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Abstract: In the field of quantitative remote sensing of forest biomass, a prominent phenomenon is
the increasing number of explanatory variables. Then how to effectively select explanatory variables
has become an important issue. Linear regression model is one of the commonly used remote sensing
models. In the process of establishing the linear regression model, a vital step is to select explanatory
variables. Focusing on variable selection and model stability, this paper conducts a comparative study
on the performance of eight linear regression parameter estimation methods (Stepwise Regression
Method (SR), Criterions Based on The Bayes Method (BIC), Criterions Based on The Bayes Method
(AIC), Criterions Based on Prediction Error (Cp), Least Absolute Shrinkage and Selection Operator
(Lasso), Adaptive Lasso, Smoothly Clipped Absolute Deviation (SCAD), Non-negative garrote
(NNG)) in the subtropical forest biomass remote sensing model development. For the purpose of
comparison, OLS and RR, are commonly used as methods with no variable selection ability, and
are also compared and discussed. The performance of five aspects are evaluated in this paper: (i)
Determination coefficient, prediction error, model error, etc., (ii) significance test about the difference
between determination coefficients, (iii) parameter stability, (iv) variable selection stability and (v)
variable selection ability of the methods. All the results are obtained through a five ten-fold CV. Some
evaluation indexes are calculated with or without degrees of freedom. The results show that BIC
performs best in comprehensive evaluation, while NNG, Cp and AIC perform poorly as a whole.
Other methods show a great difference in the performance on each index. SR has a strong capability in
variable selection, although it is poor in commonly used indexes. The short-wave infrared band and
the texture features derived from it are selected most frequently by various methods, indicating that
these variables play an important role in forest biomass estimation. Some of the conclusions in this
paper are likely to change as the study object changes. The ultimate goal of this paper is to introduce
various model establishment methods with variable selection capability, so that we can have more
choices when establishing similar models, and we can know how to select the most appropriate and
effective method for specific problems.
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model

Remote Sens. 2019, 11, 1437; doi:10.3390/rs11121437 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs11121437
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/12/1437?type=check_update&version=2


Remote Sens. 2019, 11, 1437 2 of 28

1. Introduction

The importance of forest ecosystem services function has been universally acknowledged,
especially in that it plays an important role in maintaining global carbon balance. Deforestation and
conversion of forestland use types can cause carbon emissions to the atmosphere, thereby influencing
the global climate as well as environmental changes [1–5]. Forest biomass accounts for about 90% of
the global terrestrial vegetation biomass, which is not only an important indicator of forest carbon
sequestration capacity, but also an important parameter for assessing forest carbon budget [6–8]. Under
the current situation that global climate change has attracted common attention, ecosystem function
requires accurate forest biomass estimation and its dynamic changes [9].

Total forest biomass includes aboveground biomass (AGB) and underground biomass. As a result
of the difficulty in collecting field survey data for underground biomass, most of the biomass research
is concentrated in the above-ground biomass segment [10]. There are many ways to estimate forest
biomass. The most accurate method is on the basis of on-site measurements, but the labor costs and
economic costs of on-site measurement are too high, and are not suitable for large-area census [11–13].
In order to meet large-area forest biomass surveys, currently an effective rapid estimation method
is the forest AGB survey which combines remote sensing images and plot data. Roy et al. [14] used
multiple regression equations of brightness and humidity to predict biomass. Næsset et al. [15] used a
log-transformed linear regression model to match the linear relationship between lidar variables and
ground biomass. Zheng et al. [16] used multiple regression analysis to couple the AGB values which
are obtained from the field measurements of the DBH to the various vegetation indices derived from
the landsat 7 ETM+ data, thereby generating an initial biomass map. Sun et al. [17] used the airborne
lidar and SAR data and used Stepwise regression (SR) to select and predict variables in the study of
Howland, Maine, USA, which gradually selected the high index of laser vegetation imaging sensor
(LVIS) data of rh50 and rh75. Kumar et al. [18] combined multi-level statistical techniques for IRS P-6
LISS III satellite data to estimate biomass. Based on Landsat TM, ALOS PALSAR data, Gao et al. [19]
used parameters, non-parametric and machine learning methods to conduct forest biomass research
and found that the linear regression method was still an important tool for AGB modeling, especially
the AGB range of 40–120 Mg/Ha; he also found that machine learning and nonparametric algorithms
have limited effectiveness in improving AGB estimates within this range. Zhao et al. [20] used TM,
PALSAR, image band and texture information as alternative variables in their research, and used the
multivariate SR method to establish the biomass estimation model.

Among the methods of estimating biomass using remote sensing technology, the linear regression
model is one of the important methods. Remote sensing data contains many potential variables
that can be used for the estimation modeling of biomass, which includes multi-spectral and even
hyperspectral data, vegetation indices derived from spectral data, texture data. In addition, terrain
data, meteorological data, etc. can also be used for the construction of models. A large number of
variables bring difficulties to the construction of linear regression models. Some variables can be
recognized as not important variables and then be removed through some preliminary analyses. Some
variables perform well when tested singly. However, it is not necessary to bring them all into the
model because they are highly correlated to each other. Since the correlation between variables is
high, it is easy to result in the problems such as serious collinearity, the difficulty in the selection of
important variables, the model is not concise, and the prediction results are unstable. How to choose
variables and to build a simple, stable and accurate model is an important issue in the construction
of remote sensing biomass models. At present, many methods have been put forward to deal with
the problem of collinearity and variable selection encountered in the construction of linear models.
Some of these methods are commonly used in the construction of biomass models, such as SR, and
others have not appeared in the report about the construction of biomass models. This paper uses
some important methods, which are put forward by the predecessors to overcome the collinearity and
solve the variable selection problem, to conduct biomass modeling and compare their ability in the
construction of biomass models.
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The current linear model variable selection methods can be generally divided into two categories.
One category is the subset selection, such as SR, a method of this category selects a so-called optimal
subset (according to a certain criterion, see Section 4.3) from the original variable set. Parameters in
the final model established by a subset selection method are the same as estimated by ordinary least
square (OLS) according to the variable subset. The other category is the coefficient shrink, which has
almost no application in biomass modeling, such as the Lasso (Least Absolute Shrinkage and Selection
Operator) method. The principle of it is generally to add a penalty function to the objective function
and reduce the number of variables of the model by shrinking the coefficients corresponding to the
variables. Parameters in the final model established by a coefficient shrink method are different from
the parameters estimated by OLS according to the final variable subset.

At present, the methods of coefficient shrink are widely used in other disciplines and fields. For
example, Fujino et al. [21] used a variety of regression models to predict the future improvement of
visual acuity in glaucoma patients. It is found that the prediction error (PE) of the Lasso method
is smaller than that of OLS when the sample size is small. In order to accurately predict the cost
of highway project construction and prevent the cost from rising, a parameterized cost estimation
model is developed. Zhang et al. [22] found that the model obtained by the LASSO method is easier
to understand, and that the average absolute error, average absolute percent error and root mean
square error of the Lasso model are better than that of the OLS method. Roy et al. [23] predicted
the change of Goldman Sachs Group Inc stock price based on the Lasso method. The prediction
effect of the Lasso model is better than that of the ridge regression (RR) model. Maharlouei et al. [24]
used AdaLasso (Adaptive Least Absolute Shrinkage and Selection Operator) to perform multivariate
regression analysis on the effect of exclusive breast-feeding time on Iranian infants. The results
show that AdaLasso has more advantages than RR in the complexity and prediction accuracy of
the model compared with RR in the presence of a large number of variables. Shahraki et al. [25]
used two regression models, AdaLasso and RR, to study the main factors affecting death after liver
transplantation. The results showed that AdaLasso was superior to the traditional regression model as
a punishment model. Zhang et al. [26] used the Lasso, AdaLasso, SCAD (Smoothly Clipped Absolute
Deviation) model to select the parameters of the key indexes in the process of cigarette drying and
to determine the best drying method. The coefficient shrink method is superior to the traditional SR
method, and the SCAD method is the best. In these studies, the coefficient shrink model performs
better than the traditional linear regression model, which shows that the coefficient shrink method is
more powerful in the selection of variables and parameter estimation.

In this paper, four subset selection methods (SR, BIC (Bayesian Information Criterion), AIC (Akaike
Information Criterion) and CP criterion) and four coefficient shrink methods (LASSO, ADALASSO,
SCAD and NNG (Non-Negative garrote) are compared. In addition, OLS and Ridge Regression
(RR) are also added to the comparison. As the most basic parameter estimation method of the linear
regression model, OLS can be used to estimate the variances of parameters. Therefore, the significance
of single parameter can be tested by the t-test, and the importance of corresponding variables can
be known. Sometimes it can also be used to explain the choice of variables. However, because of
the existence of correlation between variables, the importance of such variables is not very helpful
in selecting variables. In practical applications, it is seldom directly based on the significance of a
single variable to select variables, especially when the number of variables is large. In addition, SR is
based on an objective function that is similar to that of OLS, and to automatically search for an optical
subset through some tests under some criteria. However, it is already called another method. So this
paper classifies OLS into a class of methods without variable selection capability. RR is specifically for
collinearity and has no variable selection capability.

These methods have different purposes in common applications. The purpose of four subset
selection methods and four coefficient shrink methods is to select variable subsets. The purpose of
OLS is to directly estimate parameters after the variable set has been determined and it is assumed to



Remote Sens. 2019, 11, 1437 4 of 28

be free of collinearity, while the purpose of RR is to directly estimate parameters after the variable set
has been determined and the variables have serious collinearity.

The purpose of the paper is to introduce various model establishment methods with variable
selection capability, so that one could have more choices when establishing a similar model, and one
could know how to select the most appropriate and effective method for a specific issue.

2. Study Area

The Zhejiang Province (27◦12′~31◦31′E, 118◦00′~123◦00′N) is located in the eastern coastal area
of China, with an east-west and a north-south width of 450 km. It belongs to the subtropical monsoon
climate zone, with an average annual precipitation of about 1600 mm. It is one of the regions with
abundant precipitation in China. The land area of the province is 101,800 km2, and the mountains
and hills account for 74.63% of the area. The forest resource is abundant. The main types of forest
are coniferous forest, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest and
bamboo forest. The forest area is 606 million hm2; and the standing trees occupy 350 million m3. The
volume of one hectare is 73.49 m3. The average canopy density of the arboreal forest is 0.61. The
forest coverage rate is 61.00%, ranking the top in the country. The scope of the study area is shown in
Figure 1, which is covered by remote sensing images in the Zhejiang Province with an area of about
60,540 km2. The study area covers most regions of Huzhou, Jiaxing, Hangzhou, Shaoxing, Jinhua,
Lishui and Quzhou, is mainly located at the middle-low mountain areas in the northwest of Zhejiang,
the hilly basins in the middle of Zhejiang and the middle mountain area in the south of Zhejiang. The
study area covers 59% of the Zhejiang Province with pine forest, Chinese fir forest, broad-leaved forest,
bamboo forest, mingled forest and shrubwood. The tree species are diverse and the stand structure is
complex. Its forest characteristic is very typical and representative in the Zhejiang Province and the
subtropical area of China.
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3. Data

3.1. Sample Plot Data

Between 2010 and 2011, a total of 802 sample plots were collected within the study area, including
pine, Chinese fir, broad-leaved, mixed forests, bamboo and shrubwood forest. The plot is a square of



Remote Sens. 2019, 11, 1437 5 of 28

20 m × 20 m. The BDH (D), height (H), crown diameter (C) and crown length (L) of the trees whose
DBH is equal to or more than 5 cm in the plot were measured, and the tree species recorded. Three
subplots in the size of 2 m × 2 m were set up in the plot, in which the underwood (arbor whose
DBH is less than 5 cm), shrub and herbal were measured. The forest biomass is calculated based on
tree species groups [27]. The total above ground biomass of arbor and bamboo W = trunk biomass
W1+crown biomass W2, W1 = aDbHc, W2 = aDbLc. The model parameters are classified into the pine,
fir, hardwood, soft hardwood, and bamboo species group. The biomass of under wood and shrub
Wu = aDb

gH, Dg means ground diameter. The herbal biomass λmax(XTX), H means the mean height
of herbal in the subplot; G means the cover degree. All parameters in models for W1, W1, Wu and
Wgr are from reference [27]. These parameters were estimated by the weighted non-linear least square
regression method [27]. Errors involved in these original biomass models, are not considered in this
paper. Their applicable area covers the area of our study. The plot biomass min, max, mean, median,
std and number of plots by species group are shown in Table 1.

Table 1. Plot feature (Mg/ha).

Vegetation Type Number of Plots Min Max Mean Median Std

Pine forest 246 27.00 204.83 100.05 100.88 36.71
Chinese Fir 123 22.15 190.76 95.79 94.02 37.73

Broadleaf forest 192 20.51 175.71 86.98 84.90 35.05
Mixed forest of conifer and

broadleaf 124 31.92 180.70 104.58 105.89 34.30

Mao bamboo forest 87 10.47 108.04 54.08 54.99 20.06
Shrub 30 15.12 72.60 36.68 34.13 16.70
Total 802 10.47 204.83 89.61 86.29 38.39

3.2. Landsat TM Data

This study uses Landsat TM data received on 24 May 2010, geometrically displayed to the
Universal Transverse Mercator coordinate system (zone 50 north) with an RMSE value of less than 0.5
pixels. As for Landsat TM images, improved dark objects subtraction is used to convert the number
to surface reflectivity [28]. The GDEM data were used in the C-correction method for topographic
correction of Landsat TM images [29].

The spatial characteristics of high and medium spatial resolution images have been proved the
great value of improving forest biomass estimation in areas with complex forest structures. Among
different texture metrics, gray level co-occurrence matrices have been widely used [30]. This study uses
the Landsat TM spectral band to extract texture information in window sizes of 3 × 3, 5 × 5, 9 × 9, 11 ×
11, 13 × 13, 15 × 15 and 19 × 19 pixels, respectively. For the reason that the number of texture features
extracted from different windows is numerous and there is serious collinearity between textures, the
relationship between forest AGB and texture is analyzed by the Pearson correlation coefficient method
so as to find out the significant potential texture that is significantly related to AGB but no relationship
to each other.

After preliminary analysis, five spectral features of the 2th, 3th, 4th, 5th, and 7th bands of TM,
16 texture features, a total of 21 features were selected as the explanatory variables of the biomass
model and the plot biomass is assigned as the dependent variable to conduct linear modeling research
(Table 2). Although the features have been initially selected, 21 features still tend to be excessive, and
the collinearity problem still exists. The following discussion will focus on the feature selection based
on the 21 features.
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Table 2. Variable feature.

Variable Min Max Mean Median Std

y(AGB, Mg/ha) 10.469936 204.828878 89.610399 86.294500 38.385655
B2 0.013058 0.054918 0.033744 0.033854 0.006425
B3 0.012219 0.051848 0.025652 0.025000 0.005621
B4 0.113988 0.441654 0.260202 0.260961 0.055212
B5 0.072306 0.235539 0.142351 0.142560 0.027495
B7 0.029395 0.112000 0.063889 0.062513 0.013635

B3_W5_CC −0.560112 1.000000 0.442949 0.408000 0.442272
B2_W5_ME 0.120000 3.240000 1.707282 1.800000 0.401605
B3_W5_ME 0.080000 2.960000 1.200998 1.080000 0.328360
B4_W5_ME 9.120000 29.400000 18.191022 18.240000 3.287884
B5_W5_ME 4.320000 13.360000 8.704190 8.720000 1.423359
B7_W5_ME 1.760000 6.560000 3.688229 3.680000 0.727385
B2_W5_SM 0.116800 1.000000 0.562619 0.504000 0.253847
B3_W5_SM 0.126400 1.000000 0.657275 0.660800 0.286084
B5_W9_CC −0.304000 0.903743 0.451275 0.463857 0.191636
B7_W9_CC −0.203000 0.882595 0.404075 0.411891 0.202557
B2_W9_ME 0.246914 3.877000 1.745290 1.815000 0.403921
B3_W9_ME 0.123457 7.210000 1.259235 1.123460 0.417876
B4_W9_ME 7.777780 27.172800 18.078367 18.173000 3.053144
B5_W9_ME 3.641970 13.346000 8.728926 8.765215 1.313299
B7_W9_ME 1.493830 8.444000 3.749311 3.716050 0.719895
B3_W9_SM 0.088249 1.000000 0.598112 0.593373 0.279717

Note: Bi, spectral band i of Landsat TM image; Bi_Wj_XX, textural measure image developed from spectral band
i with a window size of j×j pixels using texture measures: Correlation (CC), entropy (EN), homogeneity (HO),
dissimilarity (DI), mean (ME), second moment (SM), variance (VA).

3.3. Collinearity Test of Explanatory Variables

The method of conditional number is an effective way to check whether there is collinearity
in data. We can assume X is the design matrix composed of n normalized observation vectors of
explanatory variables with zero-mean and 1-Standard Deviation of p dimensionality. There are n rows
and p columns in total. The conditional number is defined as:

κ =
λmax(XTX)

λmin(XTX)
(1)

In the formula, XTX is the real symmetric matrix of p rows and p columns, λmