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Abstract: In this paper, an adaptive contrast enhancement method based on the neighborhood
conditional histogram is proposed to improve the visual quality of thermal infrared images. Existing
block-based local contrast enhancement methods usually suffer from the over-enhancement of smooth
regions or the loss of some details. To address these drawbacks, we first introduce a neighborhood
conditional histogram to adaptively enhance the contrast and avoid the over-enhancement caused
by the original histogram. Then the clip-redistributed histogram of the contrast-limited adaptive
histogram equalization (CLAHE) is replaced by the neighborhood conditional histogram. In addition,
the local mapping function of each sub-block is updated based on the global mapping function to
further eliminate the block artifacts. Lastly, the optimized local contrast enhancement process, which
combines both global and local enhanced results is employed to obtain the desired enhanced result.
Experiments are conducted to evaluate the performance of the proposed method and the other five
methods are introduced as a comparison. Qualitative and quantitative evaluation results demonstrate
that the proposed method outperforms the other block-based methods on local contrast enhancement,
visual quality improvement, and noise suppression.
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1. Introduction

With the ability to convert the passively received infrared radiation into infrared images, infrared
imaging systems have been widely used in military and civilian fields, for instance, thermal remote
sensing, weapon guidance, night vision, fire detection, and disease diagnosis [1–5]. In these fields,
infrared imaging has superiority and application prospects that are incomparable to visual imaging.
However, compared with visual images, the raw infrared images usually suffer from poor contrast and
low resolution, which are the main factors that limit the performance of infrared imaging systems [6].
Therefore, contrast enhancement is one of the indispensable pre-processing methods in infrared
imaging systems to improve the visual quality of infrared images [7].

Contrast enhancement methods for infrared images have been studied for decades, and most of
them are based on the most famous and classical method histogram equalization (HE) [8]. According
to the scope of the mapping function of the contrast enhancement method, these methods can be
classified into two categories: global contrast enhancement (GCE) and local contrast enhancement
(LCE) [9]. In the GCE methods, one global mapping function which corresponds to the entire image
characteristics is applied to each pixel of the image. On the contrary, in LCE methods, multiple local
mapping functions are used to enhance the contrast of their corresponding areas of the image.

Among the GCE methods, HE is the most well-known one and has been widely applied due to
its low computational complexity and effectiveness. In HE, the contrast enhancement ratio of each
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grayscale is proportional to its probability distribution function. Therefore, the enhanced result may
appear over-enhancement in the homogeneous regions, especially when the homogeneous regions
account for a large proportion in the infrared images [10]. To address this drawback, there are
many improved HE methods investigated. The plateau histogram equalization (PHE) [11,12], double
plateaus histogram equalization (DPHE) [13], and adaptive double plateaus histogram equalization
(ADPHE) [14] attempt to limit the contrast by introducing one or two proper thresholds to avoid
over-enhancement. Other methods, such as the brightness preserving bi-histogram equalization
(BBHE) [15], dualistic sub-image histogram equalization (DSIHE) [16], recursive mean-separate
histogram equalization (RMSHE) [17], adaptive histogram segmentation (AHS) [7], and adaptive
histogram partition (AHP) [18], adaptively divide the histogram into two or more intervals, then carry
out histogram equalization in each interval within the assigned grayscale range. Additionally, the
histogram modification framework (HMF) [19] and histogram specification (HS) [20] are also effective
methods to avoid the over-enhancement of HE. The GCE methods generally enhance the contrast
based on the entire image characteristics with low computational complexity and favorable light order
preservation. However, the global mapping function is not suitable for various regions with different
local contrast characteristics, which is the limitation of GCE methods.

To improve the performance of GCE methods, the LCE methods are developed to enhance the
local contrast based on the characteristics of local regions. The two representative methods of them
are the contrast limited adaptively histogram equalization (CLAHE) [21] and partially overlapped
sub-block histogram equalization (POSHE) [22]. In CLAHE, the input image is divided into multiple
non-overlapped sub-blocks. In each sub-block, the histogram is clipped and redistributed to avoid
over-enhancement. In addition, to avoid the appearance of block artifacts, bilinear interpolation
is carried out between mapping functions of the adjacent sub-blocks. In POSHE, the input image
is divided into multiple partially overlapped sub-blocks. Histogram equalization is carried out in
each sub-block, for the pixels in overlapped regions, the enhanced results are the average value of
correlated sub-blocks. As an improvement of CLAHE, the balanced CLAHE and contrast enhancement
(BCCE) [23] improves the redistribution mechanism and introduces an exponential factor to enhance
the local contrast. Nevertheless, the block artifacts and noise amplification may still appear in the large
homogeneous regions of the enhanced results. Therefore, the adjacent-blocks-based modification for
local histogram equalization (ABMHE) [24] and local gradient-grayscale statistical feature (LGGSF) [25]
take the content of each sub-block into consideration when calculating the corresponding mapping
function. In ABMHE, the partially overlapped sub-blocks are categorized into three categories based on
the gradient information. Not only the category of each sub-block but also that of its adjacent sub-blocks
are taken into consideration when calculating the mapping function. In LGGSF, the non-overlapped
sub-blocks are categorized into two categories using the classification model trained by a support
vector machine (SVM). The mapping function of each sub-block is calculated according to its category.
These classification-based LCE methods get better performance on eliminating the block artifacts.
However, the improper classification in the transition regions or the low contrast regions may result in
the loss of detail. In addition to the block-based methods, the adaptive trilateral contrast enhancement
(ATCE) [26] manipulates the contrast, sharpness, and intensity based on the modified histogram
and the extracted feature of the input image. Other models, such as the unsharp masking [27,28],
retinex theory [29], and wavelet transform [30–32], can also be utilized to improve the visual quality of
infrared images. These LCE methods produce better local contrast enhanced result than GCE methods,
however, they may still suffer from noise amplification, block artifacts, and/or loss of details.

