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Abstract: Unmanned aerial vehicles (UAV) are increasingly used for spatiotemporal monitoring of
invasive plants in coastal wetlands. Early identification of invasive species is necessary in planning,
restoring, and managing wetlands. This study assessed the effectiveness of UAV technology to identify
invasive Phragmites australis in the Old Woman Creek (OWC) estuary using machine learning (ML)
algorithms: Neural network (NN), support vector machine (SVM), and k-nearest neighbor (kNN).
The ML algorithms were compared with the parametric maximum likelihood classifier (MLC) using
pixel- and object-based methods. Pixel-based NN was identified as the best classifier with an overall
accuracy of 94.80% and the lowest error of omission of 1.59%, the outcome desirable for effective
eradication of Phragmites. The results were reached combining Sequoia multispectral imagery (green,
red, red edge, and near-infrared bands) combined with the canopy height model (CHM) acquired
in the mid-growing season and normalized difference vegetation index (NDVI) acquired later in
the season. The sensitivity analysis, using various vegetation indices, image texture, CHM, and
principal components (PC), demonstrated the impact of various feature layers on the classifiers.
The study emphasizes the necessity of a suitable sampling and cross-validation methods, as well as
the importance of optimum classification parameters.

Keywords: Phragmites australis; unmanned aerial vehicles; invasive; machine learning; object-based
classifiers

1. Introduction

The loss and degradation of coastal wetland vegetation due to anthropogenic activities and climatic
changes motivate researchers to seek sustainable and efficient management strategies. The ability
to understand the dynamics of wetland vegetation is hindered by access limitations due to the risk
of damaging habitats and species, fine scale variations of vegetation and hydrology [1]. Mapping,
identification, and classification of plant types and species are vital in planning, restoring, and managing
coastal wetlands. Capturing the distribution of alien plant species and particularly controlling the
invasive ones is a significant challenge that wetland managers and policy makers face [2]. Early
identification and accurate information about the distribution of invasive species are necessary to
anticipate, assess, control, and mitigate their negative impacts on the existing ecosystem health [3,4].
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These alien invasive plants make an impact on the composition and function of both natural and
managed ecosystems with substantial economic cost in response to losing or degrading land use
and eradication efforts [5,6]. The success of an invasion of alien species depends on the plant’s
ability to invade a new region and the susceptibility of the ecological system which is invaded [7].
Blackburn et al. [8] dissect the plant invasion process into several stages, namely, transport, introduction,
establishment, and spread. During this invasion process, an alien species should pass sequential
barriers (e.g., geographical, survival, reproductive, and dispersion) to enter, survive, and spread in
a new territory. The invasive species which successfully pass the barriers, compete for space and
nutrients in the ecosystem and alter the soil structure and nutrient cycles [9,10].

Phragmites australis (later in the text as Phragmites) is one of the most widespread plants globally
and it is seen as a threat to wetlands worldwide [11]. Phragmites is a tall erect perennial grass that
aggressively dispersed over eastern North America during the last two decades [10–13]. The Phragmites
haplotype M, which was introduced from Eurasia, has been rapidly replacing its native types and
other local plants in most North American wetlands [14]. They disperse to new areas predominantly
by seed germination and spread asexually by stolons or rhizomes around the existing patches [15,16].
Dense Phragmites patches reduce the quality of habitats for fish and bird species, especially due to
drying out the littoral zones and affecting sedimentation [17,18].

Remote sensing is a widely used technology that is capable of providing spatial and temporal
information about invasive species in wetlands [14]. As remote sensing data analyses become more
advanced, data integration methods such as multi-sensor and temporal data fusion become prevalent in
enhancing the extraction of information. The tradeoffs among spatial extents, and spatial and spectral
resolutions of imagery, affect the quality of information. Several studies fostered hyperspectral data with
their continuous spectral band configuration, which provide more details on the spectral characteristics
of plants than multispectral imagery [19]. For example, the Compact Airborne Spectrographic Imager
(CASI)-1500 and the Airborne Hyperspectral Scanner (AHS) sensors, used to identify the invasive
plant Spartina densiflora in a wetland, showed promising results using four spectral target detection
algorithms [20]. The hyperspectral imagery of the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) was found to be capable of mapping invasive plants distributed over large areas with high
overall accuracy [21], although another study suggested that AVIRIS data were not appropriate to
map small and highly heterogeneous areas comprised of invasive plants due to the inadequate spatial
resolution [22].

In recent years, many studies have stated the necessity of high spatial resolution imagery to
map wetlands to compensate for the spectral similarity among plant types [22–25]. The commercially
available high-resolution (sub-meter spatial resolution, e.g., WorldView and QuickBird) satellite sensors
provide more spatially detailed images with a small geometric distortion [26]. A classification study
conducted to distinguish emergent invasive plants in a diked wetland in the western basin of Lake Erie
using QuickBird (2.4 m spatial resolution) images demonstrated the ability of this sensor to distinguish
long and narrow patches of invasive plants (Phragmites australis and Typha) [27], while the hyperspectral
Hyperion imagery (30 m spectral resolution) was not successful in identifying the small and linear
arrangements of Phragmites australis in the west coast of the Green Bay shoreline [28]. Distribution
maps of the invasive plant Hakea sericea monitored with WorldView 2 images showed a high overall
accuracy [29] although the maps were not suitable to detect Hakea sericea at early stages of invasion
due to the insufficient spatial resolution of the images. A major drawback of using a commercially
available high-resolution satellite data is the high cost of the images and pre-ordering process related
to data acquisition. In recent years, the use of an unmanned aerial vehicle (UAV) for detection of
invasive species is seen as an economical way of obtaining remote sensing images at any desired time.

