x − 0.5199 0.50 0.50 0.56 37.64

NDRE 0.86 ** LNC = 0.046e6.28x 0.80 0.85 0.30 20.27
DCNI 0.79 ** LNC = 0.039x − 0.8904 0.63 0.74 0.41 27.06

Greenness
indices

GNDVI 0.85 ** LNC = 0.002e8.44x 0.81 0.82 0.33 21.90
OSAVI 0.69 ** LNC = 0.0099e6.61x 0.55 0.54 0.55 36.61
MTVI2 0.60 ** LNC = 5.293x − 1.0551 0.36 0.42 0.60 40.08

3.3. LNC Estimation Models (DWT-LNC) Based on DWT Features

3.3.1. Selection of Optimum Mother Wavelet and Decomposition Level

The number of DWT coefficients describes the extent of data compression. As shown in Table 4,
the number of DWT coefficients changed with the mother wavelet and decomposition level, and was
independent on spectral transformation types. It tended to drop off from L1 to L12, and the downward
trend became stable at L10. Among five mother wavelets, sym8 had the strongest data compression
ability, while coif5 was the weakest. For example, the total number of wavebands in this study was 951
(from 400–1350 nm). After DWT analysis at decomposition level 10, the number of DWT coefficients
with mother wavelet function sym8 was 15, while coif5 had 29, which was determined from the wavelet
basis length [25].

Table 4. The number of wavelet coefficients under different mother wavelets and decomposition levels.

Mother Wavelet L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

bior6.8 484 250 133 75 46 31 24 20 18 17 17 17
coif5 490 259 144 86 57 43 36 32 30 29 29 29
db10 485 252 135 77 48 33 26 22 20 19 19 19

rbio6.8 484 250 133 75 46 31 24 20 18 17 17 17
sym8 483 249 132 73 44 29 22 18 16 15 15 15
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Since the approximation coefficient (AC) was considered as an indicator of global information for
the canopy spectrum, ACs of each transformed spectrum at decomposition level 1 to 12 were utilized
to perform signal reconstruction in order to find out how ACs delineated the canopy reflectance
spectra. The correlations between canopy spectral signals and reconstruction signals are shown in
Figure 5. The correlation coefficient decreased from L5 until leveling off at L10, which indicated that
the explanatory and signal restoring ability of ACs to canopy spectra declined gradually from L5 to
L10. All the correlation coefficients were still above 0.7 at L10 except with FDS, which went down to
less than 0.6 rapidly after decomposition level 6. The mother wavelet db10 was more labile compared
to the others, especially poor was the large fluctuation in CRS correlations. Taking into account the
data compression effectiveness, stability of mother wavelet and ability to maintain the information
quality of the canopy spectra, a mother wavelet sym8 at decomposition level of L1–L10 was chosen to
conduct the DWT to analyze the correlation with LNC.
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Figure 5. Correlations between reconstructed signals and transformed spectra for different mother
wavelets at each decomposition level. (a) OS, (b) FDS, (c) LOGS and (d) CRS.

3.3.2. DWT-LNC Models Based on PLS Regression

PLS Regression Using Wavelet ACs

All the LNC estimation models established by calibration of sample measurements with ACs
of sym8 at L1 to L10 passed the 0.01 significance level test. The number of latent variables (LVs)
extracted by PLS regression increased and then decreased with the decomposition level (Figure 6). The
maximum number of latent variables emerged at L5, which implied a lower convergence rate of the
PLS regression at L5. As a whole, all the estimating models had high prediction accuracy (Rc

2 was
greater than 0.70). The general trend of Rc

2 in each predicting model increased and then decreased
gradually with an increasing decomposition level (Figure 7). The ACs could explain 90%–93% of
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the variability in LNC at L1 to L5, except with CRS at L1. The variation of Rv
2 was consistent with

Rc
2, and all the Rv

2s were greater than 0.75. Table 5 shows the variation in RMSE and RE. LOGS
had stronger prediction ability over other models, with the highest values of Rv

2 and Rc
2, and lowest

REv and RMSEv values at L1–L10. All the RMSEvs were below 0.30. The Rv
2s were 0.93, 0.93 and

0.91 respectively for the LOGS at L3, L4 and L5. Measured and predicted LNC values with ACs from
LOGS at L3–L5 closely approximated a 1:1 line (Figure 8), and the PLS model at L4 yielded the optimal
prediction accuracy (RMSEv = 0.20, REv = 13.47).
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Figure 7. Relationships between determination coefficients and decomposition level of partial least 
squares regression models with approximation coefficients in the calibration (a) and validation set 
(b). 
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Figure 6. The number of latent variables in a partial least squares regression based on
approximation coefficients.
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Figure 7. Relationships between determination coefficients and decomposition level of partial least
squares regression models with approximation coefficients in the calibration (a) and validation set (b).

