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Abstract: Water scarcity is a widespread problem in arid and semi-arid regions such as the western
Mediterranean coastal areas. The irregularity of the precipitation generates frequent droughts
that exacerbate the conflicts among agriculture, water supply and water demands for ecosystems
maintenance. Besides, global climate models predict that climate change will cause Mediterranean
arid and semi-arid regions to shift towards lower rainfall scenarios that may exacerbate water
conflicts. The purpose of this study is to find a feasible methodology to assess current and monitor
future water demands in order to better allocate limited water resources. The interdependency
between a vegetation index (NDVI), land surface temperature (LST), precipitation (current and
future), and surface water resources availability in two watersheds in southeastern Spain with serious
difficulties in meeting water demands was investigated. MODIS (Moderate Resolution Imaging
Spectroradiometer) NDVI and LST products (as proxy of drought), precipitation maps (generated
from climate station records) and reservoir storage gauging information were used to compute times
series anomalies from 2001 to 2014 and generate regression images and spatial regression models.
The temporal relationship between reservoir storage and time series of satellite images allowed the
detection of different and contrasting water management practices in the two watersheds. In addition,
a comparison of current precipitation rates and future precipitation conditions obtained from global
climate models suggests high precipitation reductions, especially in areas that have the potential to
contribute significantly to groundwater storage and surface runoff, and are thus critical to reservoir
storage. Finally, spatial regression models minimized spatial autocorrelation effects, and their results
suggested the great potential of our methodology combining NDVI and LST time series to predict
future scenarios of water scarcity.

Keywords: vegetation index; precipitation; LST; water supply; semiarid; Mediterranean;
spatial regression

1. Introduction

Spain is among the countries at higher risk of climate change [1,2] due to its geographical
location, the complex topography and the high population density, especially in coastal regions [3].
The risk of water resources overexploitation is evident and requires the development of integrated and
sustainable strategies in order to maintain socioeconomic activities [4] and preserve natural resources
and ecosystems [5].
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In this sense, remote sensing has demonstrated its enormous capabilities to retrieve information
and to assess, monitor and predict environmental processes and functions [6,7]. Geospatial research
programs that combine multiple platforms and sensors have allowed for the collection of an exceptional
body of knowledge of the evolution of the Earth in recent decades. Projects such as the Earth Observing
System (EOS) from the United States National Aeronautics and Space Administration (NASA) or
the Copernicus Earth Observation Program from the European Space Agency (ESA) are outstanding
platforms of knowledge generation for sustainable natural resources planning and control.

The semiarid Mediterranean climate greatly influences seasonal water availability for human use.
The growing demand for food due to the increase in the world’s population has meant a great change
in the agricultural sector with an increasing demand for water resources [8] to enable the intensification
of agricultural activities to meet those needs. Irrigation systems promote the development of crops
and thus increase water demands in areas where water is scarce by default [9] at the expense of losing
natural ecosystems.

In addition, tourism contributes to the increase in water demands, which has a great impact on
the Mediterranean coast of SE Spain. For example, in the present study area, during the summer
(and water shortage period), a city like Benidorm can double or more the number of inhabitants [10].
In this sense, dams and reservoirs have an important role in securing water for domestic use and
irrigation in periods of scarcity and high demand [3,11].

General Circulation Models (GCMs) are used to make future climate projections and simulate
the response of the global system to different scenarios of increasing greenhouse gases concentrations.
There are many GCMs that offer different results depending on the model used and the chosen emission
scenario [12]. In southern Europe, the Intergovernmental Panel for Climate Change (IPCC) models for
the end of the 21st century [8] predicts a temperature increase and an even more intense decrease in
precipitation rates. These scenarios of higher water scarcity will mean more intense summer droughts
and longer periods of inter-annual droughts. They will promote a decrease of soil water content,
as well as aquifers recharge. Future lower precipitations would result in increased pressure on water
resources by different sectors, which would worsen the problem of water demands in areas already
dealing with this issue [9]. Under these conditions of demographic changes and uncertain global
climate change scenarios, in which the availability of water is threatened, the efficient management of
water resources in semi-arid zones should focus on a sustainable economic, social and environmental
use that guarantees the supply for all uses in an equitable manner [13,14].

The effect of climate change on Mediterranean arid and semi-arid regions will most likely be
a shift towards lower rainfall scenarios that accelerate the desertification process [15]. Under these
conditions in which precipitation decreases and the temperature increases, semi-arid zones can
face large water losses due to high evapotranspiration and aggravate scarcity [16]. Remote-sensing
products such as NDVI and LST have proven to be valuable proxies for monitoring vegetation
dynamics [17], land surface moisture conditions [18], yield estimates [19], soil evaporation rates [20],
and drought vulnerability [21]. In the context of generating early alert systems, various spectral
indexes have been developed for monitoring droughts, such as the Vegetation Temperature Condition
Index-VTCI [22,23], the Vegetation Supply Water Index-VSWI [24] or the Soil Moisture Agricultural
Drought Index-SMADI [25] among others.

The relationship between LST and NDVI has been generally described as having a negative
correlation (e.g., Refs. [21,26]) with steeper slopes for dryer conditions [25]. However, the relationship
between LST and NDVI may exhibit notable spatial [27] and temporal [26] alterations, and new research
is needed in order to assess the sensitivity and resilience of ecosystems to climate variability [28].
In order to examine and understand the response patterns of vegetation indices to current climate
variability (from 2001 to 2014) and water demands in the study area, the following questions are
explored in this work: (1) Does a significant correlation exist between NDVI, LST and precipitation
time series anomalies? (2) Similarly, does a significant correlation exist between NDVI, LST and water
reservoir storage anomalies? (3) Can remotely sensed time series data (NDVI, LST) be used together
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with water reservoir storage changes to spatially and temporally assess current water demands and
predict future water needs?

