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Abstract: Visible Light Positioning (VLP) has become one of the most popular positioning and
navigation systems in this decade. Filter-based VLP systems can provide real-time solutions but
have limited accuracy. On the contrary, fixed-interval smoothers can help VLP achieve higher
accuracy but require post-processing. In this article, a trade-off solution, Fixed-Lag Ensemble Kalman
Smoother (FLEnKS), is proposed for VLP to achieve a semi-real-time and accurate positioning solution.
The forward part of the FLEnKS is based on the Ensemble Kalman Filter (EnKF), which uses stochastic
sampling with ensemble members and enables a better reflection of the features of nonlinear systems.
The backward filter in the FLEnKS compensates for the estimation error from the forward filter using
the linearization based on error states and further reduces the estimation error. Furthermore, multiple
data from both photodiode (PD) and camera are fused in the proposed FLEnKS for VLP, which further
improves the accuracy of conventional VLP with a single data source. Preliminary field test results
show that the proposed FLEnKS provides a semi-real-time positioning solution with the average 3D
positioning accuracy of 15.63 cm in dynamic tests.

Keywords: Fixed-lag ensemble Kalman smoother; visible light positioning; navigation; tracking;
data fusion

1. Introduction

Visible Light Positioning (VLP) is becoming increasingly popular for indoor positioning and
navigation because of its high accuracy and the extensive usage of Light Emitting Diodes (LEDs) [1].
Filters such as Kalman Filter (KF) and Particle Filter (PF) are widely employed in VLP systems to improve
the real-time positioning accuracy [2]. Since filters only use current and previous information [3–7],
it is worthwhile to use other techniques such as smoothing to further improve the localization accuracy
and robustness. ‘Localization’ mentioned in this article refers to locating a receiver.

Smoothing algorithms can use previous, current, and future information for localization, which
improves the positioning accuracy but introduces latency. Smoothing is commonly used instead
of real-time localization for post-mission applications. To the best of the authors’ knowledge,
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the smoothing technique has not been used in the VLP except our previous work [8]. It is challenging
to propose a smoother to improve positioning accuracy with acceptable latency. For VLP applications,
the smoother should have the following capabilities: (a) real/semi-real time; (b) high-accuracy
localization; and (c) possible application to non-linear systems.

The existing smoothers can be classified into three groups: fixed-interval smoother, fixed-point
smoother, and fixed-lag smoother [9]. The fixed-interval smoother requires the estimates of entire
data samples and can only be used offline [8]. The fixed-tablepoint smoother is often used to
calibrate the estimation results of a certain point. The fixed-lag smoother uses a sliding window to
smooth the estimation results of several previous points, which can provide a semi-real-time solution.
Thus, the fixed-lag smoother is more appropriate for real/semi-real time positioning, localization,
and tracking applications.

A Fixed-Lag Kalman Smoother (FLKS) is proposed in [10] for the sequential estimation of
atmospheric carbon dioxide fluxes. The FLKS steps through an inversion in multiple steps, and the
covariance information between sequential sets of fluxes is saved. However, FLKS is based on KF and
only can be employed for a linear problem, which is not appropriate for VLP. To deal with non-linear
systems, a Fixed-Lag Extended Kalman Smoother (FLEKS) is proposed in [11] based on the Extended
Kalman Filter (EKF). However, EKF converts the nonlinear model into an approximate linear model
through Taylor series expansion, which produces truncated errors [12].

A study [13] derives a Fixed-Lag Sigma-Point Kalman Smoother (FLSPKS) including a forward
and a backward filter for indoor localization. The forward filter is a standard Sigma-Point Kalman Filter
(SPKF) using the Weighted Statistical Linear Regression (WSLR) [14]. Thus, the backward filter can be
formulated without inverting the nonlinear dynamics. The SPKF is a deterministic sampling algorithm
with certain sample points. In the SPKF, the number of the sample points is of the same order as the
dimension of the system state vector, which cannot precisely reflect the states of high-dimensional and
nonlinear systems.

