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Abstract: GPS-based, satellite-to-satellite tracking observations have been extensively used to
elaborate the long-scale features of the Earth’s gravity field from dedicated satellite gravity missions.
We proposed compiling a satellite gravity field model from Gravity Field and Steady-State Ocean
Circulation Explorer (GOCE) satellite accelerations directly estimated from the onboard GPS data
using the point-wise acceleration approach, known as the carrier phase differentiation method. First,
we composed the phase accelerations from the onboard carrier phase observations based on the
sixth-order seven-point differentiator, which can eliminate the carrier phase ambiguity for Low Earth
Orbiter (LEO). Next, the three-dimensional (3D) accelerations of the GOCE satellite were estimated
from the derived phase accelerations as well as GPS satellite ephemeris and precise clock products.
Finally, a global gravity field model up to the degree and order (d/o) 130 was compiled from the
71 days and nearly 2.5 years of 3D satellite accelerations. We also recovered three gravity field models
up to d/o 130 from the accelerations derived by differentiating the kinematic orbits of European Space
Agency (ESA), Graz, and School of Geodesy and Geomatics (SGG), which was the orbit differentiation
method. We analyzed the accuracies of the derived accelerations and the recovered gravity field
models based on the carrier phase differentiation method and orbit differentiation method in time,
frequency, and spatial domain. The results showed that the carrier phase derived acceleration
observations had better accuracy than those derived from kinematic orbits. The accuracy of the
recovered gravity field model based on the carrier phase differentiation method using 2.5 years
observations was higher than that of the orbit differentiation solutions for degrees greater than 70,
and worse than Graz-orbit solution for degrees less than 70. The cumulative geoid height errors of
carrier phase, ESA-orbit, and Graz-orbit solutions up to degree and order 130 were 17.70cm, 21.43 cm,
and 22.11 cm, respectively.

Keywords: Earth’s gravity field; GPS; GOCE; point-wise acceleration approach

1. Introduction

The modeling of Earth’s gravity field is an essential task in the physical geodesy, and the
constructed gravity information can be used for the fields of soild geophysics, oceanography, geodesy,
and glaciology [1]. Beginning in the year 2000, several dedicated satellite gravimetry missions,
such as the CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery And Climate Experiment
(GRACE), and Gravity field and steady-state Ocean Circulation Explorer (GOCE), have significantly
improved the accuracy of the static gravity field and its temporal variations by several orders of
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magnitude [2–4]. Although these missions were carried out with different measurement principles,
they had a common feature: all were equipped with global positioning system (GPS) receivers to
realize the concept known as satellite-to-satellite tracking in high-low mode (SST-hl). SST-hl is a highly
sophisticated technique to map the long-wavelength spectrum of the gravity field [5–7].

There are four methods for gravity field recovery that use SST-hl observations: celestial mechanics,
energy balance, short-arc, and acceleration methods [8]. According to the types of differentiated
acceleration, two acceleration methods exist: the average acceleration method and point-wise
acceleration method [9]. Baur et al. [8] and Pail et al. [10] compared the different methods for
modeling gravity field models with the GOCE SST-hl data and pointed out that, with the exception of
the energy balance method, the other three methods had a comparable performance. The celestial
mechanics approach is confronted with a large computational effort due to the integration of the
variation equations and a nonlinear system of equations; in the case of the energy balance method, space
gravity spectroscopy information is exclusively scalar and not available in all three directions [11–13].
The acceleration method is based on Newton’s equation of motion, which balances the gravitational
vector with satellite accelerations in the inertial reference frame [14,15]. The principle of acceleration
approach is simple and has been successfully applied to CHAMP, GRACE, and GOCE SST-hl
data analysis [14–19].