Table 5. The coefficient of determination, root mean square error and relative error of the validation set
based on a partial least squares regression with wavelet approximation coefficients.

OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

AC1 0.86 0.29 19.59 0.88 0.27 18.07 0.91 0.24 15.78 0.83 0.33 22.06
AC2 0.86 0.30 19.68 0.89 0.26 17.22 0.92 0.23 15.19 0.84 0.33 22.13
AC3 0.84 0.32 21.24 0.92 0.23 15.50 0.93 0.20 13.59 0.87 0.33 22.18
AC4 0.87 0.29 19.09 0.87 0.27 18.18 0.93 0.20 13.47 0.84 0.33 22.20
AC5 0.88 0.28 18.45 0.88 0.29 19.49 0.91 0.23 15.60 0.88 0.28 18.37
AC6 0.85 0.31 20.98 0.85 0.31 20.76 0.88 0.27 17.95 0.88 0.27 18.24
AC7 0.82 0.34 22.62 0.85 0.31 20.52 0.87 0.30 20.11 0.88 0.27 17.99
AC8 0.83 0.33 22.28 0.81 0.31 20.84 0.86 0.30 19.83 0.84 0.31 20.87
AC9 0.77 0.38 25.13 0.81 0.35 23.07 0.85 0.30 20.29 0.85 0.31 20.74
AC10 0.78 0.37 24.90 0.83 0.32 21.64 0.86 0.29 19.59 0.85 0.30 20.14
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Figure 8. Relationships between measured and predicted leaf nitrogen concentration (%) based on the
approximation coefficients of the log-transformed spectra (LOGS) at decomposition level 3, 4 and 5 in
validation set.

PLS Regression Using Wavelet DCs

The high-frequency detail coefficient of DWT analysis represented noise or minor absorption
in the canopy spectrum [21,28,49]. Figure 5 shows that the correlation coefficients between canopy
spectral signals and reconstruction signals by ACs at decomposition level 1 to 5 were close to 1, which
indicates that DCs at L1 to L5 were very small in amplitude (near zero) and could be removed without
major loss in the information content of the signal. Table 6 summarizes the validation results of PLS
models based on DCs at L6–L10. Prediction accuracy decreased with the decomposition level. The
performance of LOGS was better than other spectral transformations, but it was still worse than PLS
modeling with ACs (Table 5).

Table 6. The coefficient of determination, root mean square error and relative error of the validation set
based on a partial least squares regression with detail coefficients at decomposition level 6 to level 10.
DCi denotes the detail coefficient (DC) at Li.

DC
OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

DC6 0.84 0.32 21.43 0.81 0.35 23.02 0.89 0.26 17.53 0.85 0.30 20.25
DC7 0.83 0.33 21.75 0.77 0.38 25.19 0.89 0.27 17.73 0.84 0.32 21.41
DC8 0.83 0.33 22.17 0.57 0.52 34.54 0.87 0.29 18.38 0.81 0.35 23.13
DC9 0.77 0.38 25.36 0.48 0.57 38.05 0.88 0.28 18.77 0.81 0.36 23.76
DC10 0.76 0.39 26.17 0.39 0.62 41.63 0.88 0.28 19.55 0.77 0.38 25.53

PLS Regression Using EVs

Energy values achieve further compression of spectral signals. After multi-level one-dimensional
wavelet analysis at decomposition level n, n + 1 variables were used to calculate the energy value
according to Equation (3), and the relationship between energy value and LNC was analyzed by using
PLS regression (Table 7). With an increase in decomposition level, Rv

2 increased and then decreased
with OS and LOGS, while a general tendency of first increasing then decreasing and a conspicuous
monotonic increase were found, respectively, with FDS and CRS (Table 7). However, all the Rv

2

reached the maximum at L10. Energy value could explain over 80% of the variability of LNC at L10

with fewer variables (number of variables was 11). LOGS still gave the best performance over the other
transformations (with Rc

2 of 0.85 and Rv
2 of 0.88), but the overall accuracy was still lower than those

using approximate coefficients at L3–L5 (Figure 6). The RMSE and RE of validation set were 0.26 and
17.82 respectively, also a poorer correlation compared with the results in Table 5.
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Table 7. The coefficient of determination, root mean square error and relative error of the validation set
based on a partial least squares regression with wavelet energy values. EVi denotes energy value (EV)
at decomposition level i.