In our previous paper [33], we tried to improve the visual quality of infrared images by combining
the merits of both GCE and LCE methods. In that paper, the global and local histogram specification
(GLHS) enhances the contrast of infrared images by applying histogram specification globally and
locally based on the 2D histogram of the input image. Then the local contrast is enhanced based on
both global and local enhancement results. Whereas the utilization of 2D histogram makes GLHS
a time-consuming method, we found the global–local conception can be utilized to improve the
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CLAHE method. Therefore, in this paper, an adaptive contrast enhancement method based on the
neighborhood conditional histogram is proposed to improve the visual quality of infrared images.
First, the neighborhood conditional histogram is proposed to avoid the over-enhancement caused by
the original histogram. When extracting the neighborhood conditional histogram of the input image,
the neighbor content of each pixel is taken into consideration. In this way, the gray levels of the pixels
located in the detail regions will get a high probability distribution function and will, accordingly, get
a high contrast enhancement ratio, and vice versa, if the pixels are located in homogeneous regions.
Then, for the improvement of CLAHE, we replace the clip-redistributed histogram with the proposed
neighborhood conditional histogram. And to eliminate the block artifacts, the mapping function of
each sub-block is updated based on the global mapping function. Lastly, the local contrast is optimized
and enhanced based on both global and local enhanced result. The remainder of this paper is organized
as follows. In Section 2, we first review and discuss the CLAHE. In Section 3, the proposed method
is described in detail. In Section 4, experiments are conducted, and the analysis of the experimental
results are given. In Section 5, the conclusion is drawn.

2. Review of CLAHE

CLAHE is an extension of the adaptive histogram equalization (AHE) algorithm [34]. These two
methods are dedicated to solving the over-enhancement problem of HE. Over-enhancement is caused
by the inherent drawback of HE. For a given infrared image X with L gray levels, the histogram can be
expressed as

H(l) = nl, l = 0, 1, · · · , L− 1, (1)

where nl indicates the number of pixels with a gray level l in the image. Based on the definition of
HE and assuming that the dynamic range of the enhanced result is R(256 for the 8-bit images), the
enhanced result of the gray level l is calculated by

yl = T(l) =
R− 1

N

∑l

k=0
H(k), (2)

where T(l) is the mapping function and maps the gray level l of the input image into yl of the
output image, N is the total number of pixels in X. Therefore, for the enhanced image, the contrast
enhancement ratio of the adjacent gray levels in the input image is

δl = yl − yl−1 =
R− 1

N
·H(l). (3)

As can be seen in Equation (3), the value of δl is proportional to the corresponding histogram
value. Which means, for the HE method, the gray level with a high histogram value also has a high
enhancement ratio and occupies most grayscale range [7]. Unfortunately, the gray levels with histogram
values usually belong to the pixels in the background or large homogeneous area. For these gray
levels, high enhancement ratios and grayscale ranges result in unnaturalness and wash-out appearance,
and the noise in the homogeneous regions will be amplified. At the same time, the other gray levels
belonging to the pixels in the detail area cannot get desired enhancement ratios and grayscale ranges.
This is the reason why HE usually causes over-enhancement for infrared images. In CLAHE, to avoid
the over-enhancement of the homogeneous regions and get better contrast enhancement in detail
regions, the image is divided into a grid of rectangular contextual sub-blocks [21], in each sub-block,
HE is carried out. For each sub-block, Hi, j is used to represent the histogram of the sub-block (i, j). To
avoid over-enhancement, Hi, j is adjusted by clipping and redistribution [35] to get H̃i, j. The mechanism
of this adjustment is shown in Figure 1. Where lmin

i, j and lmax
i, j are the minimum and maximum gray

levels within the sub-block, respectively. The pixels in the green area of Hi, j are redistributed to the
blue area, thus H̃i, j is consists of the blue area and the part of Hi, j below clip limit intuitively. This
adjustment process is implemented by iteration [35].
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Figure 1. Histogram adjustment within sub-block (i,j). Figure 1. Histogram adjustment within sub-block (i, j).

As can be seen from the previous discussion, it is obvious that the enhancement ratio is related to
the value of the clip limit. That is, a higher value of the clip limit results in more contrast enhancement
of the corresponding gray levels. The clip limit of the original CLAHE method is a pre-defined
value [21,36] and is invariant to the image content

clip =
Nb
L

+ α(Nb −
Nb
L
), (4)

where Nb is the number of pixels in each sub-block, α is the clip factor within range [0, 1]. Based on
Equation (4), the range of clip limit is [Nb/L, Nb]. When the clip limit is equal to Nb/L, the redistributed
histogram H̃i, j turns to be a uniformly distributed histogram H̃i, j(l) = Nb/L, which linearly maps the
input image of range [0, L− 1] to the output image of range [0, R− 1]. Whereas, if the clip limit is higher
than the histogram peak, the redistributed histogram H̃i, j is equal to the original histogram Hi, j. It can
also be observed that the clip limit determined by Equation (4) is the same for each sub-block. Based
on H̃i, j, the mapping function of each sub-block is computed by

Ti, j(l) =
R− 1

Nb
·

∑l

k=0
H̃i, j(k), l = 0, 1, · · · , L− 1, (5)

where Ti, j(l) is the mapping function of the sub-block (i, j). Due to the calculation of mapping functions
being independent of each other, the block artifacts are inevitable. Therefore, to prevent the block
artifacts, the mapping result of each pixel should take the mapping functions of the nearest four
sub-blocks into consideration. For an arbitrary pixel p, the final remapped result is computed based on
the bilinear interpolation [21] and is expressed as:

T(Xp) =
d3d4T1(Xp) + d1d4T2(Xp) + d1d2T3(Xp) + d2d3T4(Xp)

(d1 + d3)(d2 + d4)
, (6)

where Xp is the gray value of the pixel p in the input image, T is an intermediate variable, T1(·), T2(·),
T3(·), and T4(·) are the mapping functions of the corresponding sub-blocks centered on O1, O2, O3,
and O4 as shown in Figure 2. Take an infrared image as an example, the HE result and CLAHE result
of the given image are given in Figure 3. Here the resolution of the given image is 320× 256, and the
size of each sub-block is 64× 64. The clip limit of CLAHE is computed by Equation (4), and we set
α = 0.01 for the given image.
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As shown in Figure 3, the contrast of the detail regions is not well enhanced in the HE result,
and the CLAHE performs much better on contrast enhancement in these regions. However, in the
homogeneous regions, the noise is over-enhancement and artifacts emerge in the CLAHE result. As
discussed before, for the HE result, the contrast enhancement ratio of each gray level in the input
image is proportional to the corresponding histogram value. Thus for the CLAHE, the maximum
contrast enhancement ratio of each sub-block is determined by the clip limit. The clip limit is computed
based on Equation (4) and is unrelated to the content of each sub-block. As a matter of fact, a higher
clip limit is required for the sub-blocks with texture and details to get effective contrast enhancement.
On the contrary, the sub-blocks with concentrated gray level distribution need a relatively lower
clip limit to avoid the enhancement of noise. It is obvious that a constant clip limit is not suitable
for CLAHE. In [37], the researchers introduced a mechanism to adaptively set the clip limit based
on the content of each sub-block. This mechanism works for the 8-bit visual images, but it is not
applicable to the captured 14-bit infrared images due to its being useless in the noise suppression of
homogeneous regions. In addition to the noise amplification, the block artifacts are not completely
eliminated in the homogeneous regions, as shown in Figure 3b. This is caused by the very different
mapping results when applying the nearest four mapping function to the same gray levels if there are
different proportions of homogeneous regions in the sub-blocks. Hence, the block artifacts still exist in
the bilinear interpolation results.
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Figure 3. The enhancement result of the given infrared image using contrast-limited adaptive histogram
equalization (CLAHE). (a) The histogram equalization (HE) result of the given image. (b) The CLAHE
result of the given image. (c) The histogram of the given infrared image. (d) The histogram of each
sub-block and the red line represents the clip limit. (e) The mapping function of HE and the mapping
functions of sub-block 1, 2, and 3 in CLAHE. The X-axis ranges in (c–e) are set to be (9000,11,000) for
better visualization.

3. Proposed Method

To avoid over-enhancement of homogeneous regions and effectively enhance the contrast of
detail-rich regions, we replace the clip-redistributed histogram with our proposed neighborhood
conditional histogram. In our proposed neighborhood conditional histogram, the image content is
taken into consideration when computing the histogram. Therefore, the corresponding mapping
function of each sub-block is able to automatically adapt to the content of each sub-block. Then, for the
further elimination of block artifacts, the local mapping functions are updated based on the global
mapping function. Lastly, the optimized local contrast enhanced result is obtained by making an
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optimization between the local Weber contrast of global and local enhanced results. In the following
part, our proposed method is described in detail.

3.1. Neighborhood Conditional Histogram

As discussed in the previous section, the contrast enhancement ratio of each gray level after HE is
proportional to the corresponding histogram value. In HE, for the pixels in homogeneous regions,
the corresponding gray levels tend to get higher histogram values than other gray levels. Thus, this
usually leads to the over-enhancement in the homogeneous regions and lack-enhancement in the
detail regions. To address this problem, we try to take the image content into consideration when
performing the histogram statistic. In our proposed neighborhood conditional histogram, the gray
levels located in detail regions get higher histogram values than those located in homogeneous regions.
The neighborhood conditional histogram of X is expressed as

H(l) =
A∑

a=1

B∑
b=1

 1
wr − 1

r∑
i=−r

r∑
j=−r

φl(Xa,b, Xa+i,b+ j, t)

, (7)

where A× B represents the size of the given image, r is an integer introduced to determine the radius
of the square neighborhood around each pixel, wr = (2r + 1)2 is the number of pixels in the square
neighborhood, t is a predefined threshold, φl(u, v, t) is defined to be a binary function and is expressed
as follows:

φl(u, v, t) =

1 i f u = l and |u− v| ≥ t

0 otherwise
. (8)

By defining the binary function for each pixel and its neighbors, the image content is able to
be taken into consideration when computing the histogram value. Thus, a higher value of any gray
level in our proposed neighborhood conditional histogram does not mean that the gray level has a
larger probability of occurrence in the image. Instead, a higher value represents that the pixels that
take on the corresponding gray level have a larger probability of being located in the detail regions.
For the gray levels with a higher histogram value a better contrast enhancement after HE can be
achieved. Hence, our proposed neighborhood conditional histogram is more reasonable than the
original histogram. Based on Equation (2), the mapping function of the neighborhood conditional
histogram can be obtained. The enhanced result of the given infrared image based on our proposed
neighborhood conditional histogram is given in Figure 4. The parameters are set as r = 2 and t = 10
here for the given 14-bit infrared image. It is obvious that the neighborhood conditional histogram in
Figure 4a looks much different from the histogram in Figure 3c. And the enhanced result looks much
better than the original HE result.
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conditional histogram. The X-axis range in (a) is set to be (9000,11,000) for better visualization.
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3.2. Improved CLAHE