The key to recovering the gravity model by the acceleration method is to estimate the satellite
accelerations with a high degree of precision. Several approaches have been used to estimate
the GPS-based acceleration including orbit differentiation, Doppler differentiation, and carrier
phase differentiation approaches [20]. The most commonly used method is performed by double
time-differentiating successive trajectories of the moving satellite, also known as the orbit differentiation
algorithm. A major drawback to this method is that the accuracy of the differentiated accelerations
is strongly dependent on the position precision; an increase or decrease in the number of visible
satellites can lead to discontinuities [21]. Another method is the Doppler measurement, which can be
used afterward to obtain the satellite’s velocity before the satellite accelerations are computed by the
first-order derivative of the satellite’s velocity. One shortcoming is that the raw Doppler observables
may be heavily contaminated by measurement noises [22]. An alternative method is to numerically
differentiate the GPS carrier phase observations then obtain both the range rate and range acceleration,
which is called the carrier phase differentiation method. This method has been successfully applied
in airborne gravimetry [23,24] and satellite gravimetry [25]. The most prominent advantage of this
approach is the avoidance of the cycle ambiguity problem and the elimination of systematic errors (e.g.,
hardware delays from the receiver and GPS satellites) that are common to adjacent epochs [23,25].

Guo et al. [25] adopted the average acceleration approach to recover the gravity field model from
satellite accelerations derived from onboard GPS phase measurements. It was shown that the noise
of the accelerations derived by the carrier phase differentiation method was lower than that derived
by the orbit differentiation method in all three components, especially in the cross-track component,
which showed an improvement of about 20%. Thus, the recovered gravity field based on the carrier
phase differentiation accelerations had a slightly higher accuracy when compared with the solution
based on the orbit differentiation method. It should be noted that Guo et al. [25] estimated the average
satellite accelerations in two steps: first, the position differences epoch by epoch were derived directly
from the GPS carrier phase measurements; the average satellite accelerations were then obtained with
the position differences.

In this study, we proposed to recover the gravity field model based on the point-wise accelerations
of the GOCE satellite estimated by the carrier phase differentiation method from the onboard carrier
phase observations. This idea has not yet been addressed and differs from the average acceleration
approach used for gravity field modeling and the approach of estimating the satellite accelerations in
Guo et al. [25]. The paper is organized as follows. Section 2 describes the functional models of satellite
acceleration and gravity field determination. Section 3 shows the experimental results. Section 4
discusses the findings of this research, and Section 5 presents our conclusions.
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2. Methods

In this paper, the point-wise acceleration approach was applied to recover the gravity field
model from the 3D satellite positions, which were computed based on either the carrier phase
differentiation method or orbit differentiation algorithm. The functional models for the satellite
acceleration determination are given in Section 2.1, and the point-wise acceleration approach for
recovering the gravity field model is briefly summarized in Section 2.2.

2.1. Functional Models for the Determination of the Satellite Acceleration

2.1.1. Numerical Differentiation Method

The numerical differentiation approach is often used to derive the second order derivative
from the time series {z(t)}; a functional model with constant coefficients is fitted to the time
series and is subsequently differentiated analytically to obtain its derivatives. There are numerous
numerical differentiators that could be used in this approach, including polynomial interpolation,
Newton–Gregory differentiation, and Taylor–MacLaurin differentiation [26]. With reference to the
analysis of the computational efficiency and performance in Baur et al. [8], we adopted the sixth-order
seven-point polynomial fitting in this article. The basic formula for polynomial interpolation depending
on the time difference τ is expressed as [26]:

z(t0 + τi)N =
N∑

j=0

c jτ
j
i , τi =

(
i−

[M
2

])
∆t (1)

where z(t0 + τi) is the arbitrary time series; i is the index of interpolated points; t0 is the time at which
the polynomial is evaluated; τi is the time difference between t0 and the actual data point; M is the total
number of data points used for the interpolation; N is the degree of the polynomial; ∆t is the sampling
interval; and c j is the polynomial coefficient.

The polynomial was fitted to numbers of neighboring points along the satellite track and then the
polynomial coefficients were estimated through a classical least squares [18,26]. Due to polynomial
oscillations at the interval boundaries, the polynomial was evaluated at the central point. Finally,
we respectively differentiated Equation (1) once and twice, which provided the following formula:

.
z(t0) = gT

·z
..
z(t0) = hT

·z
(2)

where
.
z(t0),

..
z(t0) are the first and second derivatives of the time series; g and h are the differentiation

operator with the constant coefficients corresponding to the sixth-order seven-point polynomial,
which are shown in the following:
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2.1.2. Carrier Phase Differentiation Method

The ionosphere-free carrier phase combination observation between the GPS satellite and LEO
satellite receiver is given as follows [21]:

ϕS
r = ρS

r + c
(
dtr − dtS

)
+ relSr + NS

r +ωS
r + εS

r (4)

where ϕS
r is the ionosphere-free carrier phase combination measurement; ρS

r is the geometric range
between the GPS satellite and the LEO satellite receiver antenna; dtr and dtS are the LEO satellite
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and GPS satellite clock offsets, respectively; relSr is the relativistic correction; NS
r is the carrier phase

ambiguity; ωS
r is the wind-up effect; and εS

r is the remaining unidentifiable noise.
The data pre-processing of raw carrier phase observations focused on the error corrections in

Equation (4). The accurate error corrections (relSr andωS
r ) terms were modeled referring to Montenbruck

et al. [27] and the satellite receiver clock offsets dtS were interpolated with GPS precise clock products
released by International GNSS Service(IGS) [28]. After pre-processing the data, we could construct an
item ϕ̂S

r = ϕS
r + cdtS

− relSr −ωS
r , and introduce it into Equation (4). We have:

ϕ̂S
r = ρS

r + cdtr + NS
r + εS

r (5)

Differentiating Equation (5) yields [24]:

.
ϕ̂

S
r =

.
ρ

S
r + cd

.
tr +

.
N

S
r +

.
ε

S
r (6)

Given that
.

N
S
r = 0 when no cycle slip occurs with

.
ε

S
r omitted, we have:

.
ϕ̂

S
r =

.
ρ

S
r + cd

.
tr (7)

Differentiating Equation (7) then gives:

..
ϕ̂

S
r =

..
ρ

S
r + cd

..
tr (8)

According to the inter-satellite geometric relationship between the GPS satellite and LEO
satellite [29], the equations of the LEO’s satellite velocity and acceleration are represented as [24]:

.
ρ

S
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r ·
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xS

= −eS
r ·
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xr

..
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S
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−
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(9)

where eS
r is the unit direction vector between the GPS satellite and LEO satellite receiver;

.
xS and

..
xS are

the GPS satellite velocity and acceleration; and
.
xr and

..
xr are the LEO satellite velocity and acceleration,

respectively, which are considered unknown parameters to be determined.
Introducing Equation (7) and Equation (8) into Equation (9), the expression of the carrier

phase-based acceleration is derived as follows: −eS
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−eS
r ·

..
xr + cd

..
tr =

..
ϕ̂

S
r − eS

r ·
..
xS
−

1
ρS

r

[∣∣∣∣ .
xS

r

∣∣∣∣2 − ( .
ρ

S
r

)2] (10)

where
.
xS and

..
xS are provided by IGS precise ephemeris; ρS

r ,
.
ρ

S
r and eS

r are well known from the study

of the line-of-sight accelerations [23]; and
.
ϕ̂

S
r ,

..
ϕ̂

S
r are derived from the GPS carrier phase observations

by the sixth-order seven-point differentiation operator, which are separately listed as follows [26]:

.
ϕ̂

S
r = gT

·ϕ̂S
r

..
ϕ̂

S
r = hT

·ϕ̂S
r

(11)

where
.
ϕ̂

S
r ,

..
ϕ̂

S
r are the first and second derivatives of the ionosphere-free carrier phase combination

measurement; g and h are the corresponding impulse response as mentioned above.
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2.1.3. Orbit Differentiation Method

For the time series of satellite positions r(t), the polynomial is expressed as:

r(t0 + τi)N =
N∑

j=0

c jτ
j
i (12)

where r(t0 + τi) is the satellite position; other symbols are mentioned above.
Satellite accelerations can be represented as a linear combination of the satellite positions for

the constant sampling interval. The degree of the polynomial should be even and the points for the
interpolation should be odd, which guarantees a symmetrical distribution around the central time
at which the polynomial is evaluated [26]. In fact, the sampling interval ∆t of the PKI orbit and the
carrier phase observations is not constant. There are two main reasons for choosing the sixth-order
seven-point differentiation operator with constant coefficients. First, the differentiation with the
constant coefficients is more efficient than the differentiation with non-constant sampling interval,
which must estimate the coefficients individually for the seven input points. Second, the percentage
of the carrier phase observations with the maximum adjacent epoch difference of continuous seven
points greater than 6 × 10−6 s is less than 1%, which can be ignored. Accordingly, we only used
the data with the adjacent epoch difference less than 6 × 10−6 s. Further, we tested the accuracy of
the unequally sampled differential accelerations derived with constant differentiation coefficients in
inertial reference frame (IRF), as seen in Table 1. The data used for the test is from November 1 2009 to
January 11 2010 (71 days). According to the Table 1, the accuracy of the differential accelerations is less
than 3.039 × 10−7, which satisfies the requirement of the gravity field modeling.

Table 1. Accuracy analysis of equally sampled and unequally sampled differential accelerations in IRF
(unit: m/s2).

Component Min Max Mean RMS

X −3.968 × 10−5 3.809 × 10−5 4.522 × 10−10 3.039 × 10−7

Y −1.612 × 10−5 1.563 × 10−5
−1.649 × 10−10 1.105 × 10−7

Z −1.457 × 10−5 1.313 × 10−5 1.978 × 10−10 1.204 × 10−7

2.2. Point-Wise Acceleration Approach for Recovering Gravity Field Model

The point-wise acceleration approach for recovering the gravity field model is based on Newton’s
equation of motion in the inertial reference frame [18]:

..
r− ac f − anc f = RI

E∇V(r,θ,λ) (13)

where
..
r is the satellite acceleration; ac f denotes the time-variable gravity field signals; anc f is the

non-gravitational acceleration; RI
E denotes the rotation matrix from the Earth-fixed reference frame to the

inertial reference frame; 5 is regarded as the gradient symbol; and V is the static gravitational potential.
Although the GOCE satellite makes use of a drag-free control system in the flight direction that

has largely compensated for the non-gravitational perturbation (mainly air-drag), it is indispensable to
accommodate for the systematic errors caused by satellite attitude control, the resulting movement
of center-of-mass, and the inconsistent derivation scale factors of each accelerometers. 1-cpr
empirical acceleration parameters were often used to absorb the remaining non-gravitational
accelerations [30]. We also estimated SH coefficients by estimating the 1 cpr empirical parameters.
There was not a significant difference in the solution without estimating the empirical parameters.
Accordingly, we preferred to determine SH coefficients without estimating the empirical parameters.
All time-variable gravity field signals that include third-body accelerations, tidal accelerations,
and relativistic effects were computed according to background models [31–34].
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As described in Heiskanen and Moritz [35], the gravitational potential V is usually represented in
spherical harmonic series expansion:

V(r,θ,λ) =
GM
R

N∑
n=0

(R
r

)n+1 n∑
m=0

(
Cnm cos mλ+ Snm sin mλ

)
Pnm(cosθ) (14)

where (r,θ,λ) denotes the spherical polar coordinates with radius, co-latitude, and longitude; GM is
the geocentric gravitational constant; R is the Earth’s mean radius; Pnm denotes the fully normalized
associated Legendre functions of degree n and order m; N is the maximum spherical harmonic degree;
and Cnm and Snm are the geopotential coefficients. Combining Equations (13) and (14), a regression
model can be formed:

y = Bx + ∆ (15)

Therein, y denotes the observation vectors; ∆ denotes the error vectors; B is the design matrix;
and x is the unknown geopotential coefficient.

Using Equation (15), the geopotential coefficients can be estimated based on the least-squares
method from the satellite accelerations. To guarantee an unbiased estimate, we did not use a
regularization technique in the least squares.

3. Results

This section presents the experimental results including the GOCE real data description and
preprocessing in Section 3.1, the noise analysis of satellite accelerations obtained from both the orbit
differentiation method and carrier phase differentiation method in Section 3.2, and the accuracy
assessment of the derived gravity field models in Section 3.3.

3.1. Experimental Data and its Preprocessing

To verify the feasibility of the proposed carrier phase differentiation method, the officially
released GOCE Level 1b and SST_PSO_2 products [36,37] for 71 days (from November 1 2009 to
January 11 2010) with a 1 s sampling interval were used first for testing. The data period was in
accordance with the period used for the computation of the first-generation gravity field model released
by the GOCE High-Level Processing Facility [38]. The SST_PSO_2 product contains the kinematic
orbits (SST_PKI_2), reduced-dynamic orbits (SST_PRD_2), and the Earth’s orientation quaternions
(SST_PRM_2). The SST_PRM_2 data are used to transform accelerations from an Earth-fixed reference
frame to an inertial reference frame. The accuracy of the GOCE satellite official scientific orbit data over
the entire mission was up to 2 cm in each direction, i.e., nearly 3.5 cm in three dimensions [39]. For the
carrier phase differentiation method, the time of all of the used data was synchronized by interpolation
to coincide with the time of the original carrier phase observations. For the orbit differentiation method,
the time of all data used for gravity field modeling was synchronized by interpolation to coincide with
the time of raw kinematic orbits.

For the orbit differentiation method, three kinematic orbits were used for gravity field modeling.
One was the released SST-PKI-2 product by ESA, hereafter denoted as the ESA-orbit. The other
was provided by the Institute of Theoretical Geodesy and Satellite Geodesy, Graz University of
Technology [40], hereafter denoted as the Graz-orbit. The third was the kinematic orbit estimated
by our own product, hereafter denoted as the SGG-orbit. In addition, the background force models
used for computing the time-variable accelerations (e.g., third-body accelerations, tidal accelerations,
and relativistic effects) are listed in Table 2.
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Table 2. Background force models.

Category Description

Third-body perturbations DE405 [31]
Solid Earth tides IERS Conventions 2010 [32]

Ocean tides EOT11a [33]
Solid Earth pole tides IERS Conventions 2010

Ocean pole tides Desai [34]
General relativistic effects IERS Conventions 2010

PKI orbits are normally used to recover the Earth’s gravity field because they are independent of
a priori gravity field models [39]. However, due to the geometric conditions of GPS satellites, some
data gaps or lower quality data always exists in the PKI orbits. The number of the data gaps for the
three PKI orbits and carrier phase derived accelerations for 71 days is shown in Table 3. The data
derived by the carrier phase differentiation method included more data gaps than other methods.
In addition, we subtracted reference accelerations computed with the model DGM-1S [41] from the
differential accelerations to obtain residual accelerations. Then, the residual accelerations exceeding
three times the corresponding standard deviations were identified as outliers and discarded according
to the method used in Guo et al. [25]. The corresponding standard deviations were estimated based
on the method with five iterations, and they were 1.12, 0.81 and 1.90 mGal, respectively, for the three
components of the carrier phase-derived accelerations. These values were also used for the gross error
detection for the other three methods. The gross error ratios of the accelerations derived from four
different methods are shown in Table 3. According to Table 3, the least number of gross errors in
accelerations was obtained from the carrier phase method.

Table 3. Orbit data gap ratio and gross error elimination ratio of the residual accelerations of 71 days.

Method

Carrier Phase ESA-Orbit Graz-Orbit SGG-Orbit

Data gap 9.712%� 5.702%� 3.533%� 5.667%�

Gross error
elimination 9.529% 12.257% 11.963% 10.679%

Figure 1 shows the spatial distribution of gross errors in the residual accelerations in three directions
(radial, along-track, and cross-track) derived by the carrier phase differentiation method and the orbit
differentiation method. More gross errors and large errors were located close to the geomagnetic
poles in the case of both the carrier phase differentiation method and the orbit differentiation method.
Furthermore, the radial residual accelerations were noisier than the other two components, which is
consistent with the results presented in Table 4.
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3.2. Accuracy Analysis of Residual Accelerations

Using the carrier phase/orbit differentiation method, we derived four acceleration sets with
gross error elimination applied from the datasets described in the previous section. To analyze the
accuracy of the derived accelerations, residual accelerations were obtained by subtracting the prior
accelerations derived from the DGM-1S model from the differentiated accelerations. Statistics of the
residual accelerations derived by the four different methods are listed in Table 4. According to the
root mean square (RMS) in Table 4, the accelerations obtained by the carrier phase differentiation
method had a slightly higher precision than the others in the three directions. In consideration of the
3D-RMS in the Table 4, the accuracy of the results obtained by the carrier phase differentiation method
were 20%, 6%, and 12% higher than those obtained by the ESA-orbit differentiation, the Graz-orbit
differentiation, and the SGG-orbit differentiation, respectively. Our results derived by the two different
methods were close to each other. The main reason for this is that the same carrier phase data and
similar processing strategies were adopted for the carrier phase differentiation method and the orbit
differentiation method. Furthermore, the RMS of the residuals revealed that the precision of the radial
was worse than those of the other two components, which is similar to the case of gross error detection
in the derived accelerations.

Table 4. Error statistics of the residual accelerations of 71 days (unit: m/s2).

