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Abstract: With great significance in military and civilian applications, the topic of detecting small
and densely arranged objects in wide-scale remote sensing imagery is still challenging nowadays.
To solve this problem, we propose a novel effectively optimized one-stage network (NEOON). As a
fully convolutional network, NEOON consists of four parts: Feature extraction, feature fusion, feature
enhancement, and multi-scale detection. To extract effective features, the first part has implemented
bottom-up and top-down coherent processing by taking successive down-sampling and up-sampling
operations in conjunction with residual modules. The second part consolidates high-level and
low-level features by adopting concatenation operations with subsequent convolutional operations to
explicitly yield strong feature representation and semantic information. The third part is implemented
by constructing a receptive field enhancement (RFE) module and incorporating it into the fore part of
the network where the information of small objects exists. The final part is achieved by four detectors
with different sensitivities accessing the fused features, all four parallel, to enable the network to
make full use of information of objects in different scales. Besides, the Focal Loss is set to enable the
cross entropy for classification to solve the tough problem of class imbalance in one-stage methods.
In addition, we introduce the Soft-NMS to preserve accurate bounding boxes in the post-processing
stage especially for densely arranged objects. Note that the split and merge strategy and multi-scale
training strategy are employed in training. Thorough experiments are performed on ACS datasets
constructed by us and NWPU VHR-10 datasets to evaluate the performance of NEOON. Specifically,
4.77% and 5.50% improvements in mAP and recall, respectively, on the ACS dataset as compared
to YOLOv3 powerfully prove that NEOON can effectually improve the detection accuracy of small
objects in remote sensing imagery. In addition, extensive experiments and comprehensive evaluations
on the NWPU VHR-10 dataset with 10 classes have illustrated the superiority of NEOON in the
extraction of spatial information of high-resolution remote sensing images.

Keywords: object detection; remote sensing imagery; feature extraction; feature fusion; feature
enhancement; multi-scale detection

1. Introduction

Remote sensing imaging technology, such as optical or hyperspectral aerial image processing [1–3],
has rapidly become one of the most significant technologies in image processing, especially in object
detection [4]. It is a challenge to detect densely arranged small objects with arbitrary orientations in
wide-scale monitoring [5]. While the traditional methods [6–10] and techniques such as fractal-wavelet
modeling [11–15] have made great efforts, they are still far from being automatic and practical currently.

With the recent advent of large ground-based datasets and advanced computational techniques,
methods [16,17] based on deep neural network, especially convolutional neural network, (CNN) have
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achieved great success in general object detection. There are two main streams of CNN-based object
detection methods: The two-stage frameworks and the one-stage frameworks. The Region-based CNN
(R-CNN) [18], Fast R-CNN [19], Faster R-CNN [20], and R-FCN [21] are the representatives of the
two-stage frameworks, where the first stage extracts region proposals within the given image and
predicts results according to proposals in the second stage. To accelerate the detection process, the
one-stage frameworks, including You Only Look Once (YOLO) [22–24] and Single Shot Multi-Box
Detector (SSD) [25], directly predict bounding boxes and produce detection results simultaneously.
Compared to the two-stage frameworks, YOLO and SSD run faster but tend to sacrifice detection
accuracy to a certain extent.

Among these general object detection algorithms, YOLOv3 [24] has shown the greatest inference
speed and the highest score on the PASCAL VOC dataset and the Microsoft COCO dataset [26].
As a method specially optimized for detecting small objects in ground-based imagery, it achieves a
favourable tradeoff between accuracy and efficiency.

On this basis, object detection in remote sensing imagery has been widely studied in recent
years [27–32]. In the field of remote sensing, many researchers have made great efforts to object
detection methods based on CNN [33–39].

A position-sensitive balancing (PSB) framework based on the ResNet [40] was proposed in [41].
Meanwhile, the online hard example mining (OHEM) [42] was added into the Faster R-CNN in [43]
to further improve the accuracy of detecting small objects. In addition, Long, et al. [44] proposed an
unsupervised score-based bounding box regression for accurate positioning of objects in the aerial
images. To address the problem of rotation variations and appearance ambiguity in remote sensing
imagery, Ref. [45] combined the region proposal network (RPN) and the local contextual feature fusion.
Despite that great efforts have been made, these methods based on the two-stage frameworks are still
far from running in real time currently.

To address the abovementioned problems, a series of the one-stage detection models have been
proposed. At present, the detection frameworks usually adopt the feature pyramid structure such
as the FPN [46] which was proposed for independent detection in different convolutional layers. In
addition, Chen et al. [37] improved the SSD via augmented semantic information in remote sensing
images. While this method can improve speed, it still has poor performance for small objects. Besides,
the You Only Look Twice (YOLT) [5] which is optimized for small and densely arranged objects
in remote sensing images, adopted the YOLOv2 [23] with a down-sampling multiple as 16. Object
detection method [36], which is also improved on the YOLOv2, proposed a visual detail enhancement
mapping method to detect small aerial objects. However, the performance of [36] is worse than
YOLOv3 on squint angle. Besides, the CornerNet [47], detecting an object bounding box as a pair of
key points, introduced the hourglass network [48] as its backbone for better detection performance of
corners. However, this approach is relatively unsatisfactory in terms of detection speed.

Based on the Faster R-CNN [20], a multi-model decision fusion network developed in [34]
combines a contextual information fusion sub-network, a part-based multi-region fusion sub-network,
and a baseline sub-network to recognize and locate geospatial objects. In addition, the final detection
results are obtained by the way of making a decision fusion on the results of the three sub-networks.
Based on the YOLOv2 [23], a single-shot geospatial object detection framework based on multi-scale
feature fusion modules has been proposed in [33]. Note that detectors in this model are used in
conjunction with multi-scale feature fusion modules. Based on the SSD [25], a novel single-shot
detector named the Recurrent Detection with Activated Semantics (RDAS) structure is presented for
addressing the small-scaled object fast detection problem in VHR remote sensing in [35]. Besides, the
shared multi-scale base network and the multi-scale object proposal network were employed in [38],
which enables the production of feature maps with high semantic information at different layers and
generation of anchor boxes that cover most of the objects with a small number of negative samples.
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However, there are still some challenges [5,33] to be solved in geospatial object detection even
though abovementioned excellent methods have been put forward because of the characteristic of
remote sensing image as follows.