The objective of our research is the development of a feasible methodology to assess current
and monitor future water demands with remote sensing in order to better allocate limited water
resources and alleviate water conflicts. In this sense, this work presents an approach to evaluate
the spatial-temporal relationships among remotely-sensed vegetation spectral indices (specifically
NDVI) and land surface temperature (LST) time series, in relation to precipitation (current rates and
future predictions) and available water resources (i.e., volume of water stored in reservoirs) over
two medium-small-sized western Mediterranean watersheds. Both Mediterranean watersheds were
selected because they constitute a conjunctive water resources management system and their climatic
variability, limited availability of water resources, and vast demands for anthropic activities during
dry periods generate socio-economic and environmental water use conflicts. The paper is organized in
the following manner:

• Time series of MODIS data (i.e., NDVI and LST) were compiled and used to compute their time
series anomalies for temporal change detection. Current precipitation and reservoir storage time
series anomalies were also computed.

• The correlation among time series anomalies was statistically assessed. Additionally,
correlation images between reservoir storage and the spatial variables (NDVI, LST and current
precipitation) were computed. The use of a land cover map, along with bibliographic references
and the knowledge of the study area allowed the identification of areas and land uses that may
influence the availability of water resources.

• Finally, spatial regression analysis was used to evaluate the potential of NDVI and LST time series
as predictors of future precipitation changes by taking into account the spatial autocorrelation of
the variables.

2. Materials and Methods

The study area lies in the Comarca of Marina Baja in northern Alicante Province (SE Spain). It is
located around 38◦36′ N and 0◦10′ W. This region is part of the Subbaetic Range [29]. It is characterized
by its very steep orography, including beaches and coves surrounded by large cliffs and rugged
mountains (Figure 1).

The Marina Baja encloses densely populated coastal urban areas and tourist resorts (e.g., Benidorm).
The main agricultural activities comprise irrigated fruit trees (loquat and citrus) in areas of low to
moderate elevation and slope, and rainfed crops such as olive and almond trees [30]. Antique cultivation
terraces are still being used. Natural Mediterranean vegetation includes pine forests (Pinus sp.) and
xerophytic shrubs (e.g., Rosmarinum officinalis, Thymus sp., etc.). The area is prone to natural or
man-induced summer wildfires, which greatly impact the natural vegetation landscape, wildlife and
human activities. Based on the World Reference Base for Soil Resources [31], the dominant soil types
are Calcisols in the lowlands and Leptosols at the mountain slopes [32].

This study focuses on two main watersheds of the Comarca of Marina Baja, namely Algar-Guadalest
and Amadorio (Figure 1). Both basins are similar in size and orography, each one contains a reservoir,
and their slightly different topographic orientation induces climatic variations. They are separated by
a line of summits of more than 1400 m of elevation (Aitana is the highest peak with 1557 m a.s.l.) that
are at a distance of less than 10 km from the coastline. The Algar-Guadalest watershed covers an area
of 215 km2 and its dominant orientation is NW-SE. The mean elevation is 555 m a.s.l. (meters above
sea level), and the average slope is 19.6◦. Two main rivers (Algar and Guadalest) drain the basin.
The Guadalest river sub-basin includes a reservoir with a total volume of 0.013 km3. The Amadorio
watershed covers an area of 225 km2, and the dominant orientation is N-S. The mean elevation is
610 m a.s.l. and the average slope is 18.3◦. The Amadorio river includes a reservoir with a total
volume of 0.016 km3. The climate is typically Mediterranean with annual average values of mean air
temperature higher than 17 ◦C along the coastline. The orographic characteristics greatly influence
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spatio-temporal precipitation patterns. Dominant Köppen-Geiger climate classes are Bsk (cold steppe)
in the lowlands and Csb (temperate with dry or temperate summer) in the mountains [33].

The Marina Baja is an interesting case of water resources management in semi-arid areas. It is
a region with a high competition for land occupation, evidenced by the abandonment of traditional
agricultural practices in favor of intensive irrigated agriculture and a massive urban development [34].
This process leads to a progressive increase in water demands, in a region where the availability of
water resources is really scarce. It is evident that there is a conflict between the uses of water and the
need for integrated water management in the area [35]. The great problem of water management in the
Marina Baja has motivated the development of multidisciplinary studies to optimize the use of water
resources, such as procedures for water exchange contracts instead of emerging water markets [35]
among others.

The Comarca of Marina Baja has a complex system of conjunctive use of diverse water resources.
The Consorcio de Aguas de la Marina Baja is the organism devoted to manage those water resources
(http://www.consorciomarinabaja.org/). The main components of the system are Guadalest and
Amadorio reservoirs that are mainly used for urban supply. Both reservoirs were originally built for
irrigation purposes, but the Consorcio de Aguas de la Marina Baja has promoted agreements with
farmers by which these trade their water with Benidorm and other towns’ treated wastewater of enough
quality to be used for irrigation, and obtain several compensations in return [36]. The availability
of natural water resources (i.e., precipitation, river flow and groundwater) in the watersheds has
been highly irregular over time and still is. However, the system has been able to serve urban water
demands since the 1970s. The continued use of groundwater as input to the Guadalest reservoir
permits a higher regularity in water releases [37].
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Figure 1. Maps describing the study area. (Top) Delineation of the Amadorio and Algar-Guadalest
watersheds. Main rivers and reservoirs are shown. Meteorological stations are indicated by black dots
and stations outside the map boundary by arrows. The background image is the digital elevation
model employed in the analyses. (Bottom) CORINE 2012 land cover map. Level 2 of the legend
schematization is shown.
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2.1. Remote-Sensing Images and Ancillary Geospatial Information