To reflect the system states more precisely, an article [15] proposed a fixed-lag Particle Smoother
(PS). The PF used in PS applies a stochastic sampling algorithm. Similar to the PS, the Ensemble Kalman
Smoother (EnKS) based on the Ensemble Kalman Filter (EnKF) also uses model trajectories called either
particles or ensemble members to track the true solution of the system. The EnKF samples the points
randomly with ensemble members to realize the numerical computation of the state covariance matrix,
which better reflects the states of non-linear systems than the SPKF. The EnKF has been widely used in
high-order and nonlinear meteorology and geology models [16] because of its high accuracy. Besides,
the EnKF is an approximated version of the PF without the step involving importance weights [17],
which means the EnKS is less complex than PS. Considering the accuracy and positioning latency,
the fix-lag EnKS is adopted in this article.

Since the smoothing technique has not been used in VLP systems except our previous work [9], in
this article, a novel fixed-lag smoother based on EnKF is proposed to achieve better positioning accuracy
at the cost of acceptable positioning latency. The main contributions of this article are summarized
as follows:

• A novel fixed-lag EnKS (FLEnKS) is proposed in this article for semi-real-time VLP. The FLEnKS
uses a sliding analysis window of several points to realize semi-real-time positioning. Besides,
the FLEnKS applies a two-filter structure, in which a forward EnKF with Statistical Linear
Regression (SLR) and a backward modified Information Kalman Filter (IKF) with error states are
performed. The backward filter compensates the estimation error of the forward filter to improve
accuracy. Moreover, the proposed FLEnKS adopts SLR instead of WSLR to reduce the complexity.

• The data from both photodiode (PD) and camera are fused in the proposed FLEnKS for VLP, which
further improves the accuracy of the conventional VLP with a single data source. For the purpose
of comparison, other fixed-lag smoothers proposed in previous articles are also implemented in
this research. Compared to the existing smoothing techniques, the proposed FLEnKS provided
more accurate localization solutions, especially at corners.
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The rest of this article is organized as follows. The FLEnKS algorithm is presented in Section 2.
The application of FLEnKS in the VLP system is described in Section 3. The experimental results and
analysis are discussed in Section 4, and the conclusions are presented in Section 5.

2. Fixed-Lag Ensemble Kalman Smoother

This section presents the algorithm of the proposed FLEnKS based on the two-filter architecture.
In each analysis window of L epochs, FLEnKS includes an EnKF with SLR as the forward part and
a modified IKF as the backward part, respectively. The process of the FLEnKS is shown in Figure 1.
In Figure 1, the present time epoch is illustrated in black solid circles. In each analysis window with L
epochs, the forward filter (i.e., the EnKF) processes the data samples sequentially, and the backward
filter (i.e., the IKF) reversely processes the data samples to compensate the estimation error of the
forward filter. The smoother combines the update estimation of the forward filter and the prediction
estimation of the backward filter to provide a more accurate estimation. Then, the analysis window
shifts by one epoch forward to the next analysis window and repeats the smoother algorithm until the
final epoch. The details of the forward and backward filters and the smoother are shown in this section.
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2.1. State-Space Model

The positioning problem can often be described as an estimation problem of the state of a
discrete-time nonlinear dynamic system, and the nonlinear state-space model at the epoch k is often
described as follows:

xk+1 = f (xk) +ωk (1)

zk = h(xk) + ηk (2)

where xk ∈ Rn×1 is the state vector, zk ∈ Rm×1 is the measurement vector, ωk ∈ Rn×1, and ηk ∈ Rm×1

represent the zero-mean Gaussian process noise and the measurement noise with covariance Qk and
Rk, respectively; f (·) is the dynamic model function, and h(·) is the measurement model function.

