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Abstract: Polarimetric synthetic aperture radar (PolSAR) building extraction plays an important
role in urban planning, disaster management, etc. In this paper, a building extraction method
using refined model-based decomposition and robust scattering feature is proposed. On the one
hand, the newly proposed refined five-component decomposition and its derived scattering powers
are applied to detect the buildings. On the other hand, by combining the matrix elements and
co-polarization correlation coefficient, a robust feature is proposed to discriminate buildings and
non-buildings. Both these two preliminary extraction results are obtained through thresholding
segmentation. Finally, they are fused via the HX Markov random fields so as to further improve
the extraction accuracy. The performance of the proposed method is demonstrated and evaluated
with Gaofen-3 and uninhabited aerial vehicle SAR full PolSAR data over different test sites. Outputs
show that the proposed method outperforms other state-of-the-art methods and provides an overall
accuracy of over 90%.

Keywords: polarimetric synthetic aperture radar (PolSAR); building extraction; refined model-based
decomposition; robust scattering feature; HX Markov random fields

1. Introduction

Building extraction has attracted continuous attention since it plays an important role in damage
assessment, population estimation, city expansion, and other remote sensing applications in the military
and civilian fields [1–14]. Polarimetric synthetic aperture radar (PolSAR) is an active, high-resolution
and multimode operating radar system, which provides abundant information for quick remote
sensing in almost all weather and solar illumination conditions. PolSAR data provide a possibility to
separate scattering contributions of different terrains, which can be associated with certain elementary
scattering characteristics [15–21]. This scattering characteristics-based PolSAR data processing enables
interpretation of radar images more easily and thus, is of great importance in building extraction.

In recent decades, there were numerous studies which investigated this field. For instance,
Xiang et al. [2] incorporated the cross-scattering model and polarimetric coherence into the fusion
of correlated probabilities to extract built-up areas. Quan et al. [3] constructed two extractors by
using the eigenvalues to delineate buildings with different orientations. Azmedroub et al. [4] applied
the Yamaguchi four-component decomposition and circular polarimetric covariance matrix to detect
buildings. Susaki et al. [5] utilized the volume scattering power, the total power, and co-polarization
coherence to discriminate buildings. On this basis, Kajimoto et al. [6] replaced the co-polarization
coherence with the POA randomness to further discriminate buildings. These methods introduced
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various features on the basis of model-based decomposition (MBD) and have met with different degrees
of success. Despite all this, there still exist certain drawbacks for these methods. On the one hand,
the scattering model involved in the MBD is inappropriate for building scattering interpretation because
of the severe overestimation of volume scattering (OVS) [22,23]. On the other hand, the incorporated
features are generally data-dependent such that the extraction results are non-robust when applied for
different data.

To address these problems, this paper proposes a building extraction method with refined
model-based decomposition and robust scattering feature for PolSAR images. First, the scattering
powers derived from the refined five component decomposition (R5CD) [24] are integrated. The R5CD
is our newly proposed work, which can characterize building scattering by significantly improving
the OVS. Second, concerning the variety of scattering characteristics, a robust feature combing the
matrix elements and the co-polarization correlation coefficient is proposed. Through setting different
thresholds, buildings and non-buildings can be separately highlighted using the above methodologies.
Finally, these two preliminary results are fused through the HX Markov random fields (HX–MRF)
image fusion algorithm [25] to further improve the extraction accuracy. The performance of the
proposed method is demonstrated and evaluated with Gaofen-3 (GF-3) and uninhabited aerial vehicle
SAR (UAVSAR) full PolSAR data over different test sites. Outputs show that the proposed method
provides an overall accuracy of over 90%, which outperforms other state-of-the-art methods.