Vegetation and LST dynamics were observed with a time series of TERRA-MODIS images
(Moderate Resolution Imaging Spectroradiometer) from 2001 to 2014. Vegetation status was assessed
with a spectral vegetation index, namely the Normalized Differences Vegetation Index (NDVI).
The NDVI [38] has been extensively employed as a way to monitor vegetation status by computing
seasonal and temporal profiles of vegetation activity (e.g., seasonal and phenologic activity, length of
the growing season, peak greenness, onset of greenness, and leaf turnover or ‘dry-down’ period),
which enable inter-annual comparisons of vegetation status [39]. Furthermore, LST was retrieved from
the thermal bands of the MODIS sensor. LST is an indicator for evapotranspiration, soil moisture and
vegetation water stress [27].

Two types of high processing level MODIS products (Level 3-Land products) were employed for
our analyses: (1) NDVI composite images acquired at 16-day time interval and 500 m spatial resolution
(MOD13A1); and (2) LST composite images acquired at 8-day time interval with a spatial resolution
of 1 km (MOD11A2). All the images were obtained from the U.S. Geological Survey-Earth Explorer
geodatabase (URL: https://earthexplorer.usgs.gov/). The study area expands across two MODIS tiles.
Therefore, the original images had to be mosaicked pairwise for each date. Subsequently, MODIS data
were transformed from Sinusoidal projection to UTM-European Terrestrial Reference System 1989
(ETRS89) projection for extracting a subset of 38 × 28 km over the study area. The nominal spatial
resolution selected for all the analyses was 1 km. Annual average and standard deviation images were
computed. The number of spurious pixels was very low due to the sunny and clear sky condition of
the study area throughout the year. However, spurious pixel values were replaced with the average
value from the surrounding pixels (3 × 3 filter).

For the geospatial analyses, several cartographic data sources were employed. A digital elevation
model (DEM) from the National Institute of Geography of Spain (IGN) was used for watershed analysis.
Topographic characteristics of the watershed were computed utilizing the original resolution of the
DEM (25 m). Land cover information was obtained from the European Union CORINE Land Cover
project (URL: https://land.copernicus.eu). A land cover map from 2012 (Figure 2b) was used to assist
in the interpretation of remote-sensing data results. Furthermore, official watershed boundaries and
main river courses were obtained from the Hydrographic Confederation of the Júcar River, a national
public organism in charge of the planning and control of the watersheds nearby the Júcar River basin
(situated in East Spain). A mask of the watersheds was developed and employed to extract individual
pixel values for further analyses. ENVI 5 (Harris Geospatial Solutions, Broomfield, CO, USA) and
TerrSet (Clark Labs, Worcester, MA, USA) software were used for digital image processing and GIS
(Geographical Information System) analyses.

2.2. Climate and Reservoirs Storage Data

Climatic variables were obtained from the 11 meteorological stations from the Ministry of
Agriculture and Fisheries, Food and Environment of Spain (MAPAMA), that area located within the
study area and surroundings (Figure 1). Eight of them are maintained by the Spanish Meteorological
Agency (AEMET) and the others by the Agroclimatic Information System for Irrigation (SIAR).
The meteorological stations are located at different elevations, orientations and distances from the
coast, in order to obtain information about the variability of climatic conditions in the area. Therefore,
they can be assumed to be representative of the present climatic conditions of the study area. For each
meteorological station, daily values of precipitation were compiled and used to develop annual time
series of total precipitation. Precipitation maps were needed to develop spatial analyses along with
the remote-sensing variables. For this reason, we computed annual precipitation maps for each year
from 2001 to 2014. Multiple regression models were developed for each year in order to predict annual
precipitation (dependent variable) based on geographical variables (elevation and spatial location of
the meteorological stations). Previous studies have revealed the importance of distance to the coastline
and local orography as a trigger mechanism of rain events [40]. Stepwise method for variable entry
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and removal was the selected statistical technique. Model performance was based on higher adjusted
R2, lower Akaike Information Criterion (AIC) [41], and minimum collinearity measured with the
variance inflation factor (VIF) [42]. Regression models were built with the R statistical programming
language [43]. Model parameters fitting was used to compute annual precipitation estimation maps
based on geographical position and elevation from a DEM.

Future climate conditions were obtained from the WorldClim repository (URL: http://www.
worldclim.org) [44]. Precipitation projections for 2050 were obtained from the global climate model
developed by Schmidt et al. [45]. We used their climate projections for four representative concentration
pathways (RCPs), namely: RCP2.6, RCP4.5, RCP6, and RCP8.5 (+2.6, +4.5, +6.0, and +8.5 W/m2,
respectively) [46]. Original geographic coordinates data (0.5 degrees of spatial resolution) were
reprojected in order to match MODIS spatial resolution characteristics.

Water volume of the Amadorio and Guadalest reservoirs are continuously monitored by Spanish
authorities. These data are publicly available through the Yearbook of the Water Gauging Information
System. This is a web tool (http://sig.mapama.es/redes-seguimiento/) owned by the Ministry of
Agriculture and Fisheries, Food and Environment (MAPAMA) with information about river gauges
and reservoirs water volume. Average monthly water volume records of Guadalest and Amadorio
reservoirs were used to compute time series of annual reservoir storage for the period of 2001–2014.
Current and future precipitation, along with the reservoir storage volume date, were employed to
investigate the occurrence and magnitude of drought/wet periods that may hamper the availability of
water resources for natural processes and human activities.