To linearize the nonlinear state-space model, SLR [18] is applied in FLEnKS. In a statistical
sense, SLR achieves better accuracy for linearization than Taylor series expansion. Moreover, when
compared with the WSLR used in [13], SLR is simpler with less computation. The statistically linearized
state-space model is given by

xk+1 = A f ,kxk + B f ,k +ωk + ε f ,k (3)

zk+1 = Ah,k+1xk+1 + Bh,k+1 + ηk+1 + εh,k+1 (4)

where A,B are the statistical linearization parameters, ε is the linearization error modeled by zero-mean
Gaussian noise with covariance Pε. The subscript f represents the parameters related to the dynamic
model Equation (1), the subscript h represents the parameters related to the measurement model
Equation (2), and the subscripts k and k+1 represent the time epochs. The statistically linearized
state-space model is applied to obtain the formulation for the backward filter.
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2.2. Forward Filter

The forward filter is an EnKF with SLR. The algorithm of EnKF is given as follows.

2.2.1. Initialization

Generate the initial estimation of an ensemble of N vectors x0,i ∈ Rn×1(i = 1, 2, . . . , N) with random
sample errors of Gaussian distribution.

x0 = [ x0,1 x0,2 · · · x0,N ] (5)

2.2.2. Prediction

Let x−i and x+i define the ith predicted state and updated state, respectively, and P−k+1 is the
ensemble error covariance of the prediction state at time k+1. Then, the prediction equations are
given as

x−k+1,i = f (x+k,i) +ωk,i i = 1, 2, . . . , N (6)

-
x
−

k+1 = 1/N
∑N

i=1
x−k+1,i (7)

P−k+1 = 1/(N − 1)
∑N

i=1
(x−k+1,i −

-
x
−

k+1)(x
−

k+1,i −
-
x
−

k+1)
T

(8)

2.2.3. Update

In this step, x+k+1,i is the update state at time k+1, and P+
k+1 is the corresponding ensemble error

covariance. The update equations are

x+k+1,i = x−k+1,i + Kk+1(zk+1,i −
^
zk+1,i) (9)

-
x
+
k+1 = 1/N

∑N

i=1
x+k+1,i (10)

P+
k+1 = P−k+1 −Kk+1Pzz,k+1Kk+1

T (11)

where zk+1 is the real measurement data at time k+1,
^
zk+1 is the predicted measurement calculated

from the prediction state, and Kk+1 is the Kalman gain. The variables are given as follows.

zk+1,i = zk+1 + ηk+1,i (12)

^
zk+1,i = h(x−k+1,i) (13)

-
^
zk+1 = 1/N

∑N

i=1

^
zk+1,i (14)

Kk+1 = Pxz,k+1(Pzz,k+1)
−1

= (1/(N − 1)
∑N

i=1 (x
−

k+1,i −
-
x
−

k+1)(
^
zk+1,i −

-
^
zk+1)

T

)·

(1/(N − 1)
∑N

i=1 (
^
zk+1,i −

-
^
zk+1)(

^
zk+1,i −

-
^
zk+1)

T

+ Rk+1)
−1

(15)

2.2.4. Statistical Linearization Of f (·) and h(·)

The following list shows the definitions of the variables in Equations (3) and (4) as

A f ,k =
[
1/(N − 1)

∑N

i=1
(x+k,i −

-
x
+
k )(x

−

k+1,i −
-
x
−

k+1)
T]T

(P+
k )
−1 (16)
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B f ,k =
-
x
−

k+1 −A f ,k
-
x
+
k (17)

Pε f ,k = P−k+1 −A f ,kP+
k A f ,k

T (18)

Ah,k+1 = Pxz,k+1
T(P−k+1)

−1 (19)

Bh,k+1 =

-
^
zk+1 −Ah,k+1

-
x
−

k+1 (20)

Pεh,k+1 = Pzz,k+1 −Ah,k+1P−k+1Ah,k+1
T (21)

These parameters will be used in the backward filter. The detailed derivation can be found in [18].

2.3. Backward Filter

An IKF is used to estimate the states backwards in time with the statistically linearized state-space
model in Equation (3) and (4). Compared with the conventional algorithms, the IKF used in this article
is formulated using the error vector of the forward EnKF and it also takes the error covariance Pε into
consideration, while the conventional IKF uses normal state vector and ignores the error covariance Pε.