UAVs can acquire very high spatial resolution data (~10 cm) with a user defined flight plan and
flexible revisit time [30]. In addition, UAVs allow flying at different heights which can be utilized to
adjust the spatial resolution of the images [31]. Consequently, very high spatial resolution imagery
captured by UAVs became practical in natural resource management to monitor invasive plant species
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in several different ecosystems [31–33]. Several recent studies [22,31–36] have proved that the use
of UAV-borne remote sensing is an effective method to classify vegetation. Pande-Chhetri [37] used
UAV data to classify wetland vegetation with pixel-based and hierarchical object-based classification
approaches. The object-based classification with a support vector machine (SVM) classifier resulted in
the highest overall accuracy in the study. While searching for the optimum method to discriminate
invasive Lantana camara from the forested landscape, Nipadhkar et al. [32] found that the object-based
classification provided the better visual organization of plant classification and performed satisfactorily.
Müllerová et al. [22] emphasized the importance of the temporal flexibility in data collection with
UAVs over Pleiades satellite images in monitoring invasive plants. The best classification accuracy
for invasive Heracleum mantegazzianum (giant hogweed) was reached during the flowering time using
the object-based classification approach. This study highlighted the importance of collecting data at
the correct time of the growing season. Samiappan et al. [33] used five band UAV images to map
invasive Phragmites australis in a tidal marsh to identify the impact of features such as normalized
difference vegetation index (NDVI), soil adjusted vegetation index (SAVI) and morphological attribute
profiles (MAPs). Further, a canopy height model (CHM) generated using the digital terrain model
(DTM) and the digital surface model (DSM) derived from UAV data becomes useful among remote
sensing researchers [38–40]. The use of UAV and light detection and ranging (LiDAR) derived CHM
was identified as an important feature to improve the accuracy in vegetation classification [41].

The goal of this study is to explore the effectiveness of UAVs in mapping Phragmites, in the Old
Woman Creek (OWC) estuary, located in the Lake Erie region in Ohio, using machine learning (ML)
classifiers: k-nearest neighbors (kNN), support vector machine (SVM), and neural network (NN), and
their possible advantages over the more traditional approach, maximum likelihood classifier (MLC)
using pixel- and object-based classification methods. The objectives of the study are: (i) identify the
best machine learning classification algorithm to detect Phragmites as well as to compare it with the
parametric MLC; (ii) explore the impact of different feature layers derived from the UAV data on
the performance of the classifiers, including various vegetation indices from mid- and late-growing
season, image texture, principal components (PC) and the canopy height model (CHM); (iii) assess the
optimum use of sample design and cross-validation sampling techniques. The results of this study will
be helpful to understand the dispersion of Phragmites in the OWC estuary and to plan the eradication
strategies efficiently.

2. Materials and Methods

2.1. Study Area

The study took place at Old Woman Creek (OWC), a natural estuary located at the southernmost
point (41◦22′N, 82◦30′W) of the Lake Erie shoreline near the town of Huron, Ohio (Figure 1). The OWC
extends approximately 2.1 km2 from the southern shore of Lake Erie [42]. It is one of (the) 29 areas
protected under the National Estuarine Research Reserve System (NERRS), and it is known for high
biodiversity and unique water regime [43]. The barrier beach controls the connection between the
OWC estuary and Lake Erie. It closes the mouth of the beach during times of high rainfall and opens
it during summer when the water level changes by seiches and storm surges of Lake Erie [42,44].
The extent and duration of the water level fluctuation directly influence the variety of vegetation in the
estuary [43].
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Figure 1. Study area located on the southern shoreline of Lake Erie, Ohio, USA [45].

The plant life forms in OWC range from terrestrial plants, which tolerate occasional submergence,
to the plants completely adapted to survive only in an aquatic environment [44]. Over 800 terrestrial
and aquatic species of vascular plants have been identified in its watershed [46]. While increased
water levels transform several former wetlands to shallow open-water areas with a small amount of
aquatic vegetation [42], the reduction of the water level, on the other hand, results in the increase of the
distribution of invasive plants in OWC [43]. Currently, Phragmites is observed as the most dominant
invasive plant type in OWC [47] and Lythrum salicaria (purple loosestrife), Myriophyllum spicatum
(Eurasian water-milfoil), Limnobium laevigatum (frogbit), and Alloaria petiolata (garlic mustard) are also
being observed. Phragmites spreads rapidly toward the south along the banks of the creek during
low water level periods [44]. Dense patches of invasive Phragmites were observed near the estuary
mouth and on both sides of the road running through the site (Figure 1). Phragmites is often seen within
several cattail patches on the site. The study site is surrounded by tall trees on the banks of the estuary.
The star-shaped island covers a larger area of the study site, and the rest is covered with aquatic plants
and water. The aquatic area is mostly covered with floating and emerging plants. Access is restricted
to most of the south, west, and southwest sections of the estuary with densely grown, submerged, and
floating plants (Figure 1).

2.2. Field Data Collection

UAV imagery over the study site was acquired on two days: 8 August 2017 (mid-growing season),
and 18 October 2017 (late-growing season). The former image was the main image used in the process
of classification supported by vegetation indices derived from the October image. The UAV used in
this study was a SenseFly eBee Ag model [48]. The weight of the eBee is approximately 700 g and
the flight time was between 25 and 30 min. Flight planning was performed with the eMotion 2 [49]
software package. The ceiling of the flights was set at 120 m. Lateral and longitudinal overlaps of the
flight plans were set to 75%. The flight radius was set to 880 m. The flights were carried out in clear
weather conditions with wind speed between 9 and 18 km h−1.

A Parrot Sequoia camera attached to the UAV, with green (G) (530–570 nm), red (R) (640–680 nm),
red edge (RE) (730–740 nm), and near-infrared (NIR) (770–810 nm) spectral bands, was used to acquire
the images. The spatial resolution of the images was 13.90 cm. One additional flight was conducted
using the SONY DSC WX 220 RGB (SONY Corporation of America, New York, USA) camera on the
same day, 8 August 2017. The purpose of acquiring images with the RGB camera was to use it as a visual
aid to identify plants in the estuary, which were clearly distinguished with better spatial resolution
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of 3.43 cm, as well as in the process of validation. The RGB camera was not used in the classification
process as it lacked the NIR band.