2.3. Statistical Methods

Annual time series of selected variables (i.e., average NDVI and LST, mean reservoir storage and
total precipitation) were statistically analyzed in order to better understand temporal change patterns
and their inter-relationships. Understanding the past evolution of studied variables and their possible
cause–effect relationships is essential to model their future spatial-temporal patterns and determine
the usefulness of our remote-sensing time series for the improvement of water management. In this
sense, time series anomalies (2001–2014) were computed on an annual basis. The time series anomaly
(z-score) was computed according to the following expression [47,48]:

Z =
xi − µ

σ

where xi is the time series value for a given moment i, and µ and σ are respectively the mean value
and the standard deviation value of the time series. When the z-score is negative, it indicates below-
normal conditions of the selected variable, and when it is positive, it indicates above normal conditions.
Vegetation index time series anomalies are a useful method for assessing the degree of wetness or
dryness for each time unit in relation to the average value of the time series [49]. A negative z-score
value indicates below-average vegetation conditions, thereby pointing to prevailing drought; and when
it is positive, it indicates above-average vegetation conditions [49]. The interpretation of positive and
negative z-score values for LST, precipitation and reservoir storage time series anomalies follows the
same guidelines. Its physical interpretation depends on the variable. When the z-score is negative,
it indicates below-normal temperature, precipitation or reservoir storage values, and when it is positive,
it indicates above-normal values, thereby pointing to warm/wet seasons or periods [48].

The spatial-temporal relationships among NDVI, LST, precipitation (current or future),
and reservoir storage volume time series are the core of our investigation (with the aim of developing
fast early detection systems of water supply limitations through remote-sensing images) and were
evaluated with three different statistical methods. Firstly, the Spearman rank-order correlation test was
used to compute the correlation among z-score time series of average NDVI, LST, current precipitation,
and total reservoir storage for both watersheds from 2001 to 2014. Correlation coefficients and
significance levels were computed. This test allowed the identification of similar temporal patterns

http://www.worldclim.org
http://www.worldclim.org
http://sig.mapama.es/redes-seguimiento/


Remote Sens. 2019, 11, 1355 7 of 20

of selected variables. Secondly, correlation images were obtained by computing the correlograms
of the annual z-score reservoir storage time series for each reservoir, with respect to the computed
annual z-score of NDVI, LST and current precipitation time series of the pixels located within the
same watershed. Correlogram results were employed to build correlogram images that express the
spatial relationship among reservoir storage anomalies (point data) with respect to the spatial variables.
Finally, spatial regression models were used to assess the relationship between precipitation and
remote-sensing variables, taking into account the autocorrelation effects. OpenGeoDa software [50]
was used for this analysis. This software is part of a suite of GeoDa software tools designed for
spatial analysis of geographical information, including spatial autocorrelation and spatial regression
algorithms [51]. Ordinary Least Squares spatial regression models were computed, employing future
precipitation data as the dependent variable and remotely-sensed variables and topographic parameters
as explanatory variables.

3. Results

3.1. Correlation between NDVI, LST and Precipitation

Our first research question was related to the possible existence of significant correlations between
NDVI, LST and precipitation time series anomalies. Before addressing that question, we explored the
temporal-spatial patterns of remote-sensing variables (i.e., NDVI and LST) and current precipitation
maps. The time series of NDVI images exhibits great spatial and temporal variability. Figure 2a,b shows
the average and standard deviation values of the NDVI between the years 2001 and 2014. Large areas
of the Algar-Guadalest basin report average NDVI values higher than 0.37 and low standard deviations.
In fact, the average NDVI value from 2001 to 2014 for this watershed was 0.47 with a coefficient of
variation lower than 5%. NDVI values higher than 0.53 are associated with irrigation crops (fruit trees)
in mid and low elevations, and dense forest patches in the most remote areas. Conversely, the average
NDVI value from 2001 to 2014 for Amadorio watershed was 0.38 with a coefficient of variation higher
than 8%. A cluster of high NDVI standard deviation pixels in the NW of the Amadorio basin was
observed. A visual inspection of recent aerial orthophotos revealed that it is associated with a forest fire.
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Figure 2. Average (a) and standard deviation (b) NDVI images of the study area for the period 2001 to
2014. Average (c) and standard deviation (d) estimated precipitation images (in mm) of the study area
for the period 2001 to 2014. Average (e) and standard deviation (f) LST images (in Celsius degrees)
of the study area for the period 2001 to 2014. The delineation of the watersheds and the coastline are
shown (black lines).
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Precipitation of the study area is largely affected by the elevation and position with respect to the
coastline [40]. For this reason, multiple regression models combining precipitation data, elevation and
spatial location of the meteorological stations were applied. All statistical models reported adjusted
R2 values higher than 0.7, and their parameters were employed to predict precipitation at unknown
locations. Precipitation maps were produced for each year of the study period. Figure 2c,d shows the
average and standard deviation values of estimated precipitation between the years 2001 and 2014.
The most remarkable observation of the maps is the high spatial variability over a relatively small area.
Average precipitation of the Algar-Guadalest basin was 632 mm while average precipitation for the
Amadorio basin was 523 mm. Low precipitation areas were found at low elevations near the coastline
and southern half of the Amadorio river basin. Larger average precipitation and standard deviation
values were found at the highest points of the drainage divide. These areas are very steep and often
show bare rock outcrops (this explains their low NDVI values in Figure 2a).