EV
OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

EV1 0.14 0.73 49.02 0.46 0.58 38.83 0.47 0.57 38.22 0.64 0.47 31.61
EV2 0.25 0.69 46.14 0.43 0.59 39.80 0.72 0.42 28.67 0.71 0.43 28.43
EV3 0.19 0.71 47.34 0.41 0.61 40.58 0.71 0.44 29.36 0.72 0.41 27.66
EV4 0.19 0.71 47.34 0.36 0.63 42.08 0.65 0.46 31.14 0.74 0.40 26.74
EV5 0.29 0.67 44.42 0.32 0.65 43.47 0.69 0.43 29.05 0.75 0.39 26.34
EV6 0.74 0.42 27.93 0.65 0.47 26.41 0.81 0.34 22.85 0.75 0.39 26.41
EV7 0.79 0.36 23.99 0.66 0.47 31.49 0.81 0.34 22.91 0.76 0.38 25.88
EV8 0.87 0.29 19.22 0.74 0.41 27.61 0.83 0.32 21.56 0.80 0.35 23.56
EV9 0.87 0.29 19.15 0.76 0.40 27.02 0.84 0.32 21.35 0.81 0.34 23.19
EV10 0.87 0.29 19.28 0.82 0.35 23.23 0.88 0.26 17.82 0.83 0.33 22.17

3.3.3. DWT-LNC Based on RF Regression

ACs and EV10 were selected to build the RF regression models. As showed in Table 8, R2s in the
validation set were slightly lower than the calibration set and most of them were less than 0.90, except
for results using ACs of LOGS in L4 and L5. After L5, the RMSEv and REv tended to go up slightly for
all transformations especially with FDS. In general, LOGS was better than other transformations in
estimating LNC by ACs with RF regression. ACs at L4 had the best RMSEv and REv, being 0.24 and
16.08, respectively, while the ACs at L10 were the worst in the RF regression models. The accuracy
of RF models based on energy values of wavelet coefficients was improved compared with the PLS
regression, but still poorer than using ACs.

Table 8. Validation of leaf nitrogen concentration estimation models based on a random forest regression
with discrete wavelet transform features. ACi denotes approximation coefficient (AC) at Li; EV10 is the
energy value at L10.

OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

AC1 0.86 0.29 19.64 0.87 0.29 19.30 0.89 0.26 17.53 0.89 0.27 17.93
AC2 0.86 0.30 19.86 0.87 0.29 19.25 0.89 0.27 17.91 0.89 0.28 18.38
AC3 0.87 0.29 19.34 0.87 0.29 19.20 0.89 0.26 17.21 0.88 0.28 18.41
AC4 0.86 0.29 19.52 0.86 0.29 19.52 0.91 0.24 16.08 0.89 0.27 17.78
AC5 0.87 0.28 18.89 0.87 0.29 19.01 0.90 0.25 16.35 0.89 0.28 18.44
AC6 0.86 0.28 18.91 0.86 0.29 19.44 0.86 0.28 18.40 0.88 0.29 19.25
AC7 0.88 0.29 19.41 0.71 0.43 28.76 0.86 0.30 20.12 0.86 0.31 20.77
AC8 0.83 0.33 21.84 0.69 0.45 29.85 0.85 0.31 20.84 0.84 0.32 21.57
AC9 0.85 0.31 20.67 0.64 0.49 32.45 0.80 0.36 24.02 0.81 0.35 23.27
AC10 0.83 0.32 21.49 0.51 0.56 37.15 0.74 0.41 27.17 0.76 0.39 26.23
EV10 0.82 0.35 23.34 0.77 0.38 25.36 0.86 0.29 19.43 0.84 0.32 21.16

3.4. Estimation Accuracy Comparison

Compared with OS at 640 nm, the sensitive band reflectance of CRS at 725 nm provided a
significant improvement in the accuracy of estimating LNC. The Rc

2 and Rv
2 increased to 0.79 and

0.85, and the RMSEv and REv decreased to 0.35 and 20.65, respectively (Figure 2). The accuracy also
was better than the results of LOGS and FDS at 645 nm and 447 nm, respectively (Figures 3 and 4).
However, it was still lower than the performance of some spectral indices especially mSR705 (Rc