1. In satellite imagery objects we are interested in, such as ships [49,50], are often densely
arranged [51] and may appear as merely several pixels [52–54] (see Figure 1), rather than the large
and prominent subjects in general object data such as Microsoft COCO [26]. For some objects
such as cars, each object can be only 15 pixels at the highest resolution.

2. Training data of high quality is insufficient. Only a small number of well-labelled geospatial
images are publicly available. In addition, the quantity and quality of remote-sensing images
have undergone rapid development and made great progress, which demands fast and effective
approaches to real-time object localization [33].

3. The geospatial images are different from general object images captured in ordinary life. Objects
viewed from overhead can appear as multi-scale with any orientation such as airplanes [55–57] in
an airport. Besides, the changing illumination, unusual aspect ratios and complex backgrounds
make the detection difficult.

In this work, we tackle the previous problems and propose a specific neural network named
NEOON which mainly focuses on capturing the features and semantic information of small objects.
Due to the speed, accuracy, and flexibility of YOLOv3 [24], we implement our method in the Darknet
framework in which YOLOv3 was developed, and maintain some effective mechanisms of YOLOv3.

At first, we try to find out the characteristic of object features in remote sensing images firstly and
then figure out how to design or optimize the algorithm. In our experiments, a key observation is that
the first few layers of the whole network tend to contain more discriminative information of small
objects such airplanes, while the deep layers of CNN contain strong semantics with unobvious even
disappeared feature information of small objects. Based on this observation, our motivation becomes
clear, that is, to make the best use of small object information in the forepart of the network. So we
design NEOON based on the purpose of capturing and fusing features across different resolutions
in order to transmit the feature information from the forepart of the network to the final detectors as
much as possible.

For the experiments, we adopted the ACS dataset consisting of 3 categorieswhich is a collection
of five public datasetsand the NWPU VHR-10 dataset [41,45,58,59] which is a 10-class HSR remote
sensing imagery geospatial object detection dataset. Note that the methods proposed in [33,35,41,58,59]
are all evaluated in the NWPU VHR-10 dataset. The experimental results confirmed that the proposed
method can achieve a satisfactory detection performance in remote sensing object detection.

In summary, we make the following contributions in this work:

1. We validate the characteristic of small objects feature in geospatial images when the deep CNN
working, and then propose the main idea, making the best use of small object information in the
forepart of the network, to copy with remote sensing detection tasks.

2. We propose a novel one-stage detection framework named NEOON with a satisfactory
performance for detecting densely arranged small objects in remote sensing imagery. NEOON
focuses on extracting spatial information of high-resolution remote sensing images by
understanding and analyzing the combination of feature and semantic information of
small objects.

3. The Focal Loss [60] is introduced in darknet as the loss function for classification to address the
problem of class imbalance which is the main reason leading to the phenomenon that two-stage
methods always outperform one-stage methods in detection accuracy.

4. For densely arranged objects, we make use of the Soft-NMS [61] in post-processing and modify
the code to make it suitable for the Darknet framework to preserve accurate bounding boxes in
the post-processing stage.
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5. Abundant datasets and sufficient experiments are adopted and executed, respectively. On the
one hand, experiments are conducted on both the ACS dataset and the NWPU VHR-10 dataset.
On the other hand, the design of experiments and analysis of results are so thorough that the
effectiveness of NEOON has been provenly validated. Specifically, we obtained the Precision as
well as the Recall, and discuss the influence of image resolution on detection performance.

6. The split and merge strategy, as well as the multi-scale training, are employed and do make sense
in this work. To ensure that NEOON works smoothly and efficaciously, we have updated the C
library of Darknet [62] by modifying a considerable part of C code as well as used quite a lot of
script codes written in Python.

In a word, validated ideas and solutions were provided to remote sensing detection task in this
work, and the proposed NEOON model has been proved effective and significant through experiments.

The rest of this paper is organized as follows. The proposed novel effectively optimized one-stage
network (NEOON) is described in detail in Section 2. Section 3 presents a description of the dataset and
the experimental settings. Section 4 presents the analysis of the experimental results and a discussion
of our work. Finally, the conclusions are stated in Section 5.

Figure 1. Examples difficult to detect. Objects in remote sensing images are not only very small and
densely clustered but also arranged with diverse orientations and extremely complex background.

2. Proposed Method

In this section, we present a geospatial object detection approach named NEOON especially
optimized for densely arranged small objects and discuss its main features.

NEOON is implemented in the Darknet neural network framework and maintains many settings
(such as anchor boxes and bounding box prediction) of YOLOv3 [24] which is an excellent detection
method developed in the Darknet. Meanwhile, in order to ensure that NEOON works smoothly
and efficaciously, we updated specific parts of the Darknet in C, such as the implementation of
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convolutional layer (for atrous convolution), the way of backpropagation (for variety of loss function
such as SE, CE and the Focal Loss) and the configuration of multithread of GPU (for more efficient
calculation), etc. Besides, we use quite a lot of script codes written in Python in this work.

An overview of the overall detection process in this work is given in Figure 2. Focusing on
extracting spatial information of high-resolution remote sensing images, the proposed method is
aimed at understanding and analyzing the combination of feature and semantic information of small
objects, which can be demonstrated in detail as following components.

Figure 2. Detection process. The detection process can be divided into six parts. Specifically, the dataset
construction will be described in detail in Section 3.1.1, the split and merge strategy in Section 3.3.1, the
multi-scale training in Section 3.3.2, the network architecture in Section 2.2, and the regression and
classification in Section 2.3.