Figure 2e,f shows the average and standard deviation values of the LST between the years 2001
and 2014. LST images revealed relevant altitudinal variations of the temperature. The highest average
LST was 25.7 ◦C and was obtained in the lower sector for the Amadorio watershed, just a few kilometers
from the coastline. The lowest average temperature was 18.9 ◦C and is associated with the location
of the highest mountain found in the study area, namely the Aitana peak. LST spatial patterns are
clearly affected by the altitudinal gradient (i.e., lower temperatures at higher elevations) and the
influence of the sea (coastline temperatures were slightly lower than temperatures in some inland
areas). Standard deviation was higher at the lower sector of the more continental Amadorio watershed
with respect to the higher areas or the wettest Algar-Guadalest basin. A cluster of high standard
deviation LST values spatially correlates with the previously mentioned forest fire area. The removal
of the vegetation cover (as detected by the NDVI time series) greatly influenced LST variability.

3.2. Time Series Anomalies Patterns

Time series of selected variables (i.e., average NDVI and LST, and total precipitation) were used
to compute annual time series anomalies for each pixel in each of the two watersheds. In addition,
reservoir storage time series anomalies were computed too. Figure 3 shows the original time series of
the three selected variables for Algar-Guadalest and Amadorio basins as well as their corresponding
time-series anomalies (z-score values).

The general pattern of NDVI time series was the same for both watersheds. NDVI values of
the Algar-Guadalest basin ranged between 0.6 and 1.0 and were higher than those of the Amadorio
basin. The general pattern of both time series was very similar, with subtle but very informative
temporal variations. The time series of NDVI anomalies reveals positive values between 2007 and
2011, in addition to the year 2013. Beyond these values, the local maximums of the years 2002 and
2004, which correspond to slightly humid years, are very revealing.

In this sense, the time series of precipitation is very irregular, with abnormally wet years closely
followed by years of severe droughts (e.g., 2005). As a result of this great irregularity, the time series of
precipitation anomalies exhibits great variations, reflecting instances of drought and wet years very
well. The most distinctive feature is the concatenation of a period of above-average precipitation (2006
to 2009) followed by a very severe drought in 2010.

Average LST values were always higher for the southern Amadorio basin but the temporal
temperature pattern was very similar for both watersheds. A more detailed analysis revealed two
different periods. The first one ranged from 2001 to 2007 and is characterized by a great homogeneity
and subtle z-score changes. The second period (2008 to 2014) is dominated by much more extreme
LST variations, with two very acute negative z-score values (for 2008 and 2010) followed by rising
temperatures, reaching a maximum absolute temperature and z-score value in 2014.

After exploring the relationships between remote-sensing variables and current precipitation
time series anomalies (research question #1), we dealt with the second research question: a possible
significant correlation between NDVI, LST and water reservoir storage anomalies. The general pattern
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of the reservoir storage time series shows a gradual increase between 2001 and 2005. From that year
on, the time series of anomalies reveals moderate interannual oscillations, with alternating maximum
storage volumes between the two reservoirs. The final decline of the reservoir storage coincided
with low NDVI and precipitation values, and the highest LST records. All these complex temporal
patterns suggested the necessity for employing some statistical methods to shed some light and better
understand the relationships among them.
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to 2014.

3.3. Spatial-Temporal Relationships between Reservoir Storage, Vegetation Greenness, LST and Precipitation

Once the general patterns of the time series of anomalies were known, the next step was to
analyze the relationships between the different variables. Our last research question was related to the
possibility of employing remotely sensed time series data (NDVI, LST) together with water reservoir
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storage changes to spatially and temporally assess current water demands and predict future water
needs. With this objective in mind, three different types of analyses were performed: (1) Spearman rank
correlation test of z-score time series; (2) correlation images of spatial variables vs. reservoir storage
volume; and (3) spatial regression of future precipitation with respect to remote-sensing variables.

Firstly, the correlations between z-score time series for both watersheds were calculated
(Table 1). The results obtained for each watershed were quite similar. Highly significant correlations
(p-value ≤ 0.01) among the same variables were obtained. It suggests a similar behavior of both
basins for the studied variables. We also found significant correlations between different variables.
Significant (p-value ≤ 0.05) and highly significant (p-value ≤ 0.01) correlations between NDVI and
reservoir storage time series anomalies were found. No significant correlations were reported for
other variable combinations. We can observe negative correlation values between LST with respect to
NDVI and reservoir storage. Correlation analysis results reinforced our previous observation of similar
temporal patterns of the time series anomalies for both watersheds but with some subtle differences
(e.g., a magnitude offset between the time series).

Table 1. Spearman rank correlation test results for z-score time series of NDVI, precipitation, LST,
and reservoir storage for Algar-Guadalest (A-G) and Amadorio (Am.) watersheds.

Variables
NDVI Precipitation LST Reservoir Storage

A-G Am. A-G Am. A-G Am. A-G Am.

NDVI
A-G 1 0.956 ** 0.103 0.125 −0.376 −0.473 0.565 * 0.824 **
Am. 0.956 ** 1 0.165 0.196 −0.305 −0.433 0.565 * 0.802 **

Precipitation A-G 0.103 0.165 1 0.996 ** 0.349 0.288 0.262 0.090
Am. 0.125 0.196 0.996 ** 1 0.323 0.257 0.310 0.143

LST
A-G −0.376 −0.305 0.349 0.323 1 0.930 ** −0.403 −0.363
Am. −0.473 −0.433 0.288 0.257 0.930 ** 1 −0.370 −0.367

Reservoir
storage

A-G 0.565 * 0.565 * 0.262 0.310 −0.403 −0.370 1 0.843 **
Am. 0.824 ** 0.802 ** 0.090 0.143 −0.363 −0.367 0.843 ** 1

Significance levels: [*] = p ≤ 0.05; [**] = p ≤ 0.01.