2. Methodology

2.1. Refined Model-based Building Extraction

The scattering power from buildings primarily includes co-polarization power induced by
buildings approximately aligned with the flight trajectory (AABs) and cross-polarization power
induced by buildings with oblique orientations (OOBs) [22,23]. For AABs, it is well recognized
that the double-bounce scattering power can be directly used for extraction. Whereas for OOBs,
a more sophisticated scattering model needs to be considered because the general double-bounce
scattering does not support their dominant mechanism and the traditional MBDs generally cause
severe OVS. Recently, an OOB scattering model along with an R5CD scheme was proposed, which can
effectively characterize building scattering by reducing the volume scattering and enhancing the OOB
scattering simultaneously. Considering this, this section briefly reviews the R5CD [24] and presents an
R5CD-based building extraction method which detects the AABs and OOBs, respectively.

Subject to the reciprocity condition, the acquired coherency matrix can be presented as:

〈
[T]

〉
=

〈
k3pkH

3p

〉
=


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (1)

where k3p represents the Pauli vector. The superscript H and the notation 〈 〉 indicate the conjugate
transpose and ensemble averaging, respectively. In the R5CD, the coherency matrix is decomposed as
a weighted sum of five kinds of basic scattering, i.e., surface, double-bounce, helix, volume, and OOB
scattering, which is given as〈

[T]
〉
= fS[T]S + fD[T]D + fH[T]H + fV[T]V + fO[T]O (2)

where fS, fD, fH, fV and fL are scattering coefficients to be computed. [T]S, [T]D, [T]H and [T]V are the
models of surface, double-bounce, helix, and volume scatterings in the Yamaguchi four-component
decomposition [26,27], respectively. Their mathematical forms are given as
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[T]S =


1 β∗ 0

β
∣∣∣β∣∣∣2 0

0 0 0

, [T]D =


|α|2 α 0
α∗ 1 0
0 0 0


[T]H = 1

2


0 0 0
0 1 ± j
0 ∓ j 1

, [T]V = 1
4


2 0 0
0 1 0
0 0 1

.
(3)

Thereinto, α and βdenote the model parameters of double-bounce scattering and surface scattering,
respectively. j represents the imaginary unit and the positive (negative) sign indicates right (left)
helix scattering.

The OOB scattering model is put forward by modifying the matrix elements of cross scattering
model (CSM) [28] in consideration of the actual proportions of co-polarization and cross-polarization
components. The model can effectively elevate the scattering characteristics of OOBs. According
to [24], the OOB scattering matrix is given as

[T]O =


0 0 0
0 O22 0
0 0 O33

 (4)

where

O22 =
COOB

COOB +
COOB

M−COOB+ξ

, O33 =

COOB
M−COOB+ξ

COOB +
COOB

M−COOB+ξ

(5)

The notion M denotes the maximum value of COOB. ξ is an infinitesimally small positive number
which prevents the denominator becomes zero. COOB denotes the OOB descriptor, which is constructed
based on the characteristics of depolarization, randomness, and polarimetric asymmetry [29].
The expression of COOB is

COOB =
4λ2

3

SPAN
(1−

λ1 − λ2

SPAN− 3λ3
)

2
(6)

where SPAN is total power of the radar return and λi(i = 1, 2, 3) are the eigenvalues of the coherency
matrix. As noticed, the value of COOB in OOBs is significantly larger than the one in natural areas.
Through the above modifications, the cross-polarization components are remarkably elevated compared
to the co-polarization components such that the model conforms to reality with more certainty [24].

According to above, a set of equations can be obtained after carefully mathematical operations

fS + fD|α|2 +
fV
2 = T11

fS
∣∣∣β∣∣∣2 + fD +

fV
4 +

fH
2 + fOO22 = T22

fV
4 +

fH
2 + fOO33 = T33

fSβ∗ + fDα = T12
fH
2 =

∣∣∣Im(T23)
∣∣∣

(7)