Method Component Min Max Mean RMS 3D-RMS

Carrier
phase

Along-track −2.962 × 10−5 2.962 × 10−5 1.656 × 10−9 1.115 × 10−5

1.241 × 10−5Cross-track −2.508 × 10−5 2.508 × 10−5 3.775 × 10−10 8.104 × 10−6

Radial −6.405 × 10−5 6.405 × 10−5 2.842 × 10−9 1.909 × 10−5
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Table 4. Cont.

Method Component Min Max Mean RMS 3D-RMS

ESA-orbit
Along-track −3.921 × 10−5 3.921 × 10−5

−2.706 × 10−9 1.231 × 10−5

1.557 × 10−5Cross-track −3.699 × 10−5 3.699 × 10−5 7.520 × 10−10 9.675 × 10−6

Radial −8.975 × 10−5 8.975 × 10−5 2.410 × 10−9 2.408 × 10−5

Graz-orbit
Along-track −3.664 × 10−5 3.664 × 10−5 2.471 × 10−9 1.221 × 10−5

1.319 × 10−5Cross-track −3.634 × 10−5 3.634 × 10−5
−3.226 × 10−9 1.211 × 10−6

Radial −7.023 × 10−5 7.023 × 10−5 8.513 × 10−9 2.341 × 10−5

SGG-orbit
Along-track −3.692 × 10−5 3.692 × 10−5 4.038 × 10−9 1.123 × 10−5

1.422 × 10−5Cross-track −3.669 × 10−5 3.669 × 10−5 4.498 × 10−9 1.223 × 10−5

Radial −6.664 × 10−5 6.664 × 10−5 6.468 × 10−9 2.221 × 10−5

We also plotted the square root of the power spectral density (PSD) of 1 day residual accelerations
derived by four different methods, which are shown in Figure 2. As seen in the Figure 2, the PSD
curves of the residual accelerations of the four cases were similar, especially for the carrier phase
and SGG-orbit differentiated accelerations, which showed that the errors increased with an increase
in the frequency when f < 0.015 Hz. This character is consistent with the inherent property of the
numerical differentiation, i.e., the time series signal will be multiplied by ω2 in the frequency domain
after applying numerical differentiation, where ω is the frequency. In addition, the errors of the radial
component were about twice that of the other two components. Simultaneously, the magnitudes of the
square-root PSDs derived from the different methods were slightly different. For all three components,
the magnitude in the case of the carrier phase method was slightly lower than those in the case of the
SGG-orbit method in the high frequency part (~ f > 0.003 Hz).
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3.3. Gravity Field Solutions

3.3.1. Solutions estimated from 71 days of observations

We estimated four satellite gravity field models up to d/o 130 using the point-wise acceleration
method from the accelerations derived in the previous section. The EIGEN-6C4 model up to d/o
130 was used as the reference model to validate the estimated gravity field models. This model was
characterized by a higher accuracy because it was constructed by a combination of multi-source gravity
data such as GOCE, GRACE, and LAGEOS satellite observations, satellite altimetry, and ground gravity
data [42]. Note that the empirical variance-covariance matrices used here were constructed directly by
using residual accelerations.

From the perspective of gravity spectroscopy, Figure 3 depicts the residual spherical harmonic
spectra with a log10 scale of the estimated solutions when compared with the EIGEN-6C4 model.
According to Figure 3, the distribution of all of the residual harmonic coefficient spectra were similar.
The noise in the spherical harmonic coefficients increased with the spherical harmonic degree and the
sectorial and near sectorial harmonic coefficients had better accuracy, which is an inherent feature of
the SST-hl observations used for gravity field modeling [29]. The near sectorial harmonic coefficients
based on the Graz-orbit differentiated accelerations performed best, and the accuracy of the zonal and
near zonal coefficients was worse. Furthermore, the high degree harmonic coefficients estimated by
the carrier phase method performed the best.

Figure 3. Spherical harmonics triangle of the estimated geopotential coefficients when compared
with EIGEN-6C4.