Secondly, we developed an image product, called correlation images (Figure 4), that expresses
the spatial relationship among reservoir storage anomalies and the explanatory spatial variables.
They were obtained by computing the pixel-by-pixel correlation between the z-score values of the
NDVI, LST and current precipitation time series with respect to the z-score values of reservoir storage
time series. The z-score values (for NDVI, LST or current precipitation) of the pixels located within
the Algar-Guadalest watershed were correlated with the Guadalest reservoir time series, and the
pixels located within the Amadorio basin were correlated with the homonymous reservoir time
series. High positive correlation values reflected some kind of synchronization among the time series,
while high negative correlation values suggested a differential behavior among the reservoir storage
and explanatory variables. The NDVI correlation image was quite complex with high correlation
values for a large portion of the Amadorio watershed, and some clusters of low correlation values at
the lower portion of the Algar-Guadalest watershed and the highest elevations. The LST correlation
image showed a large cluster of pixels with high correlation values in the middle and lower part
of the Algar-Guadalest watershed. On the contrary, a cluster of pixels with negative correlation
values was observed in the warmest sector of the Amadorio river basin. The correlation image for the
current precipitation adopts a clear trend of negative correlations in the sectors with less precipitation
(see Figure 2c), moving to positive correlation values as the precipitation increases.
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Finally, we used spatial regression methods to evaluate the predictive capability of our
remote-sensing time series (NDVI and LST) with respect to future precipitation scenarios (Table 2).
Two types of dependent variables were used: (a) original data from Schmidt et al. [45] for four
representative concentration pathways that allow for the prediction of precipitations in 2050; and (b)
the difference between our current precipitation maps (2001–2014) with respect to the Schmidt et al. [45]
dataset. This second type of data allows for the identification of areas with expected lower/higher
precipitation in the future. Predictive variables were the average values of NDVI and LST (see Figure 2)
for each pixel of the study area and also their corresponding correlation images (see Figure 4). We also
included topographic parameters obtained from the DEM (see Figure 1). Spatial correlograms of
predictive variables were used to identify a suitable threshold distance of 4 km for the weights of
the regression. Regression models were interactively pruned in order to exclude non-significant
predictive variables.
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Table 2. Spatial regression model results. Model adjustment statistics and the explanatory variables
information are shown.

Precipitation
Predictions Adj. R2 p-Value Variables Coefficient Std. Error p-Value

Fu
tu

re
pr

ec
ip

it
at

io
n

pr
ed

ic
ti

on
s RCP26 0.819 <0.001 Constant 1006.885 25.508 <0.001

Elevation 0.043 0.005 <0.001
LST (mean 2001–2014) −22.478 1.016 <0.001

RCP45 0.829 <0.001 Constant 927.370 23.672 <0.001
Elevation 0.049 0.005 <0.001

LST (mean 2001–2014) −20.206 0.942 <0.001
RCP60 0.835 <0.001 Constant 898.844 22.895 <0.001

Elevation 0.051 0.005 <0.001
LST (mean 2001–2014) −19.607 0.911 <0.001

RCP85 0.828 <0.001 Constant 937.138 23.380 <0.001
Elevation 0.045 0.005 <0.001

LST (mean 2001–2014) −20.557 0.931 <0.001

Pr
ec

ip
it

at
io

n
ch

an
ge

(f
ut

ur
e

pr
ed

ic
ti

on
-p

re
se

nt
) RCP26 0.722 <0.001 Constant 70.006 4.533 <0.001

Elevation −0.214 0.007 <0.001
LST correlogram image −42.773 4.093 <0.001

NDVI correlogram image 57.910 5.863 <0.001
RCP45 0.725 <0.001 Constant 47.297 4.610 <0.001

Elevation −0.217 0.007 <0.001
LST correlogram image −44.878 4.162 <0.001

NDVI correlogram image 62.657 5.961 <0.001
RCP60 0.727 <0.001 Constant 33.717 4.637 <0.001

Elevation −0.219 0.007 <0.001
LST correlogram image −45.595 4.187 <0.001

NDVI correlogram image 64.455 5.997 <0.001

RCP85 0.731 <0.001 Constant 48.234 4.587 <0.001
Elevation −0.220 0.007 <0.001

LST correlogram image −44.471 4.142 <0.001

NDVI correlogram image 62.243 5.932 <0.001

We obtained adjusted R2 values higher than 0.8 for the models predicting future precipitation
scenarios. Predictive significant variables were elevation and LST, with an inverse relationship between
future prediction and LST. With respect to the expected precipitation change dataset, we also obtained
high adjusted R2 values (>0.7) for all the spatial regression models. Predictive significant variables
were elevation, LST correlation image and also NDVI correlation image. The relationship between
future precipitation changes is positive for the NDVI and negative for LST.

4. Discussion

4.1. Impacts of Predicted Precipitation Scenarios

The precipitation regime of the study area is highly variable both spatially and temporally.
Orography greatly influences precipitation patterns [40] and the presence of dry areas, such that the
conditions may vary within a short distance [15]. Precipitation also changes from year to year and
interannually. Higher precipitation volumes are usually obtained in autumn in the form of torrential
rains. In this sense, high-intensity precipitation events (>400 mm in 24 h) are feasible in this area,
due to the advection of maritime winds across the Western Mediterranean, driving moist air towards
the Alicante Province coast, and the presence of an upper level isolated low pressure system over
Eastern Iberian Peninsula [40]. This phenomenon is characteristic of the study area and greatly impacts
socio-economic activities and environmental processes. For example, severe flash foods are recurrent
each autumn and could promote dramatic consequences like the destruction of infrastructures and even
human lives. The high rainfall erosivity induces land degradation process (i.e., soil erosion) by extreme
runoff. It greatly endangers soil resources due to the vulnerability of dominant soil types (especially
Leptosols). Besides, the occurrence of extreme autumn precipitation events just after the devastation
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of summer wildfires may increase the risk of soil degradation. Water resources are quantitatively
and qualitatively affected by these kinds of land degradation processes [52,53]. This is particularly
concerning for an area facing severe problems of managing highly fluctuating seasonal water demands.