As discussed in the previous sub-section, our proposed neighborhood conditional histogram
outperforms the original histogram on adaptively enhancing the contrast of infrared images. Therefore,
for the improvement of CLAHE, we propose to replace the clip-redistributed histogram with the
neighborhood conditional histogram. By applying the neighborhood conditional histogram to each
sub-block, the new histogram of sub-block (i, j) is obtained and denoted as H∗i, j. And then the

corresponding local mapping function T∗i, j(l) is computed by replacing H̃i, j(k) in Equation (5) with
H∗i, j(k). Obviously, if the mapping function T∗i, j(l) is applied to the sub-block (i, j), the artifacts will
still appear in the homogeneous regions after the bilinear interpolation. With this consideration, the
local mapping functions have to be updated. As for the sub-blocks of the given infrared image, an
indisputable fact is that each sub-block is just a part of the whole image. Thus, not only the mapping
function of each sub-block but also the global mapping function have to be taken into consideration
to update the local mapping functions. The local mapping functions are calculated based on the
image content of the corresponding sub-blocks. Due to the calculation processes of the local mapping
functions being carried out independently, the contrast of each sub-block can be well enhanced.
However, the block artifacts may appear in the final enhanced result. On the contrary, the global
mapping function is computed based on the whole image content. Therefore, there are no artifacts in
the enhanced result, but the local contrast enhancement is not as good as the enhanced result using
the local mapping functions. Considering the complementary characteristics of the global mapping
function and the local mapping functions, we update the local mapping functions by making an
adaptive compromise between the local mapping function and the global mapping function.

The global mapping function T∗G(l) is obtained by substituting H∗G(l) into Equation (2). Here H∗G(l)
represents the neighborhood conditional histogram of the whole infrared image and is computed by
adding the neighborhood conditional histograms of the sub-blocks together.

H∗G(l) =
∑

i

∑
j

H∗i, j(l). (9)

The updated local mapping function T̃∗i, j is treated as the solution to a bi-criteria optimization
problem [33]. We use the squared of the Euclidean norm for optimization. Hence, the updated mapping
function is computed by

T̃∗i, j = argmin
T
‖T − T∗G‖

2
2 +
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where T is an intermediate variable,
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solution to this quadratic optimization problem is

T̃∗i, j = (1− β)T∗G + βT∗i, j, (11)

where

β =
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varies over [0,∞), the value of β is within the range of [0, 1]. It is obvious that the updated
local mapping function T̃∗i, j turns out to be a weighted average of T∗G and T∗i, j. By varying β, the weights

of T∗G and T∗i, j in T̃∗i, j change accordingly. When β = 0, T̃∗i, j is equal to the global mapping function T∗G.

Thus the enhanced result of sub-block (i, j) using T̃∗i, j is the same as the global enhanced result using

T∗G. As β increases and approaches 1, T̃∗i, j gradually converges to the original local mapping function
T∗i, j and the corresponding enhanced result of sub-block (i, j) turns to resemble the enhanced result
using T∗i, j. Therefore, β should be set as a block adaptive variable that has a different value depending
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on the block characteristics. This means it should be represented as the component of the sub-block
ordered set (βi, j ∈ β) instead of the constant β. Considering this notation, the solution in Equation (11)
is rewritten as

T̃∗i, j = (1− βi, j)T∗G + βi, jT∗i, j. (12)

As βi, j in Equation (12) is recommended to be a block adaptive value, it should be determined
based on the block content. For the sub-blocks with a large proportion of homogeneous regions, a
small βi, j is required to avoid the over-enhancement and the appearance of block artifacts. Whereas,
a large βi, j is more suitable for the sub-blocks that contain many details and textures to get better
contrast enhancement. When determining the value of βi, j, it is reasonable to utilize the neighborhood
conditional histogram H∗i, j, which is also calculated based on the content of the sub-block (i, j).
Therefore, in our proposed method, βi, j is determined by

βi, j =

L−1∑
l=0

H∗i, j(l)

Nb
. (13)

From the definition of H∗i, j in Equation (7), for the sub-block (i, j), a higher value of H∗i, j indicates
that there are more pixels with gray level l located in the detail regions. This means that the sum of H∗i, j
is larger if there are more details in the sub-block (i, j), and accordingly, the value of βi, j is also larger
as required. On the contrary, the value of βi, j for the sub-block with more homogeneous regions is also
smaller. This is reflected in Figure 5, where it is clear that the homogeneous area accounts for a large
proportion in sub-block 1 and sub-block 2. Therefore, the corresponding mapping functions resemble the
global mapping function. As shown in Figure 5a, there are no artifacts in the homogeneous regions. This
indicates that the improved CLAHE performs well on enhancing the local contrast with no artifacts.
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Figure 5. The enhanced result of the given infrared image using the improved CLAHE. (a) The
enhanced result. (b) The neighborhood conditional histogram of each sub-block and the red line is
introduced to be a reference value of ten. (c) The global mapping function and the local mapping
functions of sub-block 1, 2, and 3 in the improved CLAHE. The X-axis range in (b,c) are set to be
(9000,11,000) for better visualization.
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3.3. Optimized Local Contrast Enhancement

To further enhance the local contrast and make the details more visible to human viewers, the
optimized enhanced result is obtained by combining the local contrast of both global and local enhanced
results. The global enhanced result YG is computed by transferring the gray levels of the input infrared
image to the output gray levels using the global mapping function T∗G. The local enhanced result YL is
obtained by the improved CLAHE described in the previous sub-section. With reference to a given
pixel of the desired enhanced result Y, the local Weber contrast is defined as