Let x−k,b, x+k,b, P−k,b, and P+
k,b define the prediction and update state vectors and their corresponding

error covariance matrices at time k estimated in the backward filter, respectively. To simplify the
calculation, the state estimated in the forward filter and used in this subsection is the mean state
vector; therefore, we denote the predicted state vector at time k estimated in the forward filter as

x−k, f =
-
x
−

k , the updated state as x+k, f =
-
x
+
k , and their corresponding ensemble error covariance matrices

as P−k, f = P−k and P+
k, f = P+

k .
Since the backward nominal trajectory [19] estimates are predetermined as the forward predictions,

a series of expressions are given in the following equations to describe the relationship between the
states estimated in the forward filter and backward filter:

x+k, f = x−k, f
NOM

− δx+k, f = x−k, f − δx+k, f
x+k,b = x+k,b

NOM
− δx+k,b = x−k, f − δx+k,b

x−k,b = x−k,b
NOM

− δx−k,b = x+k, f − δx−k,b

(22)

where xNOM denotes the states of the nominal trajectory, and δx is the corresponding error state. Finally,
the algorithm of the IKF is given as follows.

2.3.1. Initialization

To avoid undesirable matrix inversions and provide a valid boundary initialization, the following
new variables in IKF are defined as follows:

Mb = Pb
−1, δyb = Pb

−1δxb = Mbδxb (23)

where Mb is the information matrix, δyb is the inverse error state, and δxb is the error state vector.
In the backward filter, we derivate the equation of δyb with Mb, the states in the forward filter, and the
parameters from SLR. The initialization of the IKF is given by:

MΓ,b = 0n×n, δyΓ,b = 0n×1 (24)

where Γ is the final epoch of the forward filter and the start epoch of the backward filter, and 0 is the
zero matrix/vector.
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2.3.2. Prediction

The discrete-time IKF prediction equation is derived by using the newly defined variables and the
statistically linearized state-space model in Equation (3) as follows:

x−k,b = A f ,k
−1(x+k+1,b −B f ,k) (25)

According to [20], M−k,b can be obtained and simplified by

M−k,b = Pk,b
−1 = A f ,k

T(I−Kb,k)M
+
k+1,bA f ,k (26)

where Kk,b is the backward Kalman gain matrix as follows:

Kk,b = M+
k+1,b

[
(Qk + Pε f ,k)

−1 + M+
k+1,b

]−1
(27)

By applying Equations (3), (22), (23), (25), and (27), the prediction equation of the error state vector
is then given by

δy−k,b = A f ,k
T(I−Kb,k)δy+

k+1,b (28)

2.3.3. Update

According to the update equations of the standard IKF in [21], the modified update equations of
error covariance M+

k,b and state vector y+
k,b using the newly defined variables with SLR are given as

follows:
M+

k,b = M−k,b + Ah,k
T(Pεh,k + Rk)

−1Ah,k (29)

y+
k,b = M+

k,bx+k,b = y−k,b + Ah,k
T(Pεh,k + Rk)

−1(zk −Bh,k) (30)

where zk is the real-measurement data. By applying Equations (22), (29), and (30), the update equation
of the error state vector is then given by

δy+
k,b = M−k,b(x

−

k, f − x+k, f ) + δy−k,b −Ah,k
T(Pεh,k + Rk)

−1(zk −

-
^
zk) (31)

2.4. Smoothing

The smoothing step combines the update estimation x+k, f and its corresponding ensemble error

covariance matrix P+
k, f of the forward filter and the prediction estimation δy−k,b and its corresponding

inverse error covariance M−k,b of the backward filter. The smoothing estimate xk,s can be given as follows:

xk,s = x+k, f − Pk,sδy−k,b (32)

where Pk,s =
[
(P+

k, f )
−1

+ M−k,b

]−1
. Thus, the smoothing estimate xk,s incorporates measurement data

from the forward and backward filters to provide a more accurate estimate. The general algorithm of
FLEnKS is described in Algorithm 1.
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Algorithm 1: FLEnKS (fixed-lag ensemble Kalman smoother)