Apparently, the above equations are underdetermined (five equations with six unknowns) and
therefore, one of the unknowns needs to be fixed. Similar to [28,30], the solution can be arranged as:
If the value difference between the T11 and T22 terms in the remaining coherency matrix (subtracting
the helix scattering component from coherency matrix) is bigger than zero (T11 − T22 + fH/2 > 0),
then make fD = 0. Otherwise, if T11 − T22 + fH/2 < 0, then make fS = 0. Nevertheless, although the
expressions shown in Equation (6) are compact, the analytic solutions are difficult to achieve. In fact,
according to [24], the fOO22 term can always be omitted because the element O33 is significantly larger
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than the element O22. Considering this, the equations are solvable and the following expressions can
be acquired via modular calculation, i.e.,

T11 − T22 +
fH
2 > 0 :

Re(β) = Re(T12)
fS

, Im(β) =
−Im(T12)

fS
,
∣∣∣β∣∣∣2 = |T12 |

fS2

2

fS2 + (2T22 − fH − T11) fS − 2|T12|
2 = 0

T11 − T22 +
fH
2 < 0 :

Re(α) = Re(T12)
fD

, Im(α) =
Im(T12)

fD
, |α|2 = |T12 |

fD2

2

2 fD2 + (T11 + fH − 2T22) fD − |T12|
2 = 0

(8)

It is noteworthy that the quadratic discriminant in Equation (8) is always positive, ensuring that
the quadratic equation has two roots. In spite of this, fS (or fD) is always designed to be equal to
the larger root so as to constrain the estimation of fV from not being overwhelming [24]. However,
if the larger root is negative, fS (or fD) is forced to zero. Once the surface or double-bounce scattering
coefficient is determined, the remaining scattering coefficients can be computed. Their expressions are
given as

T11 − T22 +
fH
2 > 0 :

fD = 0, fH = 2
∣∣∣Im(T23)

∣∣∣
fS =

√
(2T22− fH−T11)

2+8|T12 |
2
−(2T22− fH−T11)

2

fV = 2(T11 − fS), fO =
4T33−2 fH− fV

4O33

T11 − T22 +
fH
2 < 0 :

fS = 0, fH = 2
∣∣∣Im(T23)

∣∣∣
fD =

√
(T11+ fH−2T22)

2+8|T12 |
2
−(T11+ fH−2T22)

4

fV = 2(2T22 − 2 fD − fH), fO =
4T33−2 fH− fV

4O33

(9)

As a result, the corresponding scattering contributions PS, PD, PH, PV, and PO are estimated as

PS = fS(1+
∣∣∣β∣∣∣2), PD = fD(1+

∣∣∣α∣∣∣2)
PH = fH, PO = fO, PV = SPAN− PS − PD − PH − PO.

(10)

With the calculation of the scattering contributions, the extraction procedure is ready. As we
know, AABs usually have strong double-bounce scattering power PD, making them easily to be
differentiated from the natural areas. Regarding the OOBs, as mentioned before, the OOB scattering
model can elevate the OOB scattering and lessen the OVS. Therefore, the decomposed OOB scattering
power PO can be utilized to identify the OOBs. Based on these two scattering powers PD and PO,
the discrimination can be described as

A1 : If PO > TO or PD > TD, Buildings

A2 : If PO < TO or PD > TD, Natural areas
(11)

where TO and TD denotes the thresholds of OOB and double-bounce scattering power, respectively.

2.2. Feature-driven Building Extraction

Apart from the MBD-based methods, research has also been conducted on extracting buildings
with various polarimetric features. However, the involved features are generally non-robust and
the extraction results are data-dependent. In addition, the construction of features is complicated
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and sometimes requires the introduction of extra parameters. Given that, a scattering variety-driven
feature which combines the matrix elements and the co-polarization correlation coefficient is proposed.
On this basis, a feature-driven building extraction is further put forward in this section.

As we know, if the value of T22 is high, then the target is dominated by the double-bounce scattering.
Therefore, the T22 term is a good indicator of AABs. Meanwhile, for the OOBs, a large change in
cross-polarization power is found due to the existence of rotated dihedral corner reflectors [22,23]. As a
result, the corresponding value of T33 should be high. However, there are risks that misclassification may
occur since cross-polarization power also originates from natural areas. In view of this, the reflection
asymmetry is introduced. As we know, reflection asymmetry is generally present in built-up areas and
vanishes in natural areas. Therefore, the modulus value of T13 and T23 should be high for buildings.
Accordingly, one candidate of the scattering feature is proposed as:

CFU =
|T13|+|T23|

2
· T33 + T22 (12)

Here, (|T13|+|T23
∣∣∣)/2 accounts for the reflection asymmetry. As noticed, the values of

(|T13|+|T23
∣∣∣)/2 and T22 for natural areas are both small. Despite this, the value of T33 for natural areas

is much larger than the value of (|T13|+|T23
∣∣∣)/2. Therefore, there may be overlapped CFU between

OOBs and natural areas. In addition, the values of T22 for AABs is also larger than the values of
(|T13|+|T23

∣∣∣) · T33 /2 for OOBs. To further highlight the OOBs and to improve the mixed up with
natural areas, the candidate is improved as:

ICFU =
|T13|+|T23|

2
·

√
T33 +

√
T22 (13)

The square root for T33 is introduced to impair the contribution to (|T13|+|T23
∣∣∣) · T33 /2 from natural

areas. Meanwhile, the square root for T22 is incorporated to balance the values of (|T13|+|T23
∣∣∣) · √T33 /2

and
√

T22. In this way, the values of ICFU can be high for both AABs and OOBs. In order to further
enhance the contrast between buildings and natural areas, the co-polarization correlation coefficient∣∣∣ρHHVV

∣∣∣ is further incorporated because it is high for natural areas, whereas small for buildings [2].
Since the value trends of ICFU and

∣∣∣ρHHVV
∣∣∣ in buildings and natural areas are opposite, combining

these two features can significantly improve the discrimination ability. Accordingly, the scattering
feature for buildings is finally proposed as:

FU =

|T13 |+|T23 |
2 ·

√
T33 +

√
T22∣∣∣ρHHVV

∣∣∣ (14)

where

|ρHHVV| =

〈
SHHS∗VV

〉
√〈

SHHS∗HH

〉√〈
SVVS∗VV

〉 =
C13

√
C11
√

C33
. (15)

The relative magnitudes of the matrix elements and co-polarization correlation coefficient for
different land covers are listed in Table 1.

Based on the scattering feature, the feature-driven methodology for detecting buildings is given by

B1 : If FU > TU, Buildings
B2 : If FU < TU, Natural areas

(16)

where TU is the discriminating threshold and will be discussed in the following.
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Table 1. Relative magnitudes of T13, T23, T33, T22 and
∣∣∣ρHHVV

∣∣∣.
T13 T23 T33 T22

∣∣∣ρHHVV
∣∣∣

AABs High High Low High Low
OOBs High High High Low Low

Natural areas Low Low High Low High

Physical
meaning

Reflection
Asymmetry

Reflection
Asymmetry

Volume
Scattering

Dominated

Double-bounce
Scattering

Dominated

Co-pol
Correlation
Coefficient

2.3. HX Markov Random Fields Image Fusion

According to Equations (11) and (16), we have two detection results A1 and B1. To obtain the
fusion result, the HX Markov random fields (MRF) image fusion algorithm is applied. As we know,
spatial information is important for image fusion because the pixels are spatially correlated. That is,
for a source image, if one of its pixels contributes to the fused image, its neighbors are also likely
to contribute to the fused image. The MRF image fusion is such a methodology that it exploits the
property of spatial correlation and therefore, the use of such a fusion model is expected to achieve
considerable fusion performance. On this basis of the MRF, the HX–MRF image fusion algorithm
assumes both the sensor selectivity coefficient H and fused image X follow the MRF model with a Gibbs
potential. Thus, the fusion performance can be further improved since it models both the decision
making and the true image as MRFs.