1. Feature extraction. The backbone of NEOON undertakes the task of feature extraction which will
directly affect the final performance. As a special partly symmetrical architecture, it achieves
bottom-up and corresponding top-down processing with several residual modules [40] adopted
to accelerate and optimize the fitting process of NEOON model.

2. Feature fusion. Concatenation operations and subsequent convolutional operations are carried
out for feature maps, all four parallel, to implement feature fusion across the backbone to
effectively combine the low-level and high-level features.

3. Feature enhancement. We construct an RFE module in according to RFBNet [63] and incorporate
it into NEOON. It is located at the forepart of backbone to especially enhance feature information
of small objects of interested.

4. Multi-scale detectors. Four detectors with different sensitivities, set all four parallel, play a vital
role in capturing and utilizing features of objects in different scales.
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5. Focal loss. We introduce the Focal Loss [60] as the loss function of classification because it has
been proved helpful to improve the performance of the one-stage methods by settling the class
imbalance problem.

6. Post-processing. The soft non-maximum suppression (Soft-NMS) [61] has been utilized in the
post-processing procedure to filtrate bounding boxes more reasonably to improve the detection
accuracy, especially for densely arranged objects.

7. Implementation strategy. The split and merge strategy, as well as multi-scale training, are
employed because the sizes of images and objects are too enormous and varying, respectively.

Then we first verify the influence of different feature maps output from different layers of a
network on extracting features and detecting small objects in Section 2.1 and then present NEOON in
three aspects illustrated separately in Sections 2.2–2.4.

2.1. Feature Analysis

In order to evaluate the influences of different layers in the network on feature extraction of small
objects, we collect and compare the heatmaps output from different layers of the YOLOv3 framework.

As shown in Figure 3, the heatmaps collected from the first few layers contain more information
of small objects, on the contrary, the heatmaps collected from latter layers contain strong semantic
information but less information of small objects. That is to say, the distinctive features of small objects
in remote sensing imagery are mainly preserved in the forepart of the whole network based on CNN.

Figure 3. Heatmaps. (a) is an input image; (b–d) demonstrate the heatmaps collected from the forepart
of the network; (e–i) show the heatmaps collected from latter layers of the network.
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2.2. Neoon Network

In general, NEOON, as a novel fully convolutional network optimized efficaciously in many ways,
focuses on making full use of features across several scales contained in diverse layers to extract, fuse
and enhance features of indistinguishable small and densely arranged objects in geospatial images.
Specifically, the structure of NEOON will be illustrated in Sections 2.2.1–2.2.4.

2.2.1. Feature Extraction

Considering the characteristics of small objects, we put the focus of NEOON on constructing
a backbone that could capture feature information of small objects as much as possible. As a fully
convolutional network, the backbone of NEOON is designed as shown in Figure 4, which has used
more than 50 convolutional layers through continuously repeating convolutional layer with 3 × 3 size
kernel and subsequent convolutional layer with 1 × 1 size kernel.

Specifically, the backbone, as a partly symmetrical structure, is implemented by a series
of down-sampling operations and corresponding up-sampling operations to achieve bottom-up
processing and top-down processing. In detail, both down-sampling operations achieved by the
convolutional operation and up-sampling operation achieved by the bilinear interpolation is repeated
five times respectively in total. Meanwhile, successive residual modules are interspersed into the
backbone for every two or three convolutional layers to accelerate and optimize the fitting process of
the model, which also helps NEOON extract features better progressively and effectively.

Figure 4. Feature extraction structure. The feature extraction structure of novel effectively optimized
one-stage network (NEOON) constructs top-down and bottom-up inference through a series of
dwon-sampling operations and corresponding up-sampling operations.

2.2.2. Feature Fusion

According to Section 2.1, it is a significant but tough problem to make the feature information
of small object free from loss or even disappearance in a deep convolutional network. While the
top-down and bottom-up processing could help model capture features across several scales to some
degree, it is still not enough to deal with this problem. So it is necessary to build off connections more
directly between the front and the posterior sections of the whole network.
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Therefore, we divide the convolutional layers of backbone into two equal sections in order and
pair the two corresponding convolutional layers located at the former section and the latter section
respectively. Specifically, the two layers of a pair output feature maps of the same size as 160 × 160,
80 × 80, 40 × 40 and 20 × 20 severally when the size of the input image is 640 × 640.

Obviously, there are four pairs of convolutional layers built off in NEOON (see Figure 5). We
establish a connection between the two layers of a pair through concatenating their outputs firstly and
then fuse these feature maps by convolutional operations, all four parallel. In this case, the feature
maps before being transmitted into detectors will contain both more detailed information and sufficient
semantics of small objects.

Therefore, this kind of fusion method allows NEOON to get more meaningful semantic
information from the upsampled features and finer-grained information from the earlier feature
map at the same time.

Note that the multi-scale structure of NEOON is different from FPN [46] and PSPNet [64] in
details. Specifically, the feature fusion is achieved by concatenation in NEOON instead of element-wise
addition in FPN [46]. In addition, the down-sampling is achieved by convolution in NEOON rather
than pooling in PSPNet [64].

Figure 5. Feature fusion structure. Concatenation operation and corresponding convolutional
operations are employed four times in NEOON to achieve feature fusion. Note that residual modules
are adopted to accelerate and optimize the fitting process of the model. Subsequently, four detectors in
increasing layers access the progressively fused feature maps, all four parallel.

2.2.3. Feature Enhancement

According to the analysis in Section 3.1, the distinctive information of small objects is gradually
lost through layer-by-layer convolutional operations, especially for NEOON with a backbone consisting
of more than 50 convolutional layers. While feature fusion structure is constructed in NEOON to
preserve features information of the first few layers, the features of small objects will still fade in the
deep layers.