2 =

0.83, Rv
2 = 0.86, RMSEv = 0.28 and REv = 18.81; Table 3). The LOGS was obviously distinguished from

four transformed canopy spectra in the discrete wavelet transform analysis and exhibited a promising
potential for revising LNC. For PLS modeling, LOGS combined with ACs at L4 produced the best
performance both in the calibration and validation sets. The prediction result of LNC in the high-value
region was better than SR-based and SI-based LNC estimation models. DCs and EVs performed
worse in LNC evaluation by using PLS regression. The best prediction accuracy of DCs was at the
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decomposition level 6 (Rv
2 = 0.89, RMSEv = 0.26 and REv = 17.53), which was slightly higher than the

mSR705 index. EVs at L10 had similar prediction accuracy as DCs at L6. With RF regression, LOGS
at L4 showed the highest accuracy in LNC prediction on the basis of ACs, with the Rv

2, RMSEv and
REv being 0.91, 0.24 and 16.28, respectively, which were slightly worse than the PLS regression. LNC
estimation result using energy values was improved by a RF regression, but it was still lower than the
PLS and RF models with ACs at L4.

The ration of prediction to deviation (RPD) is calculated by dividing the standard deviation
(SD) of the reference data by the standard error of prediction. Since the SD values for calibration
and validation data set are constants, the RPD value will not change the ranking of best performing
indicators. However, the RPD is a dimensionless parameter and can be classified to different categories
to evaluate the model accuracy. Table 9 exhibited the RPD values in some of the estimation models.
All the RPDs in the calibration set and validation set exceeded 2.0 except the OLS regression model
based on the CRS725, which indicated all the estimation models in Table 9 had stable and accurate
predictive abilities. The PLS model with AC4 produced the best performance (RPDc = 3.97 and RPDv

= 3.95), and followed by the RF regression model with AC4 (RPDc = 3.04 and RPDv = 3.29). Overall,
by comparing all the methods in this article with statistical indicators of R2, RMSE, RE and RPD, an
integrated approach using DWT ACs and PLS regression exhibited the highest stability and reliability
in LNC estimation.

Table 9. The ratio of prediction to deviation (RPD) values in the calibration models and validation
models of leaf nitrogen concentration.

Model
OLS Regression PLS Regression RF Regression

CRS725 mSR705 AC4 DC6 EV10 AC4 EV10

RPDc 1.95 2.43 3.97 2.81 2.61 3.04 2.38
RPDv 2.26 2.82 3.95 3.04 3.04 3.29 2.72

4. Discussion

A large number of studies have been conducted with passive and active remote sensing technologies
for the timely and non-destructive evaluation of LNC [9–11,13–17,50]. In the present study, we mainly
discussed the effect of the entire range of canopy reflectance (400–1350 nm) on LNC estimation and
provided a guide for feature extraction by DWT analysis and PLS regression.

4.1. Sensitive Band Reflectance and Spectral Transformation

This study demonstrated that spectral measurements were apparently useful for describing the N
status of wheat canopies. It is known that pure chlorophyll a and b had absorption peaks at red and
blue wavelength regions, respectively. The red edge (680–760 nm) caused by the strong absorption of
pigments in the red spectrum and leaf scattering in the NIR spectrum has been found to be sensitive
to crop growth [12,14,16–18]. As N concentration was linked to the plant photosynthetic pigments
concentration especially chlorophyll, the correlation between leaf nitrogen concentration and spectral
reflectance in visible light was better than in the near-infrared region as shown in Figure 2. All the
sensitive wavebands of spectral transformations were located in visible light (OS at 640 nm, FDS at
447 nm, LOGS at 645 nm and CRS at 725 nm). In previous research, the first derivative was closely
related to N concentration in corn and wheat [20], which was designed to eliminate background signals
or noise and to resolve overlapping spectral features. The LOG transformation performed accurately
compared with the original reflectance when estimating N concentrations [14]. CRS yielded the highest
accuracy in estimating grass leaf nitrogen concentrations, followed by the LOGS [51]. Continuum
removal enhanced the differences in absorption strength [34]. All indicated that spectral transformation
could provide more sensitive features than canopy original spectrum and could be used to increase
the accuracy of crop N estimation. We compared the LNC estimation accuracy of these four spectral
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transformations in this study. The result showed the performance of CRS (Rc
2 = 0.79) was higher

than that of LOGS, FDS and OS (Figure 3) in winter wheat LNC prediction. The same conclusion was
obtained in the grass foliar nitrogen retrieval reported by Ramoelo et al. [51], where an R2 of 0.81 was
based on a greenhouse experiment using continuum removal in combination with a PLS regression.
As a whole, the exponential model was more suitable for delineating the quantitative relationship
between sensitive band reflectance and LNC than a linear regression (Figure 3). This may be caused by
the fact that the relationship between leaf N and chlorophyll concentration was not linear [10,52].