Precipitation estimations by global climate prediction models (such as Schmidt et al. [46], and used
in this work) are revealing future scenarios of even worse water scarcity for many arid and semiarid
regions (Figure 5). This is an alarming situation because many of those areas are densely populated and
potentially face a future with less water resources (intensification of drought periods) and higher water
demands (e.g., urban water supply, agriculture irrigation). Fortunately, drought assessment through
remote sensing—although a complex research topic—has been achieving highly successful results
obtained by combining the time series of NDVI and LST [54]. Both remote-sensing variables may be
synergistically combined to develop easy-to-implement empirical indices based on the assumption
of a negative correlation between both variables [55]. However, their correlation may be much more
complex than previously thought and may change from negative to positive as the climatic conditions
change [27]. Further, spatial autocorrelation may alter the conclusion of statistical analyses performed
without the allowance for it [56,57]. This type of correlation has been investigated in the past but
this work differs from previous work by showing/investigating the complexity of this relationship
with respect to changing climatic conditions. For these reasons, this work is a multistage approach to
evaluate the spatial-temporal relationships of NDVI and LST time series, with respect to precipitation
(current and future predictions) and available water resources (i.e., volume of water stored in reservoirs)
time series. We combined three different data analysis procedures: (1) time series anomalies analysis to
detect general temporal patterns of the variables; (2) image correlation to detect through remote-sensing
areas whose environmental characteristics and land management could greatly affect available water
resources; and (3) spatial regression analysis to assess the predictive capabilities of NDVI and LST time
series to quantify current and future precipitation.
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4.2. Correlation between Time Series Anomalies of NDVI, LST, Precipitation and Water Reservoir Changes

Time series anomalies have been previously employed for vegetation index time series analysis
in relation to climatic variables [58,59] and hydrological parameters [48]. They provide an intuitive
way to identify the intensity and duration of phenological and vegetation degradation processes,
along with extreme climate variations. Correlations between NDVI and precipitation in the study
area were found to be low, especially for the wetter Algar-Guadalest basin. It seems that vegetation
phenology is not coupled with inter- and intra-annual precipitation patterns. We also reported this
weak relationship between both time series for another study area in the province of Alicante [47].
Our previous research applied Fourier transform analysis to MODIS vegetation index and climate
variables time series, and the results evidenced that vegetation phenology was not correlated with
climatic variables for the harmonic analysis phase term, suggesting a delay between climatic variations
and vegetation greenness [47]. It may be due to the semiarid and subhumid biomes’ response to
drought at long time scales caused by the physiological adaptions of Mediterranean vegetation to
water stress periods [60]. Other authors also evidenced this low correlation between NDVI and rainfall,
showing worse correlations in the wetter areas of the province of Alicante mountains (i.e., NDVI and
precipitation correlations are not sufficient to assess and predict droughts) [61]. With respect to the
LST, the correlation between NDVI and LST always produced negative values, thus indicating a
reduction of vegetation greenness when LST rises. This kind of relation is characteristic of areas
prone to droughts where water is ultimately the limiting factor for vegetation growth [27]. On the
other hand, significant positive correlations among NDVI and surface water resources time series
anomalies were obtained. These correlations suggest that an interannual relationship between NDVI
and reservoir storage variability can be established. The importance of this observation lies in the fact
that multi-temporal remote-sensing observations of certain environmental parameters could be used
to monitor and predict the quantity of available water resources. The development of the vegetation
causing an increase of NDVI, which showed an apparent contradiction between precipitations versus
water storage, may be closely related to the soil moisture and a delayed response of plants after a
rainfall event. Therefore, the response of vegetation after precipitation is closer to the process of storing
water in reservoirs than the precipitation itself.

The z-score correlation images (Figure 4) were suitable to relate the variability of a point data
time series (i.e., reservoir storage measured in a dam) with remotely-sensed spatial-temporal time
series (like NDVI, LST, evaporation, etc.). The high positive values of the NDVI correlation image
at the lower parts of Amadorio watershed evidence synchronization between vegetation (forest and
seminatural vegetation and rainfed agriculture) and reservoir storage dynamics. This is reinforced by
the results of the LST correlation image that highlighted a cluster of pixels with negative correlation
values in the warmest sector of the Amadorio river basin. Its natural vegetation phenology and
reservoir storage volume are controlled by LST temporal changes, because when LST rises (from spring
to summer), vegetation greenness and surface water resources decline. This watershed is less suitable
for cropping and water supply [37]. On the contrary, water resources (surface and groundwater) in
the Algar-Guadalest basin are more intensively controlled by water management. A complex system
of water transfer from the aquifers to the reservoir has been established to maintain steady water
supply [37]. This water management system manages water demands from agriculture and tourism
economic sectors, along with governmental (urban water supply) and environmental requirements.
This situation greatly influences the magnitude of the correlation between Guadalest reservoir storage
and climatic variables. Thus, remote sensing can play a critical role in the assessment of water demands.
Another study in the province of Alicante confirmed the great utility of remote-sensing images to detect
different water management practices in irrigated agricultural areas and nearby natural areas [62].
The information portrait in the land cover map (Figure 1) was compared with the NDVI correlation
image (Figure 4). It reveals that permanent crops (i.e., fruit trees) are located where a large cluster
of pixels with negative correlation is shown. Crops’ productivity maintenance requires an adequate
water supply even in drought years/seasons, thus explaining the negative correlation. In addition,
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negative correlations were observed in two sectors of the Guadalest basin. These areas are quite
elevated, with predominantly very steep and rocky slopes, and with little or no vegetation (CORINE
Land Cover classes 32 and 33). Leptosols over highly permeable calcites are found here. Mean NDVI
values of those pixels were relatively low with respect to surrounding areas (Figure 2) due to the
characteristics of these mountainous ecosystems. Both clusters of pixels are approximately located
over the two most important aquifers (i.e., Beniardá and Algar) of the Marina Baja water supply system
whose waters are employed for irrigation (through springs and irrigation channels), diverted for water
supply to other areas or stored in the Guadalest reservoir. This may explain the weak relationship
found between NDVI and reservoir storage in those aquifer recharge zones.