Therefore, we construct a Receptive-Filed Enhancement (RFE) module (see Figure 6) to maximize
the low-level features of small objects by combining convolutional operations with different scales.
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In detail, RFE module (see Figure 6), modeling the structure of receptive-fields(RFs) in human
visual systems [61] to generate more discriminative and robust features, consists of a multi-branch
convolutional layer with kernels of different sizes and the trailing dilated convolutional layers
(also named astrous convolutional layers). In the above settings, the former is to apply different
convolutional kernels to build multi-size RFs and the latter is to generate feature maps of a higher
resolution, which helps capture features at a larger area with more context information.

Specifically, we add an RFE module in behind of the convolutional layer (see Figures 4 and 7)
outputting feature maps of 160 × 160 × 128 size (when input image size is 640 × 640), which is the
one layer of the first layer pair (demonstrated in Section 2.2.2) consisting of two convolutional layers
of same size distributed in the former section and the latter section respectively, to enhance feature
information of small object as much as possible. Therefore, we suppose that detection accuracy for
densely arranged small objects in remote sensing images tends to be improved with a decrease of
missed or mistakenly detected cases in detection.

Figure 6. Feature enhancement structure. (a) The mechanism of Receptive-Filed Enhancement (RFE)
module from receptive field; (b) the detailed architecture of RFE module.
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2.2.4. Multi-Scale Detection

In order to simultaneously obtain discriminative features and strong semantics of objects of
various sizes, we set up four detectors of diverse sizes and sensitivities at the end of the aforementioned
four parallel convolutional routes to adapt NEOON to different object sizes. In this way, detectors
could take full advantages of both low-level and high-level features of small objects.

In the Darknet, each grid cell of the image divided by the detector is responsible for detecting
objects that are falling into it. This mechanism was emphasized and executed in YOLO methods [22–24]
and the dense grid is crucial for detecting densely arranged objects such as cars in parking lots.

Several densely arranged small objects may fall into the same grid when the input image is not
divided densely enough, thus causing missed detection. To further avoid the occurrence of missing
objects (falling into in the grid cell), we consider employing four detectors (instead of three in YOLOv3)
with the increasingly larger size, which divides the image into the denser grid than YOLOv3 so that
each grid cell is responsible for fewer than three objects.

Objectively, larger size (denser grid) of a detector is unnecessary for sparsely arranged objects
such as airports but crucial for high-density scenes such as parking lots where the occurrence of
missing objects may exist.

Therefore, the sensitivity of each detector is different. From the detector A to the detector D
in Figure 7, the denser the grid the input image is divided into, the smaller the anchor boxes are
predicted by each cell, which leads to the higher accuracy for densely arranged small objects. So, each
of them plays a complementary role with each other in NEOON.

Figure 7. Network structure detail. As a fully convolutional network, NEOON consists of more than
fifty convolutions, 21 residual modules and an RFE module in practice.
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Note that each detector predicts a 3-dimension tensor encoding bounding box, confidence and
class predictions, similarly to YOLOv3. Specifically, NEOON predicts 3 anchor boxes for each grid cell
at each scale. In addition, the tensor finally predicted is N × N × [3 × (4 + 1 + C)] for the 4 box offsets,
1 confidence, and C class predictions. So, C should be set to 3 for ACS dataset and 10 for NWPU
VHR-10 dataset.

2.3. Model Training

In practice, NEOON has followed several settings of YOLOv3 in detection mechanisms
such as anchor boxes [24] and predicts both location and category information for bounding
boxes simultaneously.

In general, NEOON predicts bounding boxes at 4 different scales corresponding to 4 detectors
which are achieved by the last convolutional layers in four parallel branches described in Figure 5.
Specifically, when the input image size is 640 × 640, it will be divided into a 20 × 20, 40 × 40, 80 × 80
and 160× 160 grid by detector A, detector B, detector C, and detector D, respectively. For each grid cell,
NEOON predicts 3 bounding boxes corresponding to 3 anchor boxes per grid cell. For each bounding
box, the network predicts 4 coordinates, a confidence and C conditional class probabilities reflecting
the possibility that the bounding box belongs to every category in C classes.

2.3.1. Overview

The final loss function adopted as Equation (1) in NEOON can be divided into 3 parts contributing
to confidence, location, and classification respectively as follows.

Loverall = Lcon f + Lloc + Lcla (1)

Similar to YOLOv3 [24], NEOON only assigns one anchor box responsible for each ground truth
object. If an anchor box is not responsible for a ground truth object it makes no loss for regression and
classification (only confidence).

As for the confidence, NEOON predicts a confidence value for each bounding box using logistic
regression and employ binary cross-entropy (BCE) to calculate the loss according to Equation (2). The
confidence predicted should be 1, if the anchor box overlaps a ground truth object by more than any
other anchor boxes. Meanwhile, that anchor box is assigned to predict a bounding box for the specific
ground truth object, and the value of pbest corresponding to the anchor box will be set to 1 (or 0 in
other cases). If the anchor box is not the best but does overlap a ground truth by more than a threshold
we ignore the prediction [24].

Lcon f = λignore

S2

∑
i=0

B

∑
j=0

pgood
ij

(
1− Con fij

)
BCE(Con f ij, Groundtruth)

+λother

S2

∑
i=0

B

∑
j=0

pother
ij Con fijBCE(Con f ij, Groundtruth)

+λbest

S2

∑
i=0

B

∑
j=0

pbest
ij Con fijBCE(Con f ij, Groundtruth)

(2)

where pbest
ij as well as pgood

ij denotes if the anchor box j of grid cell i overlaps a ground truth object by
more than any other anchor boxes or not but does overlap one object by more than a threshold of
IOU(Anchorbox, Groundtruth). The threshold is set to 0.5 which is the same as YOLOv3.
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2.3.2. Regression

Similarly to YOLOv3 [24], NEOON predicts 4 coordinates for each bounding box, tx, ty, tw, th and
employ the sum of squared error (SE) to calculate the loss.