In addition to the UAV data acquisition, a handheld PSR 3000 Spectral Evolution spectroradiometer
was used to collect in situ spectral measurements of five wetland plants of interest: lotus, lily, duckweed,
Phragmites, and cattails in the period from 31 July 2017, to 21 August 2017. The spectroradiometer
covers the wavelength range from 350 nm to 2500 nm. Spectral resolutions of the instrument are 3 nm
from 350 nm to 700 nm, 8 nm from 700 nm to 1500 nm, and 6 nm from 1500 nm to 2100 nm of the
spectral range [50].

To recognize critical regions on the hyperspectral signatures and to select vegetation index which
would possibly enhance the process of classification, thirty averaged spectral measurements, conducted
at approximately 0.5 inches above the leaves, were taken over various locations for each selected plant
type. DARWin SP [50] was used to process the data.

2.3. Study Workflow

2.3.1. Image Pre-Processing

Pre-processing of UAV images included geotagging and mosaicking of the raw images as well as
generation of digital surface model (DSM) and digital terrain model (DTM). UAV images taken by
the cameras were geotagged with eMotion 2 software using the log files generated by eBee during
each flight. The geotagged images were orthorectified and mosaicked as reflectance images using
Pix4Dmapper Pro [51]. The projected coordinate system was set to WGS 1984 UTM Zone 17 N. In order
to combine data from different dates, the Sequoia generated multispectral image taken on 18 October
was georegistered to the image taken on 8 August. The registration was performed with the image
registration workflow tool of ENVI 5.4 using six reference points on each image. The RMSE error
between the two images was 1.32 pixels.

The area with wetland vegetation was extracted with two masking steps. First, the areas that
consisted of water and built-up features were masked by using NDVI and its threshold of 0.22. Second,
the vegetated area with the height over 4 m was masked to remove trees and tall vegetation. Among
the selected wetland plant types, Phragmites are the tallest plant type which grows up to maximum
heights of 3–3.5 m in the estuary.

2.3.2. Derived UAV Products

Several feature layers were derived from UAV products: various band indices, texture images,
CHM, and PC. They were added to the original UAV bands (G, R, RE, and NIR) in the process of
classification one by one to explore if and how each layer might enhance the process. The purpose of
this sensitivity analysis was to select one feature layer within each feature group, which produced the
lowest errors of omission for Phragmites, and then to combine them and monitor the trends and possible
improvements in accuracy assessments. The goal was to reduce not only the overall accuracy, but also
the omission errors for Phragmites, an important criterion for successful eradication of Phragmites.

Band Indices

Six simple band ratios and three normalized band indices were selected based on the differences
between the field hyperspectral signatures of the five wetland plants (Table 1). The band indices were
calculated for the images taken on both days, 8 August and 18 October, to explore the effect of their
temporal changes on classification. Due to the different phenology state of plants and, thus, better
separability of spectral signature between the plants, data acquired in the late-growing season, may
enhance the classification process [22].
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Table 1. Normalized and simple band indices used in the classification methods.

Band Index Equation Reference

NDVI (NIR—Red)/(NIR + Red) [52]
NDRE (NIR—Red Edge)/(NIR + Red Edge) [53]
NDGI (NIR—Green)/(NIR + Green) [54]

SR1 NIR/Red [55]
SR2 NIR/Green [56]
SR3 NIR/Red Edge [57]
SR4 Red Edge/Red [58]
SR5 Red/Green [57]
SR6 Green/Red Edge [58]

NDVI = Normalized Difference Vegetation Index; NIR = Near-Infrared; NDRE = Normalized Difference Red Edge;
NDGI = Normalized Difference Green Index; SR = Simple Ratio.

Image Texture

Chavez [59] showed that the spatial distribution of spectral variability of vegetation is higher
within the NIR band than within the visible (RGB) spectral region over an area. Thus, the NIR band
of the 8 August image was used to calculate the texture values in the current study. The gray level
co-occurrence matrix (GLCM) tool within ENVI 5.4 software (Harris Geospatial Solutions, Broomfield,
Colorado, USA) was used to calculate eight GLCM measures: mean, contrast, homogeneity, second
moment, correlation, dissimilarity, entropy, and variance. Since the focus was to map Phragmites, which
is a thin, erect plant, the kernel size was set to 3 × 3 pixels.

Principal Components

The principal component transformation was performed with the forward principal component
analysis (PCA) rotation tool. PCA converts the original multispectral bands to a new set of bands
producing the highest variance in the first PCA band, while the variance is reduced sequentially from
band 1 to band 4 [60].

Canopy Height Model

DSM represents the elevations of the objects on the ground and DTM indicates the elevation of
the bare land [61]. The canopy height model (CHM) was created by subtracting DTM from DSM
using Bandmath tool in ENVI 5.4. CHM indicates the absolute heights of the objects within the image
extent. The spatial resolutions of DSM and DTM created with Pix4D were 13.04 cm and 65.02 cm. Thus,
both DSM and DTM were resampled to 13.90 cm spatial resolution to keep the pixel size consistent
between images.

2.3.3. Classification

Image classification was performed using pixel- and object-based classifiers. The ENVI 5.4 software
package was used for pixel-based classifications, and Trimble eCognition Developer 9 [62] was used to
perform object-based classifications. All image bands were scaled to the pixel values ranging between 0
and 100 before the classification to be able to generate meaningful objects [63]. The images were classified
into five classes: Phragmites, cattails, lotus, lily, and duckweed. In this study, the MLC, SVM, and NN
classifiers were used in the pixel-based approach, and two classifiers, SVM and kNN, were used in the
object-based method. All algorithms used in the study, except the parametric MLC, are non-parametric
ML classifiers and make no assumptions on the data distribution. The ML classifiers were compared to
the traditional pixel-based MLC to explore possible advantages of ML algorithms [64]. The feed forward
NN classification was performed by the Neural Net function. The values were selected as suggested in
Ndehedehe [65]. The NN classifier was selected as it could learn complex patterns in training data,
generalize the noise of data, and perform classification with a lower number of samples [66]. The SMV
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classifier was used within both the pixel- and object-based methods. Radial basis function (RBF) was
used with the SVM classifier as it performed better than other kernels [67,68]. Several studies suggested
that SVM classifies image accurately with a small number of training samples [69–71]. The kNN classifier
is a widely used object-based classification algorithm and one of the simplest ML classifiers.