Ck =
Yk −Yk

Yk
, (14)

where Ck denotes the Weber contrast of the pixel k, Yk represents the average gray intensity in the
neighborhood of pixel k and is computed by

Yk =
1
|Dk|

∑
i∈Dk

Yi, (15)

where Dk represents the neighborhood of the pixel k and |Dk| is the total number of pixels in the
neighborhood. To enhance the local contrast, we suppose that the estimated local contrast of Y is
expressed as

C̃k = c×C∗k, (16)

where C̃k is the estimated local contrast, c is defined as the contrast parameter, C∗k is the baseline local
contrast. Taking the local contrast of both global and local enhanced results into consideration, the
baseline local contrast C∗k is computed by solving a bi-criteria optimization problem as follows:

C∗k = argmin
C
‖C−CGk‖

2 + λ‖C−CLk‖
2, (17)

where C is an intermediate variable, λ is defined as a regularization parameter and varies over [0,∞),
CGk, and CLk, representing the local contrast of the global and local enhanced results, respectively, are
calculated by CGk = (YGk −YGk)/YGk and CLk = (YLk −YLk)/YLk. The optimal solution of Equation (17)
is expressed as

C∗k =
1

1 + λ
CGk +

λ
1 + λ

CLk. (18)

As λ varies from 0 to ∞, the solution of C∗k in Equation (18) traces the optimal trade-off local
contrast between CGk and CLk. The baseline local contrast obtained by λ = 0 corresponds to the
contrast of global enhanced result, whereas when λ increases to infinity, it resembles the contrast of
the local enhanced result. Thus, we obtain different baseline local contrast according to λ. Taking the
region characteristics of the input image into consideration, it is more reasonable to set λ as a region
adaptive variable instead of a constant value. This means λ should be set as the component of the
lexicographically ordered image (λk ∈ λ). In the case of the contrast parameter c in Equation (16),
the enhancement level of the estimated local contrast C̃k is adjusted by the value of c. To adaptively
enhance the local contrast, in the proposed method, c is also determined to be a region adaptive
variable by considering the regional characteristics. Therefore, the contrast parameter c should also be
set as the component of the lexicographically ordered image (ck ∈ c) instead of a constant. Considering
these notations and substituting Equation (18) into Equation (16), the estimated local contrast C̃k is
rewritten as

C̃k = ck(
1

1 + λk
CGk +

λk
1 + λk

CLk). (19)
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Combining Equations (14) and (19), the desired enhanced result Yk meets the formula below

Yk −Yk

Yk
= ck(

1
1 + λk

·
YGk −YGk

YGk
+
λk

1 + λk
·

YLk −YLk

YLk
), (20)

where Yk indicated the average gray intensity of the pixel k in the desired enhanced result, but the
value is not given. To compute the desired enhanced result based on Equation (20), we assume that
there is no significant difference between the average gray intensity of the local enhanced result and
that of the desired enhanced result (Yk ≈ YLk). Then, the desired enhanced result Yk is computed by

Yk = YLk + ck(
1

1 + λk
·

YLk

YGk
·YGk +

λk
1 + λk

·YLk −YLk). (21)

As formulated in Equation (21), the desired enhanced result is determined by a constant term and
a variable term. The first term has no contribution to the local contrast enhancement. Therefore, the
local contrast is enhanced by determining the parameters λk and ck adaptively. As discussed before,
both λk and ck should be set as region adaptive parameters that have different values depending on
the regional characteristics of the input image. In our proposed method, the edge information of the
input infrared image is utilized. The expressions for λk and ck are given by{

λk = λ0∆k
ck = 1 + c0λk/(c0 + λk)

, (22)

where λ0 and c0 are user-defined parameters, ∆k is the edge information of the input image at the
pixel k. In this paper, the edge information is computed by applying the Sobel operator to the input
infrared image and then is linearly stretched to the same dynamic range of the enhanced result. It is
clear that the values of λk and ck are positively correlated with the edge information ∆k, and the range
of the contrast parameter ck is [1, 1 + c0]. For the regions with sufficient edge information, the baseline
local contrast resembles that of the local enhanced result and will further get enhanced, the extent of
contrast enhancement is controlled by 1 + c0. On the contrary, if the regions have insufficient edge
information, the baseline local contrast tends to be the same as that of global enhanced result and will
later remain unchanged as ck = 1. In our experiments, we empirically set λ0 = 0.5 and c0 = 1 for the
14-bit infrared images. A pseudocode of the proposed method is given as follows.

Algorithm 1: Adaptive contrast enhancement
Input: original infrared image X
1. Divide the image X into multiple equal-sized non-overlapped sub-blocks
2. For each sub-block, extract the neighborhood conditional histogram H∗i, j based on Equation (7)

3. Obtain the global mapping function T∗G and the original local mapping function T∗i, j based on H∗i, j
4. Compute the updated local mapping function T̃∗i, j based on T∗G and T∗i, j
5. Obtain improved CLAHE result YL based on T̃∗i, j
6. Map the image X with T∗G to get the global enhanced result YG

7. Enhance the local contrast combining YL and YG
Output: Enhanced result Y

4. Experimental Results

In this section, we apply the proposed method to six captured 14-bit infrared images and two
raw infrared images extracted from the video sequences in BU-TIV [38] to evaluate its performance.
The imager we used to capture the six infrared images is developed by our lab based on the sensor
MARS-LW-RM3 with resolution 320 × 256 and is sensitive to the long-wave band 8 − 10 µm. The
resolution of the other two raw infrared images is 1024× 512 and 512× 512. Figure 6 shows the HE
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results of the eight infrared images as a reference. In our experiments, the results are compared
with those of four other block-based well-designed contrast enhancement methods: CLAHE, BCCE,
ABMHE, and LGGSF. All of the experiments are conducted using MATLAB on a PC with Intel(R)
Core(TM) i5 CPU (3.2 GHz) and 16GB RAM on a Windows 7 operating system.
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4.1. The setting of Block Size and Threshold t