We suppose the grid cell is offset from the top left corner of the image by (cx,cy) and the anchor box
has normalized width and height pw, ph. In this case, the normalized coordinates (bx, by) representing
the center of the box relative to the bounds of the grid cell can be calculated according to Equation (3).
In a similar way, the (bw, bh) representing the normalized width and height of the box are predicted
relative to the whole image can be calculated, which has been illustrated in Figure 2.

bx = σ (tx) + cx

by = σ
(
ty
)
+ cy

bw = pwetw

bh = pheth

(3)

During training, we use the sum of squared error loss for regression as follows.

Lloc = λcoord

S2

∑
i=0

B

∑
j=0

pbest
ij
(
2− (bw)ij(bh)ij

)
SE (4)

where (2 − (bw)ij(bh)ij) is adopted to improve the punishment for small objects which are more
sensitive to location information than large objects.

SE =
(
(t̂x)ij − (tx)ij

)2
+
(
(t̂y)ij − (ty)ij

)2
+
(
(t̂w)ij − (tw)ij

)2
+
(
(t̂h)ij − (th)ij

)2 (5)

In practice, if the ground truth value for some coordinate predicted is t̂∗ (can be computed
from the ground truth box according to Equation (3), the gradient of loss in backpropagation is
t̂∗ − t∗ (t∗ represents the prediction value) [24].

2.3.3. Classification

As we know, one-stage methods usually have an advantage over two-stage methods in terms
of running speed, but on the contrary, they are slightly inferior in detection accuracy. The proposed
NEOON is no exception.

According to the research of [60], the extreme imbalance between foreground and background
classes during training is the main reason for the accuracy decline of one-stage methods. That is to say,
the vast number of easy negatives have overwhelmed the optimization direction of one-stage models
during the training process.

On this basis, the Focal Loss [60] is introduced as the loss function for classification to address
the class imbalance problem of one-stage detection algorithm including NEOON. Specifically, as
described in [60], we reshape the standard cross entropy loss to eliminate the loss contribution from
easy examples (i.e., objects could be well-classified).

As for classification, NEOON uses independent logistic classifiers as the same as YOLOv3 [24].
During training, NEOON employs the Focal Loss (see Equation (6)) rather than binary cross-entropy
(see Equation (7)) in YOLOv3 for the class predictions.

Lcla = λclass

S2

∑
i=0

B

∑
j=0

[
pbest

ij

C

∑
k=0

FL(p, y)

]
(6)

where, parameter y represents the label class k and parameter p ∈ [0, 1] predicts the probability of the
bounding box with label class k.

Next, we will demonstrate how the Focal Loss is introduced and works in NEOON.
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The binary cross entropy (BCE) loss function for binary classification as follows.

CE(p, y) =

{
− log(p), y = k

− log(1− p), others
(7)

To simplify the above function, parameter pt is defined as follows.

pt =

{
p, y = k

1− p, y = others
(8)

Substituting pt into Equation (7), CE loss function can be rewritten as follows.

CE(p, y) = CE(pt) = − log(pt) (9)

Then, we introduce the factor α ∈ [0, 1] for class k as well as 1− α for other classes and define αt

as follows.

αt =

{
α, y = k

1− α, y = others
(10)

Meanwhile, a factor (1− pt)γ with adjustable parameter γ ≥ 0 is introduced to the loss function.
Specifically, the Focal Loss [60] is defined as follows.

FL(pt) = −αt(1− pt)
γ log(pt) (11)

Therefore, the final form of Lcla can be determined as follows.

Lcla = λclass

S2

∑
i=0

B

∑
j=0

[
pbest

ij

C

∑
k=0

FL(pt)

]
(12)

In Equation (10), the parameter α balances the influences from positive and negative examples
on model optimization during the training process. Furthermore, factor (1− pt)γ down-weights
easy examples in loss function so thatthe model could focus on training on hard negatives, which
helps NEOON differentiate easy and hard examples more accurately. Note that we set α = 0.5 and
γ = 2 in NEOON for optimal performance, which makes a positive influence on the improvement of
detection accuracy.

2.4. Post-Processing

In remote sensing imagery, detecting densely arranged objects of different sizes confronts a
challenge: one of the two different bounding boxes of the two objects, which are very close together,
is likely to be mistakenly filtered out by the non-maximum suppression (NMS) operation because of
their high intersection-over-union (IOU) value. Specifically, one of the two boxes which have a lower
confidence score will be regarded as a false detection result by the NMS in this case (see Figure 8a).

Different from traditional NMS, the Soft-NMS chooses to replace the original score with a slightly
lower score instead of directly zeroing the confidence score of the bounding box. In detail, we modify
the code of the Soft-NMS to make it suitable for the Darknet framework. For the bounding box bi, if the
IOU between bi and bm, which has higher confidence score than bi, is greater than a fixed threshold
τ, the IOU value will be calculated according to the following equation to compute and set the final
confidence score si of bi.

si =

{
si, IOU(bm, bi) < τ

si(1− IOU(bm, bi)), IOU(bm, bi) ≥ τ
(13)
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where the parameter τ is set to 0.5 instead of 0.3 in [61] in order to make the performance in mAP more
relatively stable.

Figure 8. Effect of the Soft-non-maximum suppression (NMS). In (a), a car cannot be detected because
its confidence is set to 0 by NMS due to its Intersection-over-Union (IOU) with the nearest car, having a
higher confidence 0.92, more than a thresh; however, in (b), the confidence of the car not detected in (a)
is set to 0.70 instead of 0 according to Equation (13).

3. Experimental Settings and Implementation Details

To verify the performance of the proposed NEOON, we conduct a series of confirmatory
experiments in this work.

In order to further evaluate the proposed method, we have applied some prevalent and widely
utilized evaluation indicators including the Average Precision (AP), the Recall and the mean Average
Precision (mAP), which are extensively adopted for the object detection frameworks. Besides, the
Intersection-over-Union (IOU) is also calculated as a metric to measure location accuracy. Note that
the mAP computes the average value of all the AP values, which reflects the performance of a detector
for all the classes.

Then we will demonstrate the dataset adopted in this work, the compared methods and some
implementation details including the split and merge strategy and the multi-scale training strategy in
this section.