4.3. Assessing Water Demands and Usage with MODIS Derived Products

Our final analysis was focused on the exploration of possible future scenarios of water scarcity that
may hamper human activities and environmental processes. This particularly concerns arid/semiarid
areas that are the most sensitive ecosystems to climate impact [63]. Because correlation results between
remote-sensing variables and precipitation time series were weak and inconclusive, we decided to
explore the effects of spatial autocorrelation through spatial analysis techniques. Spatial autocorrelation
is a property of random variables, taking values in pairs of locations at a certain distance apart that
are more similar (positive autocorrelation) or less similar (negative autocorrelation) than expected for
randomly associated pairs of observations [56]. We used spatial regression models because they are
developed to deal with the fact that observations over geographical space are likely to be correlated
with one another [64], and spatial regression models can effectively resolve problems with correlated
geographic data [65,66]. Our previous research in a nearby study area evidenced the importance of
considering spatial autocorrelation effects by combining remote sensing and ancillary information [67].
In this sense, our spatial regression results (Table 2) suggest that LST and NDVI time series can be
utilized as proxies to predict future scenarios of precipitation in an effort to improve land management
practices. Positive trends of NDVI time series in semiarid regions could be associated with less dramatic
precipitation changes, whereas an increase of LST values may negatively impact the water cycle in this
kind of Mediterranean watershed.

Future carbon sequestration will also be at risk predominantly in southern Europe [68].
Especially lower precipitation is expected in the more elevated areas of the watersheds that are
extremely important for groundwater recharge and the efficient functioning of the entire water supply
system. Therefore, it is recommended that the knowledge gained through remote sensing in this work
(the spatial-temporal influence of NDVI and LST time series on available water resources) be used
to promote an alert system that allows integrating water and land management. Future scenarios
of climate change will pose a challenge for the maintenance of our socio-economic activities and the
conservation of ecosystems. In this sense, the best source of information available is most likely remote
sensing, given that it is capable of providing information about land, atmosphere and water, in their
spatial and temporal dimensions. Additionally, in the context of the study area, spatial autocorrelation
effects seem to be highly relevant and have to be considered to properly extract information from the
remote-sensing data sources.

5. Conclusions

This study assessed the interdependency between vegetation spectral indices (NDVI), LST,
precipitation (current and future), and surface water resources in a semiarid area (two watersheds
in southeastern Spain with serious difficulties in meeting water demands). NDVI and LST images
were obtained from MODIS and allowed for the identification of relevant responses to current climate
variability (from 2001 to 2014). Correlations between NDVI and precipitation time series were not very
strong, probably because vegetation phenology is not perfectly coupled with inter- and intra-annual
precipitation patterns (semiarid and subhumid biomes may respond to droughts of long time scales
due to the ability of vegetation to withstand periodic droughts). Additionally, correlations between
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NDVI and LST always produced negative values, thus indicating a reduction of vegetation greenness
when LST rises. The relationships among NDVI and climate variables evidenced the importance of
water as a relevant limiting factor for vegetation growth.

The temporal correspondence between reservoir storage and remote-sensing time series was
very remarkable, thus suggesting a great potential of NDVI and LST to improve the monitoring and
management of water resources in the study area. In this sense, correlation maps allowed for the
identification of areas where natural vegetation phenology and reservoir storage volume is controlled
by LST temporal changes (Amadorio basin). Additionally, negative NDVI correlations were found at
different sectors of the Algar-Guadalest basin. They are associated with areas of irrigated crops with
high water demands and forest and seminatural areas located over aquifers intensely exploited for
agriculture and water supply. Of great concern should be the fact that the best correlation with reservoir
storage coincides with areas where significant decreases in precipitation are expected, which correspond
with the two most important aquifers of the study area. These results evidence the capability of optical
remote-sensing data (MODIS, Landsat, Sentinel-2) to detect different water management practices
related to the transfer of water from the main aquifers to the Guadalest reservoir. Spatial regression
models evidence the importance of taking into account spatial autocorrelation effects in the statistical
analyses along with the potential use of NDVI and LST time series to predict future scenarios of
precipitation under climate change constrains.

The enormous competition for available water in the study area (i.e., urban water supply,
agriculture and maintenance of ecosystems) may be exacerbated in the future. Climate change will
most likely trigger a change in Mediterranean arid and semi-arid regions to lower rainfall scenarios.
A comparison of current precipitation and future precipitation conditions obtained from global climate
models reinforces this statement and evidences that the most dramatic precipitation reductions will
be associated with the higher elevation areas in both basins. This observation concerns areas that
are very important for groundwater storage and surface runoff that critically contribute to reservoir
storage variations. The future impact of climate change on water resources needs adaptive strategies
based on accurate and updated spatial-temporal information. For this reason, the use of Earth
Observation technologies to monitor and predict land cover changes, soil-vegetation degradation
processes, and available water resources is a scientific and social priority.
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