Initialization: j=0; Initial state vector x0; Covariance matrices Qk and Rk
1 While j < Γ
2 For k = j-L:1:j
3 Calculate x+k, f and P+

k, f by Equations (9) and (11); Calculate A f ,k, B f ,k, Pε f ,k,

Ah,k+1, Bh,k+1, and Pεh,k+1 by Equations (16)–(21) // Forward filter
4 End For
5 For k = j:-1:j-L
6 Calculate δy−k,b and M−k,b by Equations (28) and (26); // Backward filter

Calculate xk,s by Equation (32) // Smoothing
7 End For
8 j = j+1
9 End While

3. Application to Visible Lighting Positioning

The proposed FLEnKS is applied to a VLP system that is based on PD and camera. In the proposed
VLP system, both the Received Signal Strength (RSS) detected by the PD and the moving speed and
the distances from certain Light Emitting Diodes (LEDs) to the receiver extracted from the videos
captured by the camera, are used as measurements to improve the positioning accuracy. In this section,
the state-space models, including the system model and measurement model defined in Equations (1)
and (2), are discussed explicitly for the proposed VLP system.

3.1. System Model

To estimate the target location, the ith state vector in the state ensemble xk is given as follows:

xk,i =
[

x y z vx vy vz
]T

(33)

where x,y, and z are 3D coordinates of the target; vx, vy, and vz are the corresponding velocity
components. A random walk formulation is used to model the system noise, and the system model is
expressed as follows:

xk+1 = fk(xk) +ωk =



1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

∆t
0
0
1
0
0

0
∆t
0
0
1
0

0
0

∆t
0
0
1


xk +ωk (34)

where ∆t is the time difference between two epochs;ωk is the process noise with the corresponding
covariance matrix Qk, which characterizes the possible random changes in the state vector and is given
as follows:

Qk = E
(
ωkωk

T
)
= diag

([[
δ2

x δ2
y δ2

z δ2
vx δ2

vy δ2
vz

]])
(35)

3.2. Measurement Model

The specific measurement vector in the proposed VLP system includes the information detected
from both PD and camera, which is given by

zk=
[

v d1 d2 · · · dm
]T

(36)
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where v is the moving speed of the receiver, which can be extracted from the camera-captured video [22];
di(i = 1, 2, . . . , m) represents the distance from the receiver to each observed LED and can be described
as follows:

di=

√(
xLi − x

)2
+
(
yLi − y

)2
+

(
zLi − z

)2
(37)

where (xLi , yLi , zLi) is the 3D coordinates of the ith LED, and (x, y, z) is the receiver’s location.
The distance di can be converted from the RSS values that are detected by the PD and calculated on the
basis of the geometric relationships in the video that are captured by the camera. Refer to [1] for more
information about how to obtain di.

The measurement model is then given as follows:

zk = hk(xk) + ηk =



√
vx2 + vy2 + vz2√(

xL1 − x
)2
+
(
yL1 − y

)2
+
(
zL1 − z

)2

...√
(xLm − x)2

+(yLm − y)2
+
(
zL1 − z

)2


+ ηk (38)

where ηk is the measurement noise, and its corresponding covariance matrix Rk is given as follows:

Rk = E
(
ηkηk

T
)
= diag

([
δ2

k,1 δ2
k,2 · · · δ2

k,m

])
(39)

where δ2
k,i(i = 1, 2, . . . , m) is the variance of the ith measurement, which is learned from

the measurements.

4. Experiment Results and Analysis

4.1. Experiment Setup

As shown in Figure 2, the size of the experiment area was 5 m × 5 m × 2.84 m. Five LEDs
(CREE T6) were mounted evenly on the ceiling as light beacons. The power of each LED was 10 W,
and the 3D coordinates of the LEDs in meters were (0.5, 0.5, 2.84), (2.5, 2.5, 2.84), (0.5, 4.5, 2.84), (4.5, 0.5,
2.84), and (4.5, 4.5, 2.84), respectively. An STM32 Microcontroller Unit (MCU) was applied to control
the LEDs using Frequency Division Multiplexing (FDM) protocols.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 15 

 

LED

Positioning 

origin

5 m

2
.8

4
 m

1
.2

5
 m

Receiver

Ceiling

 

Figure. 2. Experiment Setup. 