3.1. Dataset

For reliable evaluation and verification of the proposed method, two datasets are used in our
experiments. The first one is ACS dataset built in this work, which is introduced in Section 3.1.1 in
detail. The second one is the NWPU VHR-10 dataset [45,58,59] which contains 10 geospatial object
classes. There are two image subsets in NWPU VHR-10 dataset: a positive set including 650 annotated
images and a negative set including 150 images without any objects of interested [33].

3.1.1. Acs Dataset

We construct ACS dataset as a collection of five public datasets including DOTA (http://
captain.whu.edu.cn/DOTAweb/) [65], UCAS-AOD (http://www.ucassdl.cn/resource.asp), NWPU
VHR-10 (http://jiong.tea.ac.cn/people/JunweiHan/NWPUVHR10dataset.html) [45,58,59], RSOD
(https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-) and LEVIR (http://levir.buaa.edu.cn/
Publication.htm), which consists of three representative categories, i.e., airplane, car and ship. It is
worth noting that we have specially eliminated the images containing incomplete objects and their

http://captain.whu.edu.cn/DOTAweb/
http://captain.whu.edu.cn/DOTAweb/
http://www.ucassdl.cn/resource.asp
http://jiong.tea.ac.cn/people/JunweiHan/NWPUVHR10dataset.html
https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
http://levir.buaa.edu.cn/Publication.htm
http://levir.buaa.edu.cn/Publication.htm
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labels. For convenience, the constructed dataset is named as ACS dataset which is an abundant and
effective large-scale dataset for remote sensing object detection.

Specifically, there are 4159 remote sensing images in the ACS dataset with a total of 27,438
independently labelled objects, consisting of 13,082 airplanes, 4843 cars and 9513 ships as listed in
Table 1. It is not necessary for data augmentation before starting the training process because the ACS
dataset is large and abundant enough. We randomly divide the dataset into a training set as well as a
validation set by 3:1 to ensure that the objects of each category are averagely distributed in the training
set and the validation set with this proportion.

Note that the airplane, car, and ship are the most meaningful three categories for remote sensing.
In addition, challenges still exist for ACS dataset even though there are only three classes because of
the following two main reasons:

1. Images in ACS dataset are collected with multiple resolutions and viewpoints leading to multiple
scales and angles respectively of similar objects.

2. Objects of these three classes occupying fewer pixels than other classes such as bridges or
basketball courts and so on.

It is worth mentioning that several existing geospatial datasets mostly focus on one object category,
such as the Aircraft dataset, the Aerial-Vehicle dataset, and the High Resolution Ship Collections 2016
(HRSC2016) for ship detection [33].

Table 1. A Summary of Objects in ACS Dataset.

Dataset Airplane Ship Car

DOTA 2933 6886 456
UCAS-AOD - - 3791

NWPU VHR-10 754 - 596
RSOD 5374 - -
LEVIR 3967 2627 -
ASC 13,082 9513 4843

3.1.2. Nwpu Vhr-10 Dataset

The other dataset adopted in this work to evaluate the performance of NEOON is the NWPU
VHR-10 dataset [45,58,59] consisting of a positive image set including 650 images and a negative image
set including 150 images. NWPU VHR-10 dataset contains 10 classes of geospatial objects, including
airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor,
bridge, and vehicle.

3.2. Baseline Method and Compared Methods

To quantitatively evaluate NEOON, we compared it with five methods including the collection
of part detector (COPD) [59], the YOLOv2 [23], the rotation-invariant convolutional neural network
(RICNN) [58], the SSD [25], and the R-P-Faster R-CNN [39] as follows.

1. CPOD, which is made up of 45 seed-based part detectors. Each part detector is a linear support
vector machine (SVM) classifier and corresponds to a particular viewpoint of an object class,
therefore the collection of them providing a solution for rotation-invariant object detection.

2. YOLOv2, in which anchor priors and multi-scale training techniques are applied to predict
location candidates. The Darknet-19 is used to extract object features, which has 19 convolutional
layers, 5 max-pooling layers, and no fully connected layers.

3. RICNN, which is achieved by learning a new rotation-invariant layer on the basis of the Alexnet
to deal with the problem of object rotation variations.
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4. SSD, in which small convolutional filters are applied to each feature map to predict box offsets
and category scores rather than fully connected layers in region-based methods. Additionally,
SSD uses multi-representation that detect objects with different scales and aspect ratios.

5. R-P-Faster R-CNN, which integrates the region proposal network and classification procedure
through sharing the convolutional weights.

3.3. Implementation Details

In the training process, we use the batch size of 64 and train NEOON for 20k iterations for both
the ACS dataset and the NWPU VHR-10 dataset. Meanwhile, the step-by-step strategy to decrease
the learning rate is employed in the training procedure. Specifically, we set the initial learning rate to
10−3 during the first 16k iterations, and then reduce it ten times per 2k iterations. In addition, all the
experiments use the same set of IOU thresh, i.e., 0.5. Note that models were trained on a 64-bit Ubuntu
16.04 computer in which experimental environment contains an Intel Xeon E5-2650 v4 CPU with a
NVIDIA Tesla K80 GPU with 11GB memory.

3.3.1. Split and Merge Strategy

As we mentioned earlier, small objects occupy very few pixels in remote sensing imagery with
wide monitoring. Directly resizing and inputting the original image into the network may lead to
the loss of features of small objects and make detecting difficult. Therefore, we employ multi-scale
training strategies (see Figure 9) when utilizing the ACS dataset in order to increase the scale of the
area occupied by small objects relative to the whole image.

Specifically, we split all the images of the ACS dataset into square chips with a size of 400 × 400
to 1000 × 1000 pixels, with a stride of 700 approximately. During the splitting process, some objects
located at the edge of the image may be split into two incomplete parts. To overcome this problem, we
eliminate the incomplete objects of which IOU (to the ground truth of their corresponding original
objects) is less than 0.7.