To assess the performance of the recovered gravity field models in the spectral domain,
the Degree-Error Root Mean Square (DE-RMS) values and cumulative geoid height differences
(σ(C)Nn

) were computed according to the following formula [18]:

DE−RMSn =

√√
1

2n− 8

n∑
m=5

[(
C

est
nm −C

re f
nm

)2
+

(
S

est
nm − S

re f
nm

)2
]

(16)
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where
(
C

est
nm, S

est
nm

)
are the estimated spherical harmonic coefficients, and

(
C

re f
nm, S

re f
nm

)
denote the

coefficients of the reference gravity field model; R denotes the Earth’s mean radius. Additionally,
to account for the polar gap problem, neglecting m < 5 is applicable for the computation of the DE-RMS
and cumulative geoid height differences.

Figure 4 shows the DE-RMS of the four recovered models. Table 5 presents the cumulative geoid
height differences for the degrees from 10 to 130. From Figure 4 and Table 5, for the whole frequency
band of the recovered model, the carrier phase differentiation method had a comparable performance
with the orbit differentiation method. The cumulative geoid height difference of the carrier phase
solution up to 130 was the smallest, which was 37.02 cm. The geoid height differences of the recovered
gravity field solutions are shown in Table 6, and their spatial distributions are shown in Figure 5.
We applied a 500-km Gaussian filter to suppress the high-frequency noise of the gravity field [43].
Table 6 demonstrates the errors of the geoid heights derived by the carrier phase differentiation method,
which were close to those obtained by the ESA-orbit differentiation method and is consistent with the
results seen in Table 5. According to Figure 5, the large errors were located near the geomagnetic equator
and polar region in the solutions, which is consistent with the situation of the residual accelerations
shown in Section 3.2.
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Table 5. Cumulative geoid height differences (unit: cm) w.r.t. EIGEN-6C4 up to different degrees.

Degree Carrier Phase
Solution

ESA-Orbit
Solution

Graz-Orbit
Solution

SGG-Orbit
Solution

10 0.09 0.08 0.07 0.08
30 0.67 0.65 0.48 0.71
50 2.28 1.88 1.51 2.54
70 5.50 4.43 4.70 6.32
90 11.71 10.34 13.97 14.09
110 21.98 21.30 26.68 26.28
130 37.02 39.19 46.72 46.96

Table 6. Statistics of the geoid height differences (unit: m) w.r.t. EIGEN-6C4 with the 500 km Gaussian
smoothing applied.

Method Min Max Mean RMS

Carrier phase solution −0.469 0.201 3.531 × 10−3 0.068
ESA-orbit solution −0.360 0.331 1.001 × 10−2 0.060
Graz-orbit solution −0.728 0.261 5.091 × 10−3 0.096
SGG-orbit solution −0.365 0.187 1.251 × 10−3 0.063
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3.3.2. Solutions estimated from 2.5 years of observations

Finally, we extend GOCE data span to the period from November 2009 to July 2012 to compile
the carrier phase, ESA-orbit, and Graz-orbit solutions up to degree and order 130. This data period
is comparable with the one used in Guo et al. [25], and the gravity field model DGM-1S was also
used as a reference model to access the quality of the obtained three gravity field solutions similar
to Guo et al. [25]. The model DGM-1S is based on data from the GRACE and GOCE satellite gravity
missions [41]. Figure 6 depicts the DE-RMS of three solutions. Table 7 shows the cumulative geoid
height differences w.r.t. DGM-1S for the degrees up to d/o 130. Figure 7 presents the spatial distribution
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of the recovered gravity field solutions with the 500-km Gaussian smoothing filter applied. There are
obvious systematic errors along the geomagnetic equator, especially for the solutions obtained from
the orbit differentiation method, which is the same situation in Guo et al. [25].

Table 7. Cumulative geoid height differences (unit: cm) w.r.t. DGM-1S up to different degrees.

Degree Carrier Phase Solution ESA-Orbit Solution Graz-Orbit Solution

10 0.07 0.05 0.03
30 0.38 0.36 0.28
50 1.08 1.01 0.97
70 2.60 2.64 2.76
90 5.58 6.02 6.57

110 10.36 11.76 12.71
130 17.70 21.43 22.11
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Figure 7. Geoid height errors of the recovered spherical harmonic coefficients w.r.t. DGM-1S with the
500 km Gaussian smoothing applied.

4. Discussion

According to Figures 1 and 2 as well as Table 4, the derived radial accelerations were noisier
than the other two components. This can be explained by a relatively low accuracy of the GPS
positioning in the radial direction, which is caused by the geometric configuration of the satellite
constellation [44–46]. Additionally, the along-track accelerations performed weaker than the cross-track
component, which was caused by an increase or decrease in the number of visible satellites because
geometry changes can inevitably degrade the position solution and create large acceleration errors [46].
Therefore, stringent position accuracies and poor tolerance of geometry changes are the main drawbacks
of the orbit differentiation method. However, the carrier phase differentiation method is more robust
because no ambiguity resolution is required. In addition, the distribution of gross errors in Figure 1
and geoidal errors in Figures 5 and 7 were geographically correlated and highly inhomogeneous; large
errors were mainly located close to the geomagnetic poles. There are two reasons for this situation:
the poor observation geometry in geographical polar region, which is very close to the geomagnetic
polar region; and the ionospheric scintillation effects, which cause short-period irregular changes in
the phase and amplitude of signal [44].

According to Figures 4 and 6 as well as Tables 5 and 7, the carrier phase solution showed a slightly
better performance than the other solutions derived from the orbits only in the high-frequency portion;
the 71-day solution corresponds to degree n > 100 and 2.5-year solution corresponds to degree n > 70.
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In this frequency band, the acceleration noise of the carrier phase solution was lower than the others,
as shown in Figure 2. The degrees 100 and 70 approximately correspond to the frequency 0.019 and
0.013 Hz. In comparison with the Graz-orbit solution, the carrier phase solution had a lower accuracy
for the degree n < 70 and a higher accuracy for n > 70, which is consistent with frequencies less than
0.013 Hz (approximately corresponding to the degree 70). Moreover, the cumulative geoid height
differences of the Graz-orbit, ESA-orbit, and carrier phase solutions up to degree 50 were 0.97, 1.01,
and 1.08 cm, respectively, as seen in in Table 7, which shows that the Graz-orbit solution had the
highest precision for the degrees lower than 50. In Table 5, the carrier phase solution was better than the
SGG-orbit solution for almost all degrees (n > 30), and the accuracy improvement of geoid height up to
d/o 130 was 21%, which is similar to that in Guo et al. [25]. A comparison of Figures 4 and 6 as well as
Tables 5 and 7 indicates that the longer data period has improved the solutions significantly along the
entire frequency band. In addition, as depicted in Figures 5 and 7, the pronounced errors along the
geomagnetic equator were observed in all solutions. This is a result of the high electron density in
addition to large short-term variations in the ionosphere near the geomagnetic equator [47,48].

As shown in Figure 3, the zonal and near-zonal spherical harmonics coefficients of the recovered
models were worse than the other coefficients due to the fact that the GOCE satellite flies in a
sun synchronous orbit with an inclination of 96.7◦, which causes the ill-posed problem of the least
squares used for recovering the gravity field model [49,50]. However, zonal harmonic coefficients
estimated by the carrier phase differentiation method were slightly better than those from the orbit
differentiation method.

5. Conclusions

The point-wise acceleration approach was proposed to recover the gravity field model based
on satellite accelerations directly estimated from the GOCE’s onboard carrier phase observations.
The satellite accelerations derived by the carrier phase differentiation method had a slightly better
quality in terms of time-domain than those derived by the kinematic orbit differentiation method,
respectively. A static gravity field model up to degree and order 130 was compiled from 71 days and
2.5 years of GOCE SST-hl data by the carrier phase differentiation method. Additionally, the gravity
models were estimated based on the conventional orbit differentiation method from the ESA’s, Graz’s,
and SGG’s PKI orbits. In comparison with the reference models (EIGEN-6C4 and DGM-1S) in
accordance with DE-RMS, the 71-day carrier phase solution was slightly better than the SGG-orbit
solution in the entire frequency band; however, it showed a worse performance in the low frequency
part than the ESA-orbit solution and Graz-orbit solution. Furthermore, the 2.5-year carrier phase
solution had the best accuracy for the degrees greater than 70, and its cumulative geoid height error up
to d/o 130 was the lowest, which indicates that the proposed approach in this paper shows very good
performance for gravity field modeling from the SST-hl observations.

The empirical variance-covariance matrices used in this paper were constructed directly by using
the residual accelerations. In the future, the variance-covariance matrix can be derived by using the
error propagation method from the prior carrier phase and orbital variance-covariance information.
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