4.2. Relationship Between Spectral Indices and LNC

Canopy spectra obtained by remote sensing were affected by the canopy structure and surrounding
conditions, while the spectral index could eliminate the impacts at a certain extent through the
combination of characteristic bands [12]. Reflectance in the red-edge region (680–760 nm) was closely
related to the chlorophyll content in plants as well as the nutritional status of plants, which had always
been considered to be important in relationships with biochemical or biophysical parameters [53].
The mSR705 index of chlorophyll indices, NDRE index of nitrogen indices and GNDVI of greenness
indices in this paper were constructed on the basis of red edge reflectance, could explain 83%, 80%
and 81% of the variability in LNC, respectively (Table 3), and had better performance than other
spectral indices. This was consistent with the report that the GNDVI performed similarly as NDRE
in estimating maize N concentration [52]. Green and red edge reflectance were sensitive to a wider
range of chlorophyll levels than red reflectance. The predictive ability of NDRE in the category of
nitrogen indices was higher than with NRI and DCNI in this study (Table 3). NDRE is similar in form
to NDVI, but with the red band being replaced by a red edge band. NRI, a normalized near-infrared
over green waveband reflectance ratio, has been used to assess in-season corn N status and to develop
N variability maps [37,54], but in our study, the predictive ability (Rc

2 = 0.50) of NRI was lower than
NDRE (Rc

2 = 0.80). These results demonstrated the importance of red edge vegetation indices for
estimating winter wheat N status.

Three-band spectral indices were proposed to solve the saturation problem associated with
two-band indices [18,55,56]. Chen et al. [20] developed the three-band spectral index DCNI using the
double-peak characteristics of the red edge to predict the nitrogen content of maize and wheat showed
the determination coefficient of the prediction equation being 0.72 and 0.44, respectively. However,
the DCNI (Rc

2 = 0.63) explained 20% less variability in LNC than mSR705 in this study (Table 3). The
RMSE of mSR705 (RMSEv = 0.28) indicated an ordinary performance of the LNC prediction model, and
an RMSEv of 0.41 indicated poor model performance of DCNI [48].

4.3. Features and Parameters Selection of the DWT Analysis

The mother wavelet function and decomposition level were two crucial parameters required
for DWT analysis. The scaled and translated mother wavelet was used to fit the canopy spectra.
Cocchi et al. [57] demonstrated the difficulty in developing a priori rules for identifying the most
appropriate mother wavelet because the optimum mother wavelet changed with the particular task [58].
Five commonly used mother wavelets in vegetation spectra decomposition were tested in this study.
Results showed that the mother wavelet sym8 was excellent in dimensionality reduction and signal
reconstruction than other wavelets. Features based on the sym8 made a good LNC estimation accuracy
(Tables 5–7), which indicated the shape of the wavelet sym8 could explicate the differences between
the LNC.

Three DWT features (AC, DC and EV) were extracted to analyze the relationship with LNC. The
wavelet low-frequency approximation coefficient (AC) was a reflection of global features in canopy
spectra, while the high-frequency detail coefficient (DC) was a depiction of noise information, which
together contained all of the information presented in the original spectrum. Energy value (EV) was
a set of compressed ACs and DCs, which tried to take advantage of ACs and DCs to express the
whole signal information. Blackburn and Ferwerda [59] used the approximation coefficients at level 8
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along with detail coefficients from level 1 to 8 to estimate chlorophyll concentration. However, most
of the characteristic information of canopy spectra was in the approximation coefficients at a lower
decomposition scale. For their study, DCs were very small in amplitude and could be removed without
major loss in the information content of the signal kept in ACs. After a certain decomposition level,
more and more useful information would be eliminated, contributing to noisy signals and declining
information content of canopy reflectance spectra [59]. In contrast, we found that ACs in decomposition
level 1 to 5 preserved almost 100% of the information features for the canopy spectra (Figure 5). Our
results also illustrated that LNC was much better correlated with the main information in ACs, not
DCs (Table 5; Table 6), so the ACs in L1 to L5 could be used directly to predict the LNC, instead of
using the whole reflectance spectra, while ignoring the high-frequency DCs.