The parameters of the non-parametric classifiers were optimized before the process of
classification [64,69] (Table 2). Within the object-based classification, the image was first separated into
segments (object) with 10, 20, 40, 50, 75, and 100 scale parameters and then classified into the five classes
as explained below [72]. The segment boundaries were examined after each segmentation to ensure
that segments consisted of only one plant type. After a visual comparison among segmentations, the
best scale parameter for segmentation of the image was identified as 40. Several segmentations were
performed with fixed 40 scale parameter to find the best compactness parameter of 0.5 which resulted
in the most realistic shapes of segment boundaries. The higher value of the shape parameter decreases
the consideration of spectral information during segmentation. Consequently, the shape parameter
was set to 0.1 to maximize the consideration of the band spectral information. The weight values for
each image layer were set to 1, to consider all the bands as equally important in the classification.

Table 2. Parametrization using four original bands for pixel- and object-based classification methods.

Type Classifier Parameter Value

Pixel-based

SVM
C 50

Gamma 0.25

NN

TTC 0.20
TR 0.20
TM 0.90

RMSEC 0.01
NHL 1

NI 1000

Object-based SVM
C 100

Gamma 0.001

kNN k 2

TTC = Training threshold contribution; TR = Training rate; TM = Training momentum; RMSEC = Root mean square
exit criteria; NHL = Number of hidden layers; NI = Number of iterations.

The UAV image acquired on 8 August 2017 was classified at three different levels of complexity
using the proposed classifiers considering: (i) the four original bands (G, R, RE, NIR) (4sq); (ii) the
sensitivity analysis where one feature layer at a time was added to 4sq, including information from the
October image; and (iii) the combination of representative feature layers with the best performance
added to 4sq. The overall classification accuracy, kappa value, and errors of omission and commission
for the Phragmites class were used to compare the classifiers. The optimum set of accuracy parameters
for each classifier was decided to be the one with high overall accuracy (OA) and with the least error of
omission, a critical point for eradication of invasive species and wetland management. The workflow
is shown in Figure 2.
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2.3.4. Sample Design

Stehman and Czaplewski [73] defined the sampling design as the protocol that should be followed
during the selection of sampling units as training and validation regions of interest (ROIs). A stratified
random sampling design was used to create training and validation data sets in this study. Several
patches were chosen for each plant type, and then ROIs were randomly selected within each patch.
The ROIs were created based on the GPS coordinates recorded in the field and additional ROIs were
visually selected from the RGB image.

The selection of ROIs started with one pixel, and the rest of the pixels was calculated by the Grow
ROIs from Neighboring Pixels function, a spatially smooth technique [73]. The one-pixel ROIs were
allowed to grow, using the criteria of the within-two standard deviations of pixel values, up to the
maximum number of eight neighboring pixels [74]. The ROIs consisted of at least four pixels after
applying the Grow ROIs function. The number of training data could heavily impact the classification
accuracy [75]. In this study, the number of ROIs for each plant type was selected according to the
proportional area covered with each plant type. Forty-eight ROIs were selected for each lotus, lily,
and cattails, as these plants were most abundant. The number of ROIs selected for duckweed and
Phragmites were 39 and 33, respectively.

In order to minimize the uncertainties that were observed in this study while examining the
impact of different sampling designs and different numbers of ROIs on the overall accuracy, the
three-fold cross-validation approach was used to assign ROIs to the classification and validation
processes. The spatial distribution of ROIs was kept equal when splitting the ROIs into three sets.
Two sets of ROIs were used as classification data and the remaining set as validation data through the
iterative process. The classification accuracy results were averaged after the process. Although the
k-fold cross-validation is computationally extensive, it is most suitable when the study aims to find the
precise error rates of the classifiers [76]. This method compensates for errors that could arise due to a
smaller number of samples used in the classification and validation.

3. Results

The image mosaics created for the study area for August (called 4sq hereafter) and October using
Sequoia camera (Figure 3a,b) show senescence of some wetland plants in October. This temporal
variation is critical to derive NDVI from the October image (NDVIOct) and to improve the classification
results, as shown below. The RGB image (Figure 3c) shows more detail and was useful as supplementary
data in the ROI collection and validation processes. Most of the shaded areas, especially in the Sequoia
images, are removed in the process of masking, as most of the shadows were over water, roads or
within trees.
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Figure 3. Unmanned aerial vehicle (UAV) images using (a) Sequoia camera on 8 August 2017; (b)
Sequoia on 18 October 2017 (false colors near-infrared (NIR) band in red, red band in green, red edge
(RE) band in blue in both images); and (c) RGB camera taken on 8 August 2017 (true color image).

Distinctive differences between the plants’ spectral signatures, collected by the hand-held
spectroradiometer, are observed in NIR and RE spectral ranges where lotus exhibits the highest
and Phragmites the lowest values (Figure 4). In the green spectral region, the spectral signal is similar
between cattails, lotus, and lilies, somewhat higher for duckweeds and relatively low for Phragmites.
A similar trend is observed in the red spectral range except for lotus whose reflectance decreases
and becomes almost identical to the reflectance of Phragmites. The Phragmites signature is relatively
distinctive from other plants as it keeps similar values in red and green and the lowest values in
NIR/RE regions, which is expected given the earthy color of the plant. In particular, the similarity of
the reflectance in the red and the dissimilarity in the NIR bands between Phragmites and lotus is in
accordance with our findings shown below that NDVI index perform best to differentiate Phragmites
and lotus.
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3.1. Pixel-Based Classification

The best results for 4sq are attained with the SVM classifier (OA = 90.47%) and then with MLC
and NN are 88.23% and 84.58%, respectively (Table 3). While OA reaches relatively high values for all
classifiers, the class classification accuracy (i.e., correctly classified percentage per class) is considerably
lower for Phragmites and lotus than other plants, 82.42% and 82.35%, respectively (Table 3). It is
observed from the results that Phragmites are commonly misclassified as lotus and to a lesser extent
as cattails, 15.99% and 1.59%, respectively, and that 1.15% of cattails and 8.89% lotus are classified
as Phragmites. The errors of commission (CE) and omission (OE) are relatively high for Phragmites
(CE = 15.68% and OE = 17.58%, respectively).