The whole procedure of HX–MRF image fusion is briefly described as follows [25]:
(1) Start with an initial estimate of H and X. Estimate the initial parameters (noise variance and

some parameters in the pdf of H and X) and set the initial temperature parameter, which controls the
randomness of the coefficient generator.

(2) At each iteration, obtain a new estimate of H based on its Gibbs pdf with the Gibbs potential
E(H) using a Gibbs sampling procedure.

(3) Update the fused image.
(4) Reduce the temperature parameter using a predetermined schedule and repeat (2) and (3)

until convergence.
To sum up, the HX–MRF takes spatial correlation into account and uses a maximum a posteriori

solution to update the fused image X. Therefore, it can accurately represent the images and produces
good fusion results in both visual and quantitative manner [25]. Accordingly, the final extraction result
EUrban is given as:

EBuilding= A1∪HX−MRF B1 (17)

where ∪HX−MRF represents the HX–MRF image fusion.

3. Results

3.1. Data Description

To validate the proposed building extraction method, the results reported here are derived from
spaceborne and airborne PolSAR data. All original PolSAR data are single-look complex. The GF-3
C-band data was acquired in San Francisco, USA on 15 September 2017 on ascending passes with
right looking direction. The pixel space is about 8.00 m × 8.00 m. The window size for the multilook
processing is chosen as 7 × 7 in the ground area. The second study data is UAVSAR L-band data
acquired in San Lorenzo, USA. The quad-pol data was acquired on 23 April 2010 and has a resolution
with 7.20 m in the azimuth direction and 4.99 m in the range direction. The detailed parameters about
the PolSAR data are listed in Table 2.
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Table 2. Detailed data parameters.

Sensor Identification Code Flight Orbit Incidence
Angle Height Observation

GF-3 GF3_KRN_QPSI_005782_W122.4
_N37.6_20170915 Ascending Sun-synchronous 20◦–50◦ 775.0 km Right-looking

UAVSAR Haywrd_14501_09091_004_091118
_L090_CX_01 —— —— 25◦–65◦ 12.5 km Right-looking

Figure 1 displays the GF-3 C-band and UAVSAR L-band data with Pauli color coding, where
the red channel describes double-bounce scattering, the green channel describes volume scattering,
and the blue channel describes single-bounce scattering. The corresponding optical images, which have
coverage of buildings with different orientations, forests, and oceans, are also presented in Figure 1.
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3.2. Extraction Results Using Model-based Decomposition

Figure 2 demonstrates the decomposition results of the R5CD, where Figure 2a–e are the surface
scattering, double-bounce scattering, helix scattering, volume scattering, and the OOB scattering
components, respectively. As noticed, volume scattering is the dominating contribution in the total
power for natural areas, and surface scattering is identified to be dominating for the majority of the
water pixels. On the one hand, from Figure 2b, it is obvious that AABs have strong double-bounce
scattering power, whereas they do not exist in natural areas and OOBs. Therefore, AABs can be
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discriminated from the natural areas using the double-bounce scattering power. On the other hand,
it can be seen from Figure 2e that the R5CD generates promising OOB scattering, which is reflected
in the brightness of OOBs with different orientations. Moreover, the imperceptible OOB regions
are detected, and the contours of OOBs are veraciously highlighted, especially for UAVSAR data.
The above observations signify that the OOB scattering is valid and has the potential to extract OOBs.
Notice that the differences between helix scattering powers of built-up areas and natural areas are
very small. Therefore, it is not easy to discriminate buildings from natural areas using the helix
scattering power.
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Figure 2. Decomposition results of the refined five component decomposition (R5CD). (a)–(e) Surface,
double-bounce, volume, helix, and oblique orientation (OOB) scattering for GF-3 data, respectively.
(f)–(j) Surface, double-bounce, volume, helix, and OOB scattering for UAVSAR data, respectively.