In Figure 3, the receiver used in the experiments contained an OPT101 PD and a front camera of 

a smartphone. Two sensors were placed closely and mounted on a remotely controlled mobile robot 

at a height of 1.25 m. The parameters of the receiver are summarized in Table 1. During the 

experiments, the robot moved along the pre-marked routes. Two different trajectories (i.e., rectangle 

and triangle) were tested to evaluate the dynamic performance of the proposed FLEnKS.  

  
(a) (b) 

Figure. 3.  The mobile robot and receiver module: (a) Mobile robot and (b) Receiver module installed 

on the mobile robot. 

Table 1. Receiver Parameters. PD: photodiode, FOV: field of view 

Receiver Parameters Quantity  

PD type  

FOV of PD  

PD area 

Camera type 

FOV of camera 

Image pixel size 

Image resolution 

OPT101 

160 deg  

5.2 mm2 

iPhone 5s front camera 

63.7 deg 

960 × 1280 px 

72 dpi 

4.2. Results and Analyses 

Figure 2. Experiment Setup.



Remote Sens. 2019, 11, 1387 9 of 15

In Figure 3, the receiver used in the experiments contained an OPT101 PD and a front camera of a
smartphone. Two sensors were placed closely and mounted on a remotely controlled mobile robot at a
height of 1.25 m. The parameters of the receiver are summarized in Table 1. During the experiments,
the robot moved along the pre-marked routes. Two different trajectories (i.e., rectangle and triangle)
were tested to evaluate the dynamic performance of the proposed FLEnKS.
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Table 1. Receiver Parameters. PD: photodiode, FOV: field of view.

Receiver Parameters Quantity

PD type OPT101
FOV of PD 160 deg

PD area 5.2 mm2

Camera type iPhone 5s front camera
FOV of camera 63.7 deg
Image pixel size 960 × 1280 px
Image resolution 72 dpi

4.2. Results and Analyses

4.2.1. The Parameter Setup of FLEnKS

In the experiments, the time difference ∆t between two epochs was 0.5 s, which was limited by the
frequencies of the LEDs and the analog-to-digital converter. In future work, ∆t will be configured to a
shorter value by using a controller with higher performance. To evaluate the influence of the ensemble
members on FLEnKS, different numbers of ensemble were selected with other parameters unchanged.
The relationship between different ensemble members and the mean positioning errors of the FLEnKS
can be seen in Figure 4. In Figure 4, with the increase of the ensemble members, the mean error is
reduced. However, the improving rate slows down when the ensemble members are over 100. Thus,
considering the trade-off between the accuracy and the complexity, the ensemble members were set to
100 in this research.
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Figure 4. The relationship between positioning accuracy and ensemble members.

The performance of FLEnKS with different sizes of the analysis window (L) was also evaluated,
and the relationship between different sizes of L and the mean positioning errors of the FLEnKS are
shown in Figure 5. The maximum L was set to 5 in the evaluation, as the introduced latency by FLEnKS
should be acceptable (<3 s).
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Figure 5. The relationship between positioning accuracy and analysis window (L) size.

In Figure 5, at the beginning, with the increase of the length of L, the mean positioning error
is reduced as more measurements are fused in the smoother. However, when the analysis window
size L > 3 (i.e., the analysis window is larger than 1.5 s as ∆t = 0.5s), the positioning measurements
may vary largely. Thus, the measurements from a large analysis window will reduce the positioning
accuracy. In the experiments, the size of the analysis window in FLEnKS was set to L = 3, that is to say,
the positioning results processed by FLEnKS had a positioning latency of 1.5 s during the experiments,
which is acceptable for many semi-real applications.

4.2.2. Comparison of PD-Only Positioning and PD–camera Data Fusion

To evaluate the performance of the PD–camera data fusion proposed in this article, two kinds
of trajectories were tested based on PD-only positioning and PD–camera data fusion, respectively.
Since this subsection focuses on the positioning performance by using different measured data,
all the trajectories were processed by the proposed FLEnKS algorithm using PD-only and PD–camera
measurements for better comparison. The 3D positioning results are depicted in Figure 6. The Mean
Positioning Error (MPE) and Root-Mean-Square Error (RMSE) are shown in Table 2 in detail.

As shown in Figure 6 and Table 2, both trajectories showed that PD–camera data fusion improved
the positioning accuracy when compared to the PD-only positioning. The performance of PD-only
positioning suffered from degradation in the corners. On the other hand, the measurements from
the camera were more stable as they were obtained from the image features. Thus, PD–camera
data fusion, which used the measurements from both PD and camera, achieved more accurate
positioning performance.
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Table 2. Positioning Errors of PD-Only Positioning and PD–Camera Data Fusion. MPE: Mean
Positioning Error, RMSE: Root-Mean-Square Error.

Trajectory
MPE RMSE

PD-Only (cm) PD–Camera (cm) Improvement PD-Only (cm) PD–Camera (cm) Improvement

Rectangle 21.85 17.12 21.65% 30.47 22.60 25.83%
Triangle 17.34 14.13 18.51% 21.54 17.56 18.48%

4.2.3. Comparison of EnKF and FLEnKS

To evaluate the performance of the proposed FLEnKS, it was compared with the traditional
EnKF [23] to process two trajectories by using measurements from both PD and camera. The 3D
positioning results by using FLEnKS and EnKF and both PD and camera measurements are shown in
Figure 7. As shown in Figure 7, the positioning results using the FLEnKS were smoother and closer to
the ground truth than those using the EnKF, especially at the corners. It is because the system states
(e.g., speed) and noises (e.g., process noise and measurement noise) were significantly changed at the
corner areas. When compared to the EnKF, FLEnKS applies a two-filter structure. The backward filter
of FLEnKS reversely processes the data samples epoch by epoch to include the measurements after
time k and compensates the estimation errors of the forward filter at time k. Thus, at the corner areas,
the backward filter can integrate the measurements after the corner into the forward filter to better
reduce the effects of the changed system states and noises. The two-filter FLEnKS provides a smoother
estimation solution by using more measurements than the traditional filter algorithms and achieves
better positioning results.
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The MPE and RMSE of these two trajectories are summarized in Table 3. The MPEs of the
FLEnKS were 9.70% and 16.54% lower than the those of EnKF in the rectangle and triangle trajectory,
respectively. Furthermore, the RMSEs of EnKF were reduced by 5.20% and 14.88%, respectively, in two
trajectories when the FLEnKS was adopted.

Table 3. Positioning Errors of EnKF and FLEnKS.

Trajectory MPE RMSE
EnKF (cm) FLEnKS (cm) Improvement EnKF (cm) FLEnKS (cm) Improvement

Rectangle 18.96 17.12 9.70% 23.84 22.60 5.20%
Triangle 16.93 14.13 16.54% 20.63 17.56 14.88%

4.2.4. Comparison of FLEnKS with Existing Fixed-lag Smoothers

To further evaluate the performance of the proposed FLEnKS, other fixed-lag smoothers proposed
in previous works were applied to the VLP system in this article using both PD and camera
measurements. The evaluated smoothers included the FLEKS in [11], the FLSPKS proposed in [13],
and the FLEnKS proposed in this article.

As shown in Table 4, the positioning results using the FLEnKS consistently outperformed those
obtained with the other smoothers. The EKF converts the nonlinear model into an approximate linear
model through Taylor series expansion, which produces truncated errors. The SPKF is a deterministic
sampling algorithm with certain sample points to reflect the nonlinear model. On the other hand,
the EnKF using stochastic sampling with more ensemble members can better reflect the features of a
nonlinear system and get better estimates than the EKF and SPKF. Thus, the FLEnKS using the EnKF
as a forward filter can achieve better positioning results than the FLEKS and FLSPKS, which are based
on EKF and SPKF, respectively. Furthermore, the backward filter of the two-filter FLEnKS is based on
the error state vectors, while the FLEKS and FLSPKS use normal state vectors. The consideration of
error states will be more suitable for applications focusing on errors, such as positioning.
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Table 4. MPE and RMSE of Different Smoothers. FLEKS: Fixed-Lag Extended Kalman Smoother,
FLSPKS: Fixed-Lag Sigma-Point Kalman Smoother.

Rectangle (cm) Triangle (cm) Average (cm)

MPE RMSE MPE RMSE MPE RMSE

FLEKS [11] 23.77 30.66 23.00 27.50 23.39 29.08
FLSPKS [13] 22.27 26.89 19.66 23.28 20.97 25.09

FLEnKS 17.12 22.60 14.13 17.56 15.63 20.08

Considering the average MPE in the two trajectories, the MPE of FLEnKS was 33.18% and 25.47%
lower than those of FLEKS and FLSPKS, respectively. Furthermore, the RMSE of FLEnKS was 30.95%
and 19.95% lower than those of FLEKS and FLSPKS, respectively. Overall, the proposed FLEnKS
achieved the best positioning performance, and the average 3D positioning accuracy was 15.63 cm in
two trajectories with PD–camera data fusion.

4.2.5. Evaluation of Different Speeds

To evaluate the performance of FLEnKS at different speeds, extra experiments were conducted at a
speed around 0.5 m/s faster and a speed around 0.5 m/s slower than those in the previous experiments.
The MPE and RMSE at three different speeds are summarized in Table 5.

Table 5. MPE and RMSE at Different Speeds.

Rectangle (cm) Triangle (cm) Average (cm)

MPE RMSE MPE RMSE MPE RMSE

Fast 18.46 24.50 14.48 18.26 16.47 21.38
Medium 17.12 22.60 14.13 17.56 15.63 20.08

Slow 16.98 22.98 13.55 17.58 15.27 20.28

In Table 5, the FLEnKS was applied to the VLP system using both PD and camera measurements at
different speeds, and the medium speed means the positioning results mentioned in Sections 4.2.2–4.2.4.
The MPE results showed that positioning accuracy was increased when the speed was lower. Since
the time difference ∆t stayed unchanged during the tests, a slower speed would produce more stable
system measurements and provide better positioning results. However, the MPE and RMSE results
imply that the speed difference was not a significant factor affecting the positioning accuracy.

4.2.6. Comparison of Existing VLP Systems

Table 6 shows the comparison of the VLP system proposed in this article with other related systems.
As shown in Table 6, our proposed VLP system based on FLEnKS achieved better 3D positioning
results with an ordinary PD and a low-cost camera.

Table 6. Comparison of the Proposed Visible Light Positioning (VLP) System with Other Existing Systems.

System Experiment/Simulation Test Bed Size Method Receiver Mean Error

[24] Simulation 2 m × 10 m RSS + AOA + EKF PD array 20 cm (2D)
[25] Experiment 3.5 m × 6.5 m RSS PD 30 cm (2D)
[26] Experiment 5 m × 3 m × 3 m RSS + AOA PD + Accelerometer 25 cm (3D)

Ours Experiment 5 m × 5 m × 2.84 m RSS + FLEnKS PD + Camera 15.63 cm (3D)

5. Conclusions

The FLEnKS proposed in this article is a semi-real-time smoother, which can meet the requirements
for many positioning, localization, and tracking systems and improve their positioning accuracy.
The forward part of the FLEnKS is based on stochastic sampling with ensemble members, which enables
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a better reflection of the features of nonlinear systems and better estimates than the smoothers based
on SPKF using deterministic sampling with certain samples and EKF using Taylor series expansion.
The backward filter in the FLEnKS compensates for the estimation error from the forward filter
using the linearization based on error states and further reduces the estimation error. The proposed
FLEnKS was practically evaluated in the VLP system by fusing the measurements from PD and camera,
and preliminary experimental results showed the proposed FLEnKS improved the 3D positioning
accuracy by 33.18% and 25.47% when compared to FLEKS and FLSPKS, respectively. Meanwhile,
the fusion of PD and camera measurements improved the average positioning accuracy by 20.08%
when compared to PD-only schemes. The experiments in the article were conducted in a 5 m × 5 m ×
2.84 m area, which is the normal size for evaluating VLP systems. A larger positioning area will be
evaluated in future work, considering obstruction and interference problems.
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