Table 3. Accuracy assessment for each class of the 4sq image. Misclassification among Phragmites,
cattails, and lotus, and overall classification accuracy and kappa values for each classifier (CE = errors
of commission; OE = errors of omission).

Class Class Accuracy % CE % OE %

Phragmites 82.42 15.68 17.58
Cattails 98.28 2.70 1.72
Lotus 82.35 16.95 17.65
Lily 90.51 8.90 9.49

Duckweed 97.83 4.64 2.17

Class Commission (Phragmites) % Omission (Phragmites) %

Cattails 1.15 1.59
Lotus 8.89 15.99

Classifier OA % Kappa

NN 84.58 0.81
SVM 90.47 0.88
MLC 88.23 0.85

Although differences between spectral signatures are observed in Figure 4, the UAV-derived NDVI
values between Phragmites, cattails, and lotus do not differ significantly from each other in August
(Table 4). Thus, as expected, the NDVI feature layer from August was found not to be beneficial to
the classifications and it was excluded from further analysis. The reduction in NDVI from August to
October is greater for cattails and lotus compared to Phragmites as suggested by the Tukey–Kramer
test (Table 4). Nevertheless, NDVIOct is statistically different among the plants and it improves the
classifications (Table 5). This seasonal trend was observed for all vegetation indices as shown in Table 5.

Table 4. Results of ANOVAs performed among Normalized Difference Vegetation Index (NDVI) values
of Phragmites, cattails, and lotus generated for the 8 August and 18 October images.

Date
ANOVA Test

A p-Value Mean NDVI Value

8 August 0.05 0.26 Phragmites (0.76), Cattails (0.77), Lotus (0.81)
18 October 0.05 0.00 Phragmites (0.45), Cattails (0.23), Lotus (0.12)

Tukey Kramer Test (Absolute Difference/Critical Range)

18 October
Phragmites vs. Cattails 34.39/5.84
Phragmites vs. Lotus 14.78/5.84

Cattails vs. Lotus 19.61/5.84
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Table 5. Overall accuracy (OA), kappa value, errors of commission (CE) and omission (OE) for
Phragmites class (Ph) for the case when each layer is separately stacked to 4sq (pixel-based classification
using support vector machine (SVM)).

Feature Type Layer OA % Kappa CE % (Ph) OE % (Ph)

Band Indices (8 October)

NIR/Green 92.29 0.90 4.00 20.69
NIR/Red 90.97 0.89 13.85 19.79

NDVI 93.43 0.92 4.86 5.56
NDGI 91.14 0.89 9.80 20.69
NDRE 92.57 0.91 8.16 22.41

NIR/Red Edge 91.71 0.90 5.88 17.24
Red Edge/Red 90.86 0.89 8.00 20.69

Green/Red Edge 90.86 0.89 8.16 22.41
Red/Green 90.22 0.88 15.62 18.37

Texture (8 August)

Mean 91.14 0.89 10.20 24.14
Variance 91.71 0.90 7.69 17.24

Homogeneity 93.14 0.91 2.08 18.97
Contrast 90.57 0.88 8.16 22.41

Dissimilarity 93.14 0.91 2.08 17.97
Entropy 91.71 0.90 2.13 20.69

Second moment 92.28 0.90 2.08 18.97
Correlation 92.57 0.91 9.80 20.69

Elevation (August 8) CHM 93.59 0.92 1.75 9.53

Principal Components
(August 8)

PC1 91.14 0.89 0.00 15.52
PC2 93.71 0.92 16.06 18.97
PC3 90.00 0.87 15.09 22.41
PC4 90.28 0.88 8.16 22.41

The SVM accuracy parameters for the sensitivity analysis of classification, where the feature layers
(band indices, texture, CHM, and PC bands) are stacked to the 4sq image one by one, are shown in
Table 5. Out of all indices used in the study, NDVIOct performs best with the highest overall accuracy
of 93.43%, the lowest error of omission of 5.56%, and second lowest error of commission of 4.86%.

Just a slight improvement of the OA values is observed when texture information is added to
4sq. While the errors of commission are considerably decreased down to 2.08% for several texture
layers, the errors of omission are increased for most of them. Variance is the only layer that results in a
somewhat, but insignificantly, lower error of omission (OE = 17.24%) when compared to the 4sq case
(OE = 17.58%, see Table 3), and thus, it was selected as the texture layer with the best contribution to
the classification. CHM performs well, resulting in high OA (OA = 93.59%) and relatively low errors of
commission and omission (1.75% and 9.53%, respectively). PCs do not contribute considerably to the
classification of Phragmites. PC1 results in somewhat, but not considerably, lower error of omission
(OE = 15.52%) than observed in the 4sq case (OE = 17.58%, see Table 3).

In summary, the sensitivity analysis suggests that each additional layer to 4sq increases OA (except
PC3 and PC4), although in many cases the increase is negligible. The lowest error of omission is
reached with NDVIOct; the second lowest error of omission for the Phragmites class is achieved by
using the CHM layer; and then negligibly lower by using PC1 and Variance (Var) layers, respectively.

The resulting classification accuracies based on the combination of the selected feature layers for
the pixel-based classifiers are shown in Table 6. Among the three pixel-based classifiers, when both
NDVIOct and CHM layers are added to 4sq, the highest overall classification accuracy with the value
94.80% and the highest kappa value of 0.93 are achieved with the NN classifier. The overall accuracy
and kappa values decrease when adding more layers (PC1 and Var) to the NN and SVM classifiers.
The maximum overall accuracy for MLC is reached for the 4sq+NDVIOct combination (93.46%), and it
decreases to 92.92% when CHM is added. The kappa values follow the trend. Any additional layer
either decreases the accuracy or produces non-realistic values for MLC (Table 6). The ML methods do
not yield considerably better results than MLC.
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Table 6. Overall accuracy (OA) and kappa value, Phragmites class classification accuracy, and errors of commission (CE) and omission (OE) for pixel-based classification
methods with feature layers stacked to 4sq image.