In this section, we conduct a further discussion on the block size and the threshold t. The block
size is introduced to determine the size of each block in CLAHE, and the threshold t is introduced to
compute the neighborhood conditional histogram in Equation (7). The proposed method is applied to
a test image extracted from one image in BU-TIV with the resolution 320× 256 to analyze the influence
of different parameter settings to the enhanced result. The enhanced results with different block size
and the threshold t are given in Figure 7. It can be seen that the nonuniformity of the test image is also
enhanced when we set t = 10. As t increases, the nonuniformity of the enhanced results is gradually
suppressed, and some tiny details are also lost. Therefore, when determining the value of the threshold
t, we should make a compromise between noise suppression and tiny detail preservation. For the block
size, some artifacts appear in the enhanced result when the size of each block is set to be 16× 16. As the
block size increases, the local contrast enhancement is not as good as that obtained by small block size,
but this contrast enhancement reduction is not obvious when the threshold t is set to be a large value.
In our experiments, we empirically set the block size to be 64 × 64. For other infrared images with
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different resolution, the block size can also be set as 64× 64 or another value, but not too small. For the
six test images we captured, the threshold is set as t = 10 to get better local contrast enhancement.
And for the other test images from BU-TIV, we set t = 20 for the suppression of nonuniformity.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 24 
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4.2. Qualitative Evaluation

The experimental results of the infrared images are given in Figures 8–13. The results are obtained
by applying CLAHE, BCCE, ABMHE, LGGSF, and the proposed method to the infrared images. In
addition to these, the intermediate enhanced results of the proposed method, and the enhanced results
of the improved CLAHE are given together for comparison. The block size in CLAHE, BCCE, ABMHE,
and the proposed method is set to be 64× 64. The number of divisions in horizontal and vertical of the
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image for LGGSF is set to be kx = ky = 7 according to the original paper. In CLAHE and BCCE, the
clip factor is set as α = 0.01. In addition, the local contrast enhancement factors for BCCE and LGGSF
are set as c = 8. Lastly, for ABMHE, the step size of the partially overlapped in horizontal and vertical
is set to be one-quarter of the block size. For good enhancement results, they should obtain better local
contrast enhancement and noise suppression, be artifact-free and visually pleasing.
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As shown in Figure 8, the enhanced results of CLAHE, BCCE, ABMHE, LGGSF, and the proposed
method appear similar with respect to the building. CLAHE and BCCE cause noise amplification in
the sky, which greatly reduces their performance compared with the other methods. ABMHE and
LGGSF lost some details, as shown in the region marked by the red rectangle. This is caused by the
improper classification in the transition region between the detail region and homogeneous region.
The partial boundary of the mountain disappears in the ABMHE result, and some details of the trees in
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the LGGSF result also lost. All these undesired performance reductions do not appear in the enhanced
result of GLHS and the proposed method. However, it is clear that the proposed method gets better
local contrast enhancement than GLHS.

In Figure 9, the undesired noise amplification still appears in the enhanced result of CLAHE and
BCCE. The details of the hills and buildings in BCCE result look clearer than those in the CLAHE result.
Some part of the hills in the region marked by the red rectangle in the enhanced result of ABMHE
cannot be distinguished from the sky. In the enhanced result of LGGSF, many details of the hills and
the trees are smoothed. The local contrast enhancement of GLHS result is not as good as that of the
other methods. Our proposed method produces a much better appearance and the finest details than
the other methods.

In Figure 10, CLAHE and BCCE still enhance the noise in the region of the sky. ABMHE obtains
relatively good enhanced results for there is no transition region between the building and the sky,
which is the same situation as the experiments in the original paper. In the enhanced result of LGGSF,
the details of the trees in the left and right of the subgraph are still smoothed. Once again, GLHS
does not produce better local contrast enhancement, and the proposed method outperforms the other
methods with no artifacts, good appearance, and fine details.

In Figure 11, the enhanced results of CLAHE and BCCE look unnatural due to the enhancement of
noise and the appearance of block artifacts. As observed in the region marked by the red rectangle in
the enhanced results of CLAHE, BCCE, and ABMHE, there are non-uniform brightness regions in the
sky around the tower crane. These unpleasant appearance reductions cannot be found in the enhanced
result of GLHS, LGGSF, and the proposed method. However, the details of the buildings and the tower
crane do not look clearer than those of GLHS or the proposed method. In the homogeneous regions
of the enhanced result of GLHS, some granular noise appears. The proposed produces an enhanced
result with better visual quality improvement.

In Figure 12, CLAHE and BCCE produce better enhanced results than ABMHE, LGGSF, and
GLHS, which benefits from the absence of the homogeneous region. As shown in the regions marked
by the red rectangles in the enhanced results of ABMHE and LGGSF, many details of the trees are lost.
This is caused by the improper classification of this low contrast region. The enhanced result of the
proposed method looks better than that of BCCE, for the local contrast is well enhanced.

In Figure 13, the enhanced results of CLAHE, BCCE, ABMHE, LGGSF, and the proposed method
resemble each other. The enhanced result of GLHS looks clear, but the local contrast is not well
enhanced. Local contrast in the enhanced results of the proposed method and BCCE appears better
than that of the other methods.