Energy value achieved a further data compression of canopy spectral signals. Pu and Gong
(2004) [28] indicated that the energy value features extracted by the WT method were the most effective
way of mapping forest crown closure (CC) and leaf area index (LAI). The mapped accuracy for CC
was 84.90% and for LAI was 75.39%. In this study, the EVs at AC4 with PLS regression could explain
83% (Rc

2 = 0.83) of the variability in LNC. EVs had a poorer performance and ability to estimate LNC
compared with the ACs. This might be due to excessive dimensionality reduction, resulting in a loss of
some sensitive information in the canopy spectrum.

Our results showed that the wavelet coefficients were different depending upon whether they
were derived from the reflectance spectra or transformed spectra. The differences indicated that
transformed spectra were more sensitive to LNC than original reflectance spectra (Tables 5–8). The
LOG-transformation was more useful in extracting additional information that was more difficult to
obtain from other transforms of reflectance spectra.

4.4. Estimation Models of LNC

The results of this study indicated that the combination of multi-spectral bands generally improved
the accuracy of LNC estimation (Table 4). The hyper-spectral narrow-band index (mSR705) explained
4% more variability in LNC estimation than the best performing single sensitive band CRS725.
The advantage of multi-variable regression was obvious (Table 9). Approximation coefficients at
decomposition level 4 using LOG-transformed spectra had the best prediction accuracy in PLS-LNC
models. The prediction accuracy of the RF-LNC model with LOGS at L4 was similar to the PLS-LNC
model, while the R2, RMSE, RPD and RE of validation set were slightly worse than the PLS regression
(Tables 8 and 9). That is, the prediction and verification accuracy of the PLS model was more stable
than that of the RF model. This is likely because the accuracy of the RF model was greatly influenced
by the undefined input parameters, although it was efficient for large input variables and non-linear
problems [42–45].

All the RPD values of validation models in Table 9 being greater than 2.0 indicated good
LNC prediction models were built with different approaches. However, the OLS model based
on the sensitive band reflectance should be noted that higher LNC values were underestimated
(Figure 4). Considering the difficulty of feature extraction with wavelets, spectral index mSR705 might
alternatively be suggested to predict LNC, especially in multi-spectral remote sensing applications.
Wavelet analysis of a reflectance spectrum was performed by scaling and shifting the wavelet function
to produce wavelet coefficients that were assigned to different frequency components. It made the
DWT analysis to have the potential to capture much more of the information contained within the
canopy hyper-spectra [25,28,30,57–59]. Our results showed that using DWT coefficients and PLS
regression together could overcome the limitations of individual variable technology and offer a
practical approach to LNC detection. The model produced by using AC4 with PLS regression had the
best performance (RPDc = 3.97 and RPDv = 3.95) and was recommended for LNC estimation across all
growth stages.
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4.5. Research Challenges

In this study, the performance of SR-LNC and VI-LNC models were analyzed in detail and
compared with models by DWT analysis combing with PLS and RF regression. The LOGS combined
with DWT ACs and PLS regression made good use of the full canopy reflectance spectra and produced
good prediction accuracy of LNC, but it was difficult to interpret exactly which wavelength was
contributing to the best performing models. It remains a particular challenge to test the performance
of more mother wavelets. We also need to find whether this method could be successfully applied and
whether it works well across various growth stages, varieties and eco-sites for estimation of LNC, and
whether canopy spectra information can be used to detect the LNC status of the crop as precisely as
the nitrogen nutrition index (NNI) approach.

5. Conclusions

Canopy spectra measurements were useful for estimating the nitrogen status of a wheat crop,
thereby providing information to help decide on nitrogen fertilizer application in precision farming
systems. The results of this study demonstrated that sensitive band reflectance of transformation canopy
spectra and spectral indices gave a better correlation for LNC than the correlation using the original
canopy spectra. DWT analysis accomplished feature extraction successfully from the narrow-band
hyperspectral canopy spectrum across VIS and NIR wavelengths on the basis of keeping original
spectrum information quality and reducing canopy spectral data space dimensions. Combining LOGS
and the sym8 mother wavelet, approximation coefficients at the 4th decomposition level provided
the best approach for estimating LNC by a PLS regression. This approach could explain 11% more
variability in LNC than the corresponding best performing spectral index mSR705 and was more stable
in LNC estimation than the RF regression.
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