There are two thresholds involved in the R5CD-based method, i.e., TD (threshold of double-bounce
scattering power) and TO (threshold of OOB scattering power). In order to ascertain these two thresholds,
four different patches (the red rectangle areas in Figure 2) including OOBs (patch A), AABs (patch B),
vegetation (patch C), and oceans/wetlands (patch D) are selected, and the averaged magnitudes of
double-bounce and OOB scattering power of these patches are given in Tables 3 and 4, respectively.
On the one hand, it can be found from Tables 3 and 4 that there is an obvious segmentation of
double-bounce scattering power for AABs and other areas. Accordingly, TD is experimentally chosen
as 0.5 and we believe it is suitable for both GF-3 and UAVSAR data in this work. On the other hand,
since the OOB scattering mainly occurs in OOBs and vanishes in other land covers, TO can be set to
0 directly.

Table 3. Averaged magnitude of scattering power for GF3 data.

Patch A Patch B Patch C Patch D

Double-bounce
Scattering 0.1612 1.2198 0.0501 0.0096

OOB Scattering 0.0814 0.0002 0.0001 0.0001

Table 4. Averaged magnitude of scattering power for UAVSAR data.

Patch A Patch B Patch C Patch D

Double-bounce
Scattering 0.1930 1.0593 0.0446 0.0098

OOB Scattering 0.0936 0.0022 0.0092 0.0015

According to the above thresholds, the extraction results of buildings are given in Figure 3. It is
obvious that the AABs are veraciously extracted and the shapes of buildings are highlighted. The
extraction results of OOBs are given in Figure 3b. Although there are a few false alarms, most of OOBs
are well identified owing to the intense scattering characteristics in the OOB scattering. By combining
the above two individual results, the entire extraction of buildings is generated in Figure 3c. Thereinto,
some morphological processing, such as isolated point removal, hole filling, and density screening [3]
are implicitly involved. Through the procedure, it can be seen that there are fewer holes and noises.
Despite some falsely extracted natural targets with strong textures, buildings are mostly retained with
clear shapes and contours. This explains that the double-bounce and OOB scattering power provide
an effective way to extract the buildings.
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3.3. Extraction Results Using Scattering Feature

In order to validate the effectiveness of the proposed scattering feature, the magnitudes of
1/

∣∣∣ρHHVV
∣∣∣ and FU are given in Figure 4. Compared with 1/

∣∣∣ρHHVV
∣∣∣, it can be seen that both AABs and

OOBs have a deeper color with FU, indicating that the buildings are better highlighted. Moreover,
by incorporating the matrix elements, some natural areas, such as valleys and wetlands (outlined by
the red circles) are further suppressed, thus the difference between buildings and natural areas becomes
much larger. In this case, buildings can be easily discriminated from natural areas. These observations
demonstrate that FU performs much better than 1/

∣∣∣ρHHVV
∣∣∣ and is capable of distinguishing buildings.

To quantify the results and determine the discriminating threshold TU, the feature histograms of
the same four patches are shown in Figure 4. It can be observed that buildings exhibit distinct FU versus
natural areas, which is reflected in the histogram curves of buildings, which are obviously separated
from those of natural areas. In this case, the discriminating threshold can be easily determined using
the histogram thresholding method (HTM) [3]. The HTM allows that if two peaks on the histogram can
be found, the bottom of the valley between the peaks can be regarded as a threshold which separates
the feature population into two distinctive subpopulations. Accordingly, the discriminating threshold
is finally set as 1.0 and 1.3 for GF-3 and UAVSAR data, respectively (the black dots in Figure 4f,h).
Notice that the histogram curves of OOBs and AABs are almost overlapped. This further explains
that FU can effectively characterize the urban scattering. Meanwhile, for 1/

∣∣∣ρHHVV
∣∣∣, there still exist

unpleasing intersections among the histogram curves (refer to Figure 4b,d). Moreover, compared with
FU, the magnitude differences between buildings and natural areas are not remarkable, which restricts
its applicability.