Finally, the detection results consisting of each chip are merged to obtain the final result with the
same size of the whole image. In this way, we can improve the detection accuracy of small objects,
especially in regions where objects are quite small.

Figure 9. Split and merge strategy. We tend to split the images into several square chips and each chip
is detected by the network separately to produce a single result. Finally, all the results are merged into
a large image with the same size as the original image.
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3.3.2. Multi-Scale Training Strategy

Remote sensing images are shot range from a few hundred meters to nearly 10,000 m and the
ground objects are of varying sizes even for similar objects. In order to flexibly capture the multi-scale
features of objects in remote sensing imagery, we introduce multi-scale training strategies, which
makes the same network can predict detections at different resolutions.

In order to adapt the network to the average size of the images in the both ACS dataset and
NWPU VHR-10 dataset, we set the standard input size of the NEOON with 640 × 640 pixels and then
change the network every few iterations. Specifically, during the training procedure, we randomly
resize the training images to 10 different scales between 480 and 832 per 10 iterations and then continue
training, which forces the network to learn to predict well across a variety of input dimensions in
remote sensing imagery.

4. Experimental Results and Analysis

The experimental results will be illustrated and analyzed in this section and the detection
performance is measured by the mean Average Precision (mAP) and Recall in this work. Note that we
consider a detection to be correct if its bounding box overlaps more than 50% with the bounding box
of the corresponding ground truth. In addition, the Soft-NMS is applied to all the compared methods
for fairness.

Obviously, all the proposed components of the optimization in NEOON have a positive
improvement in the ACS dataset. Meanwhile, NEOON has shown better performance in NWPU
VHR-10 dataset when compared what other advanced methods.

4.1. Results and Analysis on ACS

The quantitative comparison results are shown in Table 2, including the AP and Recall values of
three categories, as well as the mAP of a comprehensive assessment.

Table 2. Comparison of performance on ACS dataset.

Method
Object Category

mAP mRecallAirplane Car Ship

AP Recall AP Recall AP Recall

YOLOv3 71.55% 75.73% 48.91% 71.82% 54.17% 71.95% 58.21% 73.17%
YOLOv3+split 85.98% 86.77% 90.58% 93.60% 69.10% 81.19% 81.88% 87.19%
D: C–SoftNMS 87.95% 91.11% 91.38% 93.34% 73.01% 83.31% 84.11% 89.25%
C: B–FocalLoss 88.65% 92.24% 91.54% 94.23% 72.88% 84.35% 84.36% 90.27%

B: A–RFEmodule 89.36% 94.14% 92.07% 96.07% 74.91% 86.44% 85.45% 92.22%
A: NEOON+split 94.49% 95.37% 93.22% 96.87% 72.25% 85.83% 86.65% 92.69%

As shown in Table 2 and Figure 10, NEOON achieves the best mAP value of 86.65%. Compared
with the YOLOv3, NEOON achieves an average 8.51% improvement in AP50 of airplanes in
validation dataset and the corresponding improvements of the cars and ships are 2.64%, 3.15%,
respectively. Besides, NEOON obtains 4.77% performance gains in term of mAP, which demonstrates
the effectiveness of our multi-scale feature fusion detector. As we can see, all the components play an
positive role in improving performance in mAP, which especially improves detection results for small
objects in remote sensing images. Note that the split and merge strategy improves the mAP by 23.67%
in comparison with YOLOv3.

In addition, Figure 10 shows some detection results in three categories of the contrast methods
including NEOON and YOLOv3 before and after using the split and merge strategy. In addition, some
examples of detection results obtained by NEOON are shown in Figure 11.
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Figure 10. Some detection results with three categories ((a) airplane; (b) car; (c) ship) to validate the
performance of NEOON as well as the split and merge strategy. The first row shows the original images
to be detected. The second row demonstrates the results obtained by YOLOv3. The third row shows
the results obtained by YOLOv3 with the split and merge strategy. The last row is the detection results
by NEOON with the split and merge strategy. In (a), YOLOv3 gets similar results as YOLOv3+split;
however, YOLOv3+split achieves a higher classification confidence score than YOLOv3. Note that the
first two methods cannot detect the tiny objects such as the two airplanes at the top of the testing image.
However, the proposed NEOON can make it and detect more objects; in (b), cars are harder to detect
than airplanes because they occupy fewer pixels and YOLOv3 can detect only a few cars. With split
and merge strategy, both YOLOv3 and NEOON have shown a great detection performance especially
for NEOON which is better at detecting indistinguishable small objects; in (c), the same as the cases in
(a,b), the proposed NEOON has achieved the best results in ship detection.
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Figure 11. Some instances of detection results obtained by NEOON with three categories ((a) airplane;
(b) car; (c) ship).

4.2. Results and Analysis on Nwpu Vhr-10

In order to further evaluate the effectiveness and generalization ability of NEOON, we also train
it on NWPU VHR-10 dataset. The quantitative results of different methods are shown in Table 3,
including the AP values of 10 categories and a an mAP measurement.

As can be observed in Table 3, in terms of mAP over all ten object categories, NEOON outperforms
the COPD, the YOLOv2, the RICNN, the SSD, and the R-P-Faster R-CNN by 22.9%, 17%, 4.9%, 1.6%,
and 1.0%, respectively. Especially, for airplane, ship, basketball court, bridge, vehicle, and so on, we
obtain significant performance improvement, as shown in Table 3. These results demonstrate the high
superiority of NEOON achieving better performance compared to the existing widely used methods
in remote sensing object detection.

Table 3. Comparison of performance on NWPU VHR-10 dataset.