Classifier
4sq 4sq+NDVIOct 4sq+NDVIOct+CHM 4sq+NDVIOct+CHM+PC1 4sq+NDVIOct+CHM+PC1+Var

OA% Kappa OA% Kappa OA% Kappa OA% Kappa OA% Kappa

NN 84.58 0.81 91.26 0.89 94.80 0.93 92.96 0.91 94.68 0.93
SVM 90.47 0.88 93.43 0.92 94.58 0.93 94.33 0.93 93.12 0.91
MLC 88.23 0.85 93.46 0.92 92.92 0.91 N.A. N.A. N.A. N.A.

Phragmites Class Classification Accuracy %

NN 82.30 96.03 98.41 96.03 97.58
SVM 82.42 94.43 95.24 94.45 94.45
MLC 87.26 95.24 96.83 N.A. N.A.

CE % OE % CE % OE % CE % OE % CE % OE % CE % OE %

NN 22.53 17.70 6.06 3.97 4.51 1.59 3.13 3.97 2.96 2.42
SVM 15.68 17.58 4.86 5.56 3.03 6.76 3.03 5.55 3.03 5.55
MLC 20.58 12.74 3.62 4.76 2.22 3.17 N.A. N.A. N.A. N.A.
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Similarly, the class classification accuracies for Phragmites increase for all classifiers when
NDVIOct is added and further increase when CHM is included. Maximum values are reached
for the 4sq+NDVIOct+CHM combination for all three classifiers. The errors of omission are significantly
lowered with NDVIOct and further reduced by adding CHM for all classifiers. The lowest error
of omission is achieved with the 4sq+NDVIOct+CHM combination using NN (OE = 1.59%). MLC
performs well with the lowest error of commission among all classifiers and somewhat higher error of
omission than NN (CE = 2.22%; OE = 3.17) for the same (4sq+NDVIOct+CHM) combination (Table 6;
Figure 5). The additional PC1 and Var layers do not improve the performance of any of the classifiers.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 22 
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Figure 5. Mapping wetland vegetation in OWC using pixel-based neural network (NN) support vector
machine (SVM), and maximum likelihood classifier (MLC) classifiers for (a) 4Sq, (b) 4sq+NDVIOct, (c)
4Sq+NDVIOct+canopy height model (CHM).

3.2. Object-Based Classification

The segmented images, generated prior to the object-based classification, were classified following
the same band combinations. The results of the classifications are shown in Table 7, for the overall and
class accuracy, respectively.
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Table 7. Overall accuracy (OA) and kappa value, Phragmites class classification accuracy, and errors of commission (CE) and omission (OE) for object-based classification
methods with feature layers stacked to 4sq image.

Classifier
4sq 4sq+NDVIOct 4sq+NDVIOct+CHM 4sq+NDVIOct+CHM + PC1 4sq+NDVIOct+CHM+PC1+Var

OA% Kappa OA% Kappa OA% Kappa OA% Kappa OA% Kappa

SVM 87.69 0.84 89.23 0.86 92.31 0.90 92.30 0.90 91.54 0.89
kNN 86.92 0.84 84.62 0.81 89.23 0.86 90.77 0.88 84.62 0.81

Phragmites Class Classification Accuracy %

SVM 75.00 80.70 92.58 92.30 90.45
kNN 75.30 60.35 91.00 89.25 89.10

Classifier CE % OE % CE % OE % CE % OE % CE % OE % CE % OE %

SVM 28.57 25.00 10.20 15.40 3.57 5.32 3.95 6.25 5.75 6.38
kNN 2.13 20.69 1.50 40.00 1.78 10.20 1.50 10.43 1.25 10.35
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SVM performs slightly better than the kNN for all layer combinations but overall, both classifiers
showed lower OA than any of the pixel-based classifiers. The addition of the NDVIOct to 4sq improves
the OA values for SVM by approximately 2% (from 87.69% to 89.23%), while the overall accuracy for
kNN is reduced by 2% (from 86.92% to 84.62%). Similar to the pixel-based classifications, the highest
overall classification accuracy was achieved with SVM for the band combination of 4Sq+NDVIOct+CHM.
Although the differences are not significant, the combination of more bands does not improve the
overall accuracy and kappa values, with an exception when PC1 is added to kNN.

The combination of NDVIOct+CHM layers reduces the error of commission for the Phragmites
class from 28.57% to 3.57% with SVM and from 2.13% to 1.78% with kNN. Similar to the pixel-based
classification approach, the minimum errors of omission are observed for the 4sq+NDVIOct+CHM
combination for SVM (from 25.00% to 5.32%), and no further reduction is observed by adding the layers
(Table 7). The 4sq+NDVIOct+CHM is the combination that represents the cutoff point where the errors
of omission and commission do not improve after adding additional layers. The positive attribute
of kNN is that this classifier exhibits lower errors of commission while SVM is more consistent and
predictable in reducing the errors of omission (Table 7). Both classifiers exhibit lower class accuracies
and significantly higher errors of omission than the pixel-based approaches.

The overall findings in this study can also be supported by visualizing the classified UAV images
(Figure 6). The NN classifier corresponds to the highest classification accuracy of Phragmites and lowest
misclassification of Phragmites into cattails. Among the selected classifiers in Figure 6, the object-based
SVM shows the lowest Phragmites classification accuracy due to the misclassification of Phragmites
into the cattails class. Similar visual details can be observed between Phragmites and lotus across the
study site.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 22 

 

SVM performs slightly better than the kNN for all layer combinations but overall, both 
classifiers showed lower OA than any of the pixel-based classifiers. The addition of the NDVIOct to 4sq 
improves the OA values for SVM by approximately 2% (from 87.69% to 89.23%), while the overall 
accuracy for kNN is reduced by 2% (from 86.92% to 84.62%). Similar to the pixel-based 
classifications, the highest overall classification accuracy was achieved with SVM for the band 
combination of 4Sq+NDVIOct+CHM. Although the differences are not significant, the combination of 
more bands does not improve the overall accuracy and kappa values, with an exception when PC1 is 
added to kNN. 