In Figure 14, due to the existence of nonuniformity, the enhanced results of CLAHE, BCCE, and
LGGSF look poor because they are sensitive to the nonuniformity. In the enhanced result of ABMHE,
there are non-uniform brightness regions in the road. GLHS performs best in terms of nonuniformity
suppression. However, the local contrast is not well enhanced. The proposed method is able to
suppress the nonuniformity and get better local contrast enhancement.
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In Figure 15, the enhanced results of CLAHE and BCCE look terrible for the enhancement of
the nonuniformity. The nonuniformity is well suppressed in the enhanced result of ABMHE, but
there exists non-uniform brightness. The nonuniformity is suppressed in some regions of the LGGSF
result. GLHS performs well on the nonuniformity suppression, but the local contrast is not well
enhanced. The proposed method produces a better enhanced result with a natural appearance and
nonuniformity suppression.
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4.3. Quantitative Evaluation

In this section, to evaluate the performance of the six methods objectively, four metrics are adopted
in this paper. They are the measure of enhancement by entropy (EMEE) [39], structural index (SI) [40],
no-reference structural sharpness (NRSS) [41], and the lightness order error (LOE) [42].

EMEE is defined based on the Weber contrast and the concept of entropy, which is computed by
the equation below.

EMEE(I) =
1

k1k2

k1∑
k=1

k2∑
l=1

α

 Imax
k,l

Imin
k,l + c

α ln

 Imax
k,l

Imin
k,l + c

, (23)

where k1 and k2 are the number of divisions in horizontal and vertical of the given image I, Imax
k,l and

Imin
k,l represent the maximum and minimum values of the block (k, l), respectively, α is an additional

parameter, and c is a small constant introduced to avoid dividing by zero. Generally, a larger EMEE
value implies a higher contrast of the given image. In this paper, we set α = 0.2, c = 0.0001, and the
block size is 8× 8.

SI is defined based on the correlation coefficient, and the expression is given below.

SI(X, Y) =
σX,Y + c
σXσY + c

. (24)
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where X and Y represent the input image and the enhanced image, σX,Y is the covariance of X and Y,
σX and σY are the standard deviation, c is a small constant introduced to avoid dividing by zero, and
σX,Y is computed by the equation below.

σX,Y =
1

N − 1

N∑
i=1

(IX(i) − µIX)(IY(i) − µIY), (25)

where N is the number of pixels in the images, µIX and µIY are, respectively, the mean intensity of
IX and IY. It is clear that SI indicates the global structural similarity of the enhanced image when
compared to the input image. A larger SI value means that there is a high similarity between the
enhanced image and the input image in terms of structure.

NRSS is defined based on the well-known SSIM (structural similarity index measurement) [43]. It
indicates the structural sharpness of the given image and is computed by the equation below.

NRSS(I) = 1−
1
K

K∑
i=1

SSIM(BGI
i , B

GF(I)
i ), (26)

where BGI
i and B

GF(I)
i are one of the K overlapped sub-blocks with higher variations in GI and GF(I), GI

represents the gradient image and is computed by applying the Sobel operator to the given image I,
and GF(I) is the gradient image of the Gaussian-blurred image F(I). A large NRSS value means that the
given image looks clear with high contrast. In this paper, the block size in NRSS is set to be 32× 32, the
step size is set to be half of the block size, and K is equal to half of the total number of the overlapped
sub-blocks.

LOE is defined to indicate the lightness order error between the input image and the enhanced
image. The expression of LOE is given below.

LOE = 1
AB

A∑
a=1

B∑
b=1

RDa,b

RDa,b =
A∑

m=1

B∑
n=1

[
U(XD

a,b, XD
m,n) ⊕U(YD

a,b, YD
m,n)
]

U(x, y) =
{

1, f or x ≥ y
0, else

, (27)

where A× B represents the image size of XD and YD, U(x, y) is the unit step function, ⊕ is the exclusive
or operator, XD and YD are the down-sampled versions of X and Y to reduce the computational
complexity. The ratio between the size of the input image and that of the down-sampled image is set
as r = 16 in this paper. Obviously, a small LOE value indicates that the enhanced image gets better
naturalness preservation of the input image.

In Table 1, the quantitative evaluation results of the six methods in terms of the four metrics are
given. The highest results of EMEE, SI, and NRSS, the lowest results of LOE are marked in bold in the
table. Among these methods, the other five methods except GLHS are block-based methods, and the
foundation of GLHS is global histogram specification. Therefore, GLHS usually gets the highest SI
values and the lowest LOE values. The proposed method provides almost the highest EMEE values,
except in Hills. Although the EMEE value of the proposed method in Hills is slightly smaller than
that of ABMHE, the proposed method provides the highest average EMEE value among the five
methods. For the SI values, due to the utilization of block-based local contrast enhancement, the SI
values of the five block-based methods are lower than those of GLHS. The proposed method usually
gives relatively higher SI values among the block-based methods, and the average SI value of the
proposed method is the highest in the five block-based methods. This means the proposed method
performs well on the structural similarity with the input image. Benefitting from the local contrast
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enhancement process, the NRSS values of GLHS are the highest among the six methods. For the first
six infrared images, the proposed method usually produces relatively high NRSS values. Whereas for
the other two test infrared images, the NRSS values of the proposed method are not as high as those of
BCCE and LGGSF, this is caused by the setting of the higher threshold. The reason why the NRSS
values are not the highest among the methods is the combination of both global and local enhanced
results when enhancing the local contrast. Comparison of LOE values indicates that the proposed
method almost provides the lowest values among the five block-based methods, except in Sky and
Trees. However, the average LOE value of the proposed method is obviously the lowest among that
of the other block-based methods. In summary, the values of the four metrics demonstrate that the
proposed method outperforms the other five methods in terms of local contrast enhancement and
performs well on the structural similarity, detail improvement, and naturalness preservation.