Methods COPD YOLOv2 RICNN SSD R-P-Faster R-CNN NEOON

Airplane 62.3% 73.3% 88.4% 95.7% 90.4% 78.29%
Ship 68.9% 74.9% 77.3% 82.9% 75.0% 81.68%

Storage Tank 63.7% 34.4% 85.3% 85.6% 44.4% 94.62%
Baseball Diamond 83.3% 88.9% 88.1% 96.6% 89.9% 89.74%

Tennis Court 32.1% 29.1% 40.8% 82.1% 79.7% 61.25%
Basketball Court 36.3% 27.6% 58.5% 86.0% 77.6% 65.04%

Ground Track Field 85.3% 98.8% 86.7% 58.2% 87.7% 93.23%
Harbor 55.3% 75.4% 68.6% 54.8% 79.1% 73.15%
Bridge 14.8% 51.8% 61.5% 41.9% 68.2% 59.46%
Vehicle 44.0% 51.3% 71.1% 75.6% 73.2% 78.26%
mAP 54.6% 60.5% 72.6% 75.9% 76.5% 77.5%

Average Running Time (s) 1.070 0.026 8.770 0.027 0.150 0.059

For the results, it can be illustrated: owe to the fully using of the low-level features of small objects
and high-level semantic information, NEOON obtains a discriminative feature representation ability
to effectively recognize objects in spite of the diversity and complexity of background information.

In addition, the Average Running Time compares the average running time of different methods
when one image is tested. The results demonstrate that NEOON has a slight speed disadvantage
compared to yolov2 and SSD, but it is still worthwhile if the advantages of NEOON in detection
accuracy are taken into account.
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Besides, the feature fusion structure provides more spatial structural information about objects so
that more semantic information can be obtained to enhance the feature representation. In addition, the
multi-scale training strategy makes the model more robust and provides better detection performance.

Based on the experiment results, it can be drawn that NEOON displays a superior detection
performance especially for small scaled objects in remote sensing images. We also confirmed our
intuition that the performance can be further boosted by the fully utilizing of the combination of the
low-level and high-level information, which can contribute to a stronger object detector. In addition,
some examples of detection results obtained by NEOON in NWPU VHR-10 are shown in Figure 12.

Figure 12. Some instances of detection results obtained by NEOON in 10 categories.
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4.3. Fine-Grained Feature Impact Analysis

In the experiment, we find it will be easier to detect objects if the images contain more detailed
features and objects to be detected occupy more pixels. So we have implemented experiments to find
out the impact of detailed features on detection results.

Firstly, we down-sample the original remote sensing images to lower resolutions to evaluate the
influences on the subjective effect of detection results. Then we train NEOON on ACS dataset with
each resolution and compare the corresponding detection results, which is illustrated in Figure 13
and Table 4.

Table 4. Impact of different resolutions on performance.

Resolution AP mAP
Airplane Car Ship

Original 94.49% 93.22% 72.25% 86.65%
0.8× 84.22% 87.53% 79.96% 83.90%
0.6× 78.25% 88.18% 74.65% 80.36%
0.4× 64.88% 70.02% 60.21% 65.04%

Objectively, higher-resolution images contain more detailed features; as Table 4 shows, the mAP
decreased by 2.75%, 6.29% and 21.61% with the decreasing of imagery resolution. Meanwhile, Figure 13
shows the best mAP is the result of the original high-resolution imagery, and the worst result is from
the lowest-resolution images which were down-sampled 0.4 times.

Therefore, it can be concluded that the more detailed features exist in the image, the better
detection accuracy will be achieved. Therefore, enhancing the detailed features of small objects is quite
crucial for object detection in remote sensing imagery.

Figure 13. Subjective and objective effect. In (a), objects in a remote sensing image become more and
more blurred as the resolution of the image decreases. In (b), AP and mAP curves (IoU = 0.5) of 3
categories as red, green and blue line for airplane, car and ship. As shown, AP and mAP rise with the
increase in image resolution.
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4.4. Discussion

While thorough and convincing experiments and analysis have verified the effectiveness of the
proposed NEOON, there are still some interesting details found during experiments which are valuable
to be discussed as follows.

1. About the Soft-NMS. As demonstrated in Section 2.4, the Soft-NMS does works in specific
situations where objects are arranged densely, such as when square boxes are predicted to detect
obliquely and tightly aligned cars in Figure 8. However, it just plays a limited role in improvement
on performance if the objects of interested are not densely arranged, which is the more general
case. So we can consider utilizing the Soft-NMS in post-processing under the specific rather than
all the circumstances.

2. About the RFE module. In experiments, the RFE module does work and improves both the
subjective and objective effect. However, we have found that in some test images of small and
large objects coexisting, the RFE module raised the recall value of small object while making
some large objects undetected, which needs further investigation to be found out.

3. About the Darknet framework. As we can see in the Table 3, it can be found that the AP value of
two class, the tennis court and basketball court, is much lower than SSD and R-P-Faster R-CNN,
which is Similarly to YOLOv2 adopting the Darknet as its basic framework just like NEOON.
Therefore, we suppose that this issue is related to the algorithm mechanism of the Darknet
framework to some extent.

At present, we cannot give satisfactory explanations and analyses for these problems
abovementioned, and we will further explore them in future work.

5. Conclusions

In this work, we proposed the NEOON, which is a novel one-stage model designed and optimized
for extracting spatial information of high-resolution remote sensing images by understanding and
analyzing the combination of feature and semantic information of small objects. In NEOON, the feature
extraction part implements bottom-up and top-down processings by successive down-sampling and
up-sampling operations in conjunction with residual modules. In addition, the feature fusion part
is achieved by concatenation operations with corresponding convolutional operations. Moreover,
the feature enhancement part and the multi-scale detection part are implemented by an RFE module
and four different detectors with different sensitivities, respectively. Furthermore, the Focal Loss
is set as the loss function to settle the class imbalance problem. In addition, the Soft-NMS plays a
vital role in detecting densely arranged objects. Note that adequate experiments are executed in the
ACS dataset constructed by ourselves and the NWPU VHR-10 dataset. Additionally, the analysis of
experimental results is thorough enough to not only provenly demonstrate the effectiveness of the
proposed NEOON but also provide new insights for other scholars to cope with object detection tasks
in remote sensing imagery.
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