The combination of NDVIOct+CHM layers reduces the error of commission for the Phragmites 
class from 28.57% to 3.57% with SVM and from 2.13% to 1.78% with kNN. Similar to the pixel-based 
classification approach, the minimum errors of omission are observed for the 4sq+NDVIOct+CHM 
combination for SVM (from 25.00% to 5.32%), and no further reduction is observed by adding the 
layers (Table 7). The 4sq+NDVIOct+CHM is the combination that represents the cutoff point where the 
errors of omission and commission do not improve after adding additional layers. The positive 
attribute of kNN is that this classifier exhibits lower errors of commission while SVM is more 
consistent and predictable in reducing the errors of omission (Table 7). Both classifiers exhibit lower 
class accuracies and significantly higher errors of omission than the pixel-based approaches. 

 
Figure 6. Mapping wetland vegetation in OWC using the object-based SVM and k-nearest neighbor 
(kNN) classifiers for (a) 4sq, (b) 4sq+NDVIOct, (c) 4sq+NDVIOct +CHM. 

The overall findings in this study can also be supported by visualizing the classified UAV 
images (Figure 6). The NN classifier corresponds to the highest classification accuracy of Phragmites 
and lowest misclassification of Phragmites into cattails. Among the selected classifiers in Figure 6, the 
object-based SVM shows the lowest Phragmites classification accuracy due to the misclassification of 

Figure 6. Mapping wetland vegetation in OWC using the object-based SVM and k-nearest neighbor
(kNN) classifiers for (a) 4sq, (b) 4sq+NDVIOct, (c) 4sq+NDVIOct +CHM.



Remote Sens. 2019, 11, 1380 16 of 23

In comparison, between the pixel-based and object-based classifiers used in this study, there is a
noticeable trend that the pixel-based NN classifier demonstrated the best results to detect Phragmites
and the lowest error of omission (Figure 7). Furthermore, the findings suggest that there are no
substantial differences between the ML classifiers and MLC in this study.
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SVM classified image. Note: all classified images are based on the most optimal 4sq+NDVIOct+CHM
combination.

4. Discussion

This study demonstrates the advantage of using UAVs to map wetland species, especially to map
small patches of invasive Phragmites in the OWC estuary, which would not be possible with coarse
airborne and satellite images. This is well demonstrated by high OA for all sophisticated classifiers
used in the study, and by relatively low errors of commission and omission for the given combination
of feature layers.

Based on careful selection of ROIs, robust sampling design using cross-validation, and careful
parameterization of the classifiers, the findings clearly demonstrate that the selection of feature layers
is critical. It was clearly demonstrated that the combination of the raw images (4sq) with feature layers
NDVIOct, and CHM, derived from UAV, produces the highest overall accuracy (OA = 94.80%) and the
lowest error of omission (OE = 1.59%) as well as relatively low error of commission (CE = 4.51%) for
Phragmites when NN is used. It was observed, during the field work, that Phragmites spread faster in the
estuary than other plant types and to improve the eradication of Phragmites, the lowest omission error
is a critical requirement. Phragmites can be effectively removed by mowing, burning, and applying
herbicides during the summer or fall [77]. The low error of omission for Phragmites resulted in the
study would provide an advantage for estuary management to reach and apply eradicating measures
to almost all the Phragmites patches in the OWC estuary.
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4.1. Feature Selection

The study demonstrates that too many features could decrease the classification accuracy, which
agrees with the study of Price et al. [78]. The feature layers should be selected in such a way that
they are most optimal in differentiating the classes [79], and this study has proposed to use NDVIOct

and CHM to advance the classification of the UAV data. Although the main idea of the study was to
concentrate on the August image, the integration of data acquired at different times, in late summer and
in mid-fall, shows a clear advantage in this study [23]. A similar observation was reported by Lantz
and Wang [80] and by several other studies where images at the end of the summer were successfully
used to detect invasive Phragmites [33,81,82]. UAV data acquired in late spring (instead of late-growing
season) might be equally useful. This would allow early detection and eradication of Phragmites and
would help to overcome limitations observed in this study where the identification of hidden thin
patches of Phragmites located under dense tree canopies was a challenge. Our efforts to collect UAV
data over the study site in late spring were not successful due to frequent disturbances of the UAV
flights by eagles nesting in the vicinity.

The importance of using CHM to identify Phragmites, as it reduces both errors of omission
and commission, is also clearly demonstrated, especially when CHM is combined with NDVIOct.
Several other studies showed the advantages of CHM [83–85]. The reduction of errors of omission
and commission for Phragmites was observed in the study of Samiappan et al. [33], where the author
used the SVM classifier. On the other hand, the use of textural and PC measurements does not show a
considerable reduction of errors of omission and commission for Phragmites in this study, which was
not the case in several studies [14,81,86] but was the case in the study of Bradly [22]. A similar trend
was observed in both pixel- and object-based classification methods.

4.2. Sampling Design

A good sampling design is vital to achieve high classification accuracy [81]. A previous study [78]
also highlighted that the complexity of the study site, characteristics of the remote sensing data, image
pre-processing methods, and classification approach dictated the sampling design. As described by
Stehman [87], an ideal sampling design should be cost-effective, providing meaningful results to
achieve the classification objectives and accommodate any sampling data errors. However, it is not
often practical to create a perfect sample design due to the limits of resources and field accessibility [87].
Foody et al. [75] studied possible methods to reduce the required training sample size without losing
classification accuracy, suggesting that it was possible to use a small dataset when the mechanism of
the classifier was known, and when the objective of the study was to map a specific class. However,
selecting a sufficient number of training samples becomes a challenge in classification studies if the
landscape consists of a smaller number of patches of a particular plant type or if the landscape is
complex [78]. Based on all these principles, after lengthy exploration of various sampling approaches,
the results in this study suggest that the stratified random sampling design is necessary for a wetland
setup such as OWC. The reduction of the number of training and validation samples for Phragmites and
duckweed classes is not expected to affect classification accuracies as the stratified random sampling
design decreases any possible negative effect in this case.