Remote Sens. 2019, 11, 1379 11 of 15
Remote Sens. 2019, 9, x FOR PEER REVIEW  11 of 16 

 

 

Figure 4. Magnitudes of proposed scattering feature and histograms of selected patches. (a)–(b) The 

magnitudes and histograms of HHVV1| |ρ  for GF-3, respectively. (c)–(d) The magnitudes and 

histograms of HHVV1| |ρ  for UAVSAR, respectively. (e)–(f) The magnitudes and histograms of UF  

for GF-3, respectively. (g)–(h) The magnitudes and histograms of UF  for UAVSAR, respectively. 

To quantify the results and determine the discriminating threshold UT , the feature histograms 

of the same four patches are shown in Figure 4. It can be observed that buildings exhibit distinct UF  
versus natural areas, which is reflected in the histogram curves of buildings, which are obviously 
separated from those of natural areas. In this case, the discriminating threshold can be easily 
determined using the histogram thresholding method (HTM) [3]. The HTM allows that if two peaks 
on the histogram can be found, the bottom of the valley between the peaks can be regarded as a 
threshold which separates the feature population into two distinctive subpopulations. Accordingly, 
the discriminating threshold is finally set as 1.0 and 1.3 for GF-3 and UAVSAR data, respectively (the 
black dots in Figure 4f,h). Notice that the histogram curves of OOBs and AABs are almost 
overlapped. This further explains that UF  can effectively characterize the urban scattering. 

Meanwhile, for HHVV1| |ρ , there still exist unpleasing intersections among the histogram curves 

(refer to Figure 4b,d). Moreover, compared with UF , the magnitude differences between buildings 
and natural areas are not remarkable, which restricts its applicability. 

Using the discriminating threshold, built-up areas can be extracted and the results are given in 
Figure 5. On the whole, the feature-driven method generates visually pleasing results, reflecting in 
that the contours of buildings are obviously sketched and local details are well preserved. Moreover, 
results from GF-3 and UAVSAR data verify that the scattering feature is robust to different sensors 
and wavebands. 

Figure 4. Magnitudes of proposed scattering feature and histograms of selected patches. (a)–(b)
The magnitudes and histograms of 1/

∣∣∣ρHHVV
∣∣∣ for GF-3, respectively. (c)–(d) The magnitudes and

histograms of 1/
∣∣∣ρHHVV

∣∣∣ for UAVSAR, respectively. (e)–(f) The magnitudes and histograms of FU for
GF-3, respectively. (g)–(h) The magnitudes and histograms of FU for UAVSAR, respectively.

Using the discriminating threshold, built-up areas can be extracted and the results are given in
Figure 5. On the whole, the feature-driven method generates visually pleasing results, reflecting in
that the contours of buildings are obviously sketched and local details are well preserved. Moreover,
results from GF-3 and UAVSAR data verify that the scattering feature is robust to different sensors
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3.4. Fusion Results and Comparison

Although the two aforementioned implementations achieve relatively good extraction results,
some risks needed to be noticed. On the one hand, omissions are inevitable, and they exist in different
parts for different extracting processes. On the other hand, the extraction results are susceptible to
the determined thresholds since the focused problem is a binary segmentation. Therefore, in order to
mitigate the risks and to improve the extraction results, the HX–MRF image fusion is further applied.
The fusion results for GF-3 and UAVSAR data are shown in Figures 6 and 7. For comparison, three
state-of-the-art methods, i.e., Azmedroub’s method [4], Xiang’s method [2], and Quan’s method [3]
are involved.
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Overall, all the methods are capable of detecting buildings. Nevertheless, we can see that the
proposed method achieves better visual results, especially with more OOBs (red rectangle areas in
Figure 6) and is able to preserve much more detailed information. Notice that the OVS is significantly
present in the red rectangle areas according to the Pauli color-coded image where significant green
tones can be found. However, through applying other methods, a large number of OOBs in these
areas are misclassified as non-buildings. The reasons are given as follows. In Azmedroub’s method,
there exists severe scattering ambiguity between OOBs and natural areas because apart from the
helix scattering, the involved Yamaguchi four-component decomposition assumes that the overall
cross-polarization components originate from the volume scattering, which leads to considerable
misdetection of OOBs. For Xiang’s method, on the one hand, the cross-scattering model designed for
OOBs is data-dependent. On the other hand, the intense cross-polarization power in OOBs actually
impairs the discriminating ability of the employed polarimetric coherence. With regard to Quan’s
method, the OOBs are mixed up with some natural areas since they also have very high amounts of
depolarization and scattering randomness. In addition, the depolarization and scattering randomness
of OOBs are susceptible to the incidence angle and wave frequency, which restrict the applicability of
the extractors.