Table 1. The quantitative evaluation results of contrast-limited adaptive histogram equalization
(CLAHE), balanced CLAHE and contrast enhancement (BCCE), adjacent-blocks-based modification
for local histogram equalization (ABMHE), local gradient-grayscale statistical feature (LGGSF), global
and local histogram specification (GLHS), and the proposed method in terms of enhancement by
entropy (EMEE), structural index (SI), no-reference structural sharpness (NRSS), and lightness order
error (LOE).

Metrics Methods
Infrared Images in the Experiments

Average
Building1 Hills Building2 Sky Trees Windows Road Students

EMEE

CLAHE 0.2000 0.1963 0.5770 0.3317 0.4823 0.5753 1.4999 0.3592 0.5277
BCCE 0.4388 0.4486 0.7091 0.6456 1.0899 1.5121 1.8979 0.4839 0.9032

ABMHE 1.4180 1.8156 1.6300 1.8697 2.5899 1.4987 1.6859 0.7242 1.6540
LGGSF 0.2960 0.2153 0.6360 0.1497 1.2646 0.9432 1.1786 0.1701 0.6067
GLHS 0.3809 0.2377 2.8797 0.4055 1.5728 1.9295 0.5263 0.3730 1.0382

Proposed 3.3892 1.8031 5.5496 2.1652 5.9257 4.8795 2.5674 0.8721 3.3940

SI

CLAHE 0.6873 0.6851 0.6887 0.6885 0.6569 0.8021 0.6476 0.7586 0.7019
BCCE 0.6449 0.6388 0.6672 0.5907 0.6476 0.7943 0.6197 0.5595 0.6453

ABMHE 0.7930 0.8563 0.6541 0.9103 0.7924 0.8197 0.8676 0.8211 0.8143
LGGSF 0.8347 0.9283 0.7537 0.9778 0.6575 0.8341 0.7031 0.8551 0.8180
GLHS 0.9577 0.9494 0.8608 0.9793 0.9027 0.9211 0.9761 0.9094 0.9321

Proposed 0.8607 0.8996 0.7503 0.9625 0.7247 0.8490 0.8999 0.9520 0.8623

NRSS

CLAHE 0.8704 0.8442 0.8535 0.8483 0.7960 0.7682 0.7734 0.8115 0.8207
BCCE 0.9237 0.9038 0.9092 0.8981 0.8609 0.8202 0.8723 0.8806 0.8836

ABMHE 0.8578 0.8343 0.8425 0.8263 0.7780 0.8141 0.7656 0.7856 0.8130
LGGSF 0.8925 0.8797 0.8748 0.8770 0.8474 0.8257 0.8491 0.8684 0.8643
GLHS 0.9613 0.9583 0.9398 0.9352 0.8997 0.9055 0.8771 0.8851 0.9203

Proposed 0.9160 0.8988 0.9124 0.8879 0.8660 0.8558 0.8102 0.8349 0.8728

LOE

CLAHE 73.89 87.27 64.98 97.09 70.73 43.24 523.51 257.11 152.23
BCCE 79.95 89.96 68.28 104.92 74.46 44.77 544.24 324.97 166.44

ABMHE 42.46 41.41 44.83 51.38 39.90 48.97 338.67 241.06 106.09
LGGSF 34.68 35.15 35.38 9.67 82.74 41.20 463.96 201.55 113.04
GLHS 11.26 9.5156 9.08 8.75 10.13 10.35 63.04 28.01 18.77

Proposed 23.47 26.44 25.78 17.56 53.64 29.90 274.76 94.67 68.28

In Table 2, the average time consumption for the six methods to process the six captured test
images are given. It is clear that the time computation of CLAHE and BCCE is lower than those of the
other three methods. The local contrast enhancement process of BCCE leads to a higher computation
time than CLAHE. Due to the utilization of sub-block classification and labeling, LGGSF needs more
computation time than BCCE. The computation time of the proposed method is higher than LGGSF
and BCCE, this is caused by the computation of neighborhood conditional histogram in each sub-block
and the optimized contrast enhancement process. For the GLHS, the utilization of the 2D histogram,
histogram specification, and the local contrast enhancement process lead to a more time-consuming
process. In ABMHE, the large amount of overlapped sub-blocks and the sub-block searching operations
make it a computationally expensive method. Therefore, its consumption time is the highest among
the six methods.
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Table 2. The average time consumption of the six methods on the six captured test images (Unit: Second).

Method CLAHE BCCE ABMHE LGGSF GLHS Proposed

Time 0.0675 0.0842 3.2471 0.1522 0.9172 0.1674

5. Conclusions

In this paper, to improve the visual quality of infrared images, we proposed an adaptive
contrast enhancement method based on the neighborhood conditional histogram. We introduced the
neighborhood conditional histogram into CLAHE to avoid over-enhancement and achieve adaptive
contrast enhancement for various sub-blocks. To eliminate the block-artifacts, the mapping functions
are further updated based on the global mapping function. Lastly, the local contrast is optimized based
on both global and local enhanced result, and then adaptively enhanced based on the edge information
of the input image. The neighborhood conditional histogram and the strategy that combines both
global and local mapping functions to reduce the block artifacts and enhance the local contrast are the
main innovations of this paper. By setting different parameters for the neighborhood conditional, the
proposed method is able to adaptively enhance the local contrast and suppress the nonuniformity of
the input infrared images. In addition, the proposed method has the potential to be implemented on
the hardware platform, such as FPGA. Therefore, the proposed method can be applied to the infrared
imaging system to improve performance.
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