Furthermore, Lucas et al. [88] claimed that a single pixel is the most suitable sample unit in a
raster image for a pixel-based classification. However, if there are limitations such as poor accessibility,
which was the case in this study, a sampling unit can consist of multiple pixels with an applied spatial
smoothing technique as shown in this study [88]. A sample should include a sufficient number of
basic classification sample units to represent all spectral properties of each class [69,77]. The grown
ROIs include four or five pixels on average for each sampling point in this study covering higher
spectral variability within each class. This approach increases the probability of classifying more pixels
into the Phragmites class. In other words, the method can potentially reduce the errors of omission.
The inclusion of more heterogeneous pixels in training and validation data is found to be promising to
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improve the classification accuracy [89]. The cross-validation method was applied to compensate for
the relatively low, but still sufficient, number of samples per class in this study.

4.3. Object- vs. Pixel-Based Classification and Classification Algorithms

Several studies concluded that object-based classification performs better than pixel-based
classification because it creates uniform objects by merging similar pixels into one object [37,72,90].
Specifically, Lantz and Wang [79] emphasized that the object-based classification method resulted in
higher accuracy over pixel-based classification to identify invasive Phragmites, while Bradley [23] and
Pande-Chhetri et al. [37] reported the opposite results when identifying some other invasive plants.
Interestingly, the current study results in a higher error of omission for the object-based methods,
similar to the study of Pande-Chhetri et al. [37]. Although the best scale parameter for segmentation
was carefully selected in this study (as explained above), the segmentation could be slightly erroneous
to the extent where Phragmites pixels are confused with the pixels of cattails due to similar pixel values.
This confusion could lead Phragmites pixels to be aggregated in the segments that include cattails. This
situation was observed during the process of segmentation in this study, especially at the boundaries
between cattails and Phragmites. Therefore, the process of segmentation was an initial step where
some uncertainties could be generated suggesting that this step is critical as small variability could
lead to unexpected results. Edge enhancement techniques could be used to overcome such errors at
the boundaries of segments and improve classification accuracy [91], which was not considered in
this study.

Overall, no considerable advantages of ML classifiers over MLC are observed in this study.
The similar overall accuracy, lower errors of commission, and the slightly higher errors of omission
for MLC praise this parametric method as highly advanced. The findings show that the ML methods
are not considerably better for the most optimal layer combination (4sq + NDVIOct + CHM), and that
the tradeoffs between the ML classifiers and MLC should be considered given that the parameter
optimization of SVM and NN classifiers need more time and effort compared to MLC. The disadvantage
encountered with MLC in this study suggests that this classifier does not provide meaningful results
when the number of bands increases to more than six. This was also demonstrated in the study of
Cheeseman et al. [92]. In contrast, non-parametric classifiers (NN and SVM) are not considerably
affected when the number of feature layers increases. High classification accuracies with the same
classifiers were also achieved in the previous studies of Foody and Mathur [69], Ndehedehe et al. [65]
and Qian et al. [68]. While some studies suggested that SVM outperformed NN in overall classification
accuracy [66,89,93], the finding results in this study suggest that NN is exceptionally efficient when
the minimum error of omission is required. Both high classification accuracy and the lowest error of
omission for Phragmites are reached with a NN classifier restricted to one hidden layer [67]. Higher
flexibility of the NN classifier due to the availability of a large number of different synaptic weights
between each pair of nodes [62] has classified more pixels situated at the boundaries between Phragmites
and cattail patches into the Phragmites, resulting in a lower error of omission.

5. Conclusions

High-resolution images acquired by UAVs are useful in mapping and evaluating wetland invasive
plants because of image spatial resolution, ease of handling, and time and cost flexibility. This study
used three pixel-based (NN, SVM, and traditional MLC) and two object-based (SVM and kNN)
classifiers to detect Phragmites in the Old Woman Creek (OWC) Estuary in Ohio, USA. The UAV image
acquired on 8 August 2017 was classified at three different levels of complexity using the proposed
classifiers based on: (i) the four original bands (G, R, RE, NIR) (4sq); (ii) the sensitivity analysis where
one feature layer at a time was added to 4sq, including information from the October image; and (iii)
the combination of representative feature layers with the best performance added to 4sq.

It was clearly demonstrated that the combination of the raw images (4sq) with feature layers
NDVIOct and CHM, derived from UAV, produced the highest overall accuracy (OA = 94.80%) and the
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lowest error of omission (OE = 1.59%) as well as a relatively low error of commission (CE = 4.51%)
for Phragmites when NN is used. NN is recognized as the most effective approach in minimizing the
error of omission. The findings suggest that the pixel-based classification was advantageous over the
object-based approach to identify small patches of Phragmites as found in the OWC estuary.

The study also included a detailed analysis of the sampling design and the number and distribution
of ROIs, suggesting that stratified random sampling design with multi-pixels as a sampling unit was
the most appropriate method to map small Phragmites patches. It was suggested that the sampling
method combined with the cross-validation statistical approach is critical for any of the classifiers used
in the study. Temporal variability of NDVI in combination with CHM are the two most important
feature layers to reach the best performance of any of the classifiers. Any additional information, such
as image texture and PC, was found not to be useful in this study, having a negative or neutral impact
when combined with other layers in the process of classification. The findings show that the ML
methods are not considerably better than MLC for the most optimal layer combination (4sq + NDVIOct

+ CHM), and that the tradeoffs between the ML classifiers and MLC should be considered in future
studies. The study provides a method to detect invasive Phragmites with high accuracy in a small area
using a limited number of samples.
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