Moreover, notice that the omissions that appear in the aforementioned extraction results are
eliminated (refer to the red arrows in Figures 6d and 7d) and more building information is preserved
after the fusion. These improvements benefit from the HX–MRF, which takes spatial correlation into
consideration and produces good fusion results.

To quantitatively evaluate the extraction performance, several indices, i.e., extraction probability
(EP, equivalent to producer’s accuracy (PA)), miss extraction (ME), false alarm (FA), correct rejection
(CE), user’s accuracy (UA), overall accuracy (OA), and Kappa Coefficient (KC) [3] are utilized for
comparison. Accuracy assessment results for GF-3 and UAVSAR data using the aforementioned
methods are listed in Table 5. We can see that the other three methods cause obvious reductions in
accuracy due to the underestimated buildings. Meanwhile, the proposed method improves the overall
accuracy and kappa coefficient to a great extent. For instance, compared with the results using Xiang’s
method and Quan’s method, after the fusion, the kappa coefficient is, respectively, increased by 0.246
and 0.163 with respect to UAVSAR data.

Table 5. Accuracy of extracted buildings from different methods.

Method Sensor EP/PA (%) ME (%) FA (%) CR (%) UA (%) OA (%) Kappa

Azmedroub (2016) GF-3 52.86 47.14 6.43 93.57 85.40 83.57 0.623
UAVSAR 49.81 50.19 3.94 96.06 80.20 78.32 0.586

Xiang (2017) GF-3 46.32 53.68 5.58 94.42 81.35 80.57 0.596
UAVSAR 50.54 49.46 3.53 96.47 82.65 79.54 0.615

Quan (2018) GF-3 67.64 32.36 6.32 93.68 88.73 87.58 0.674
UAVSAR 65.64 34.36 3.66 96.34 87.58 86.42 0.657

Proposed GF-3 81.34 18.66 6.21 93.79 91.68 91.86 0.835
UAVSAR 86.06 13.94 4.51 95.49 97.43 93.54 0.862

From all the precedent results and analysis, it can be concluded that the proposed method, using
the refined model-based decomposition and scattering feature along with the HX–MRF image fusion
algorithm is the best choice for building extraction.

4. Conclusions

Traditional methods suffer from the deficiencies of inappropriate scattering modeling and
non-robust feature construction for PolSAR building extraction. In this paper, we propose a robust
building extraction method for PolSAR images using refined model-based decomposition and scattering
variety-driven feature. The refined model-based decomposition is proposed according to the fact



Remote Sens. 2019, 11, 1379 14 of 15

that the cross-polarization components are much higher than co-polarization components, which can
significantly reduce the OVS and depict the OOB scattering mechanism. While for the scattering
variety-driven feature, it is constructed based on the scattering variety among different land covers
and is capable of highlighting the building scattering characteristics. In order to mitigate the
threshold-dependent risks, the HX–MRF image fusion algorithm is adopted to further improve
the extraction results. Qualitative and quantitative evaluations on different data demonstrate
that the proposed method is able to extract buildings with high accuracy and outperforms other
state-of-the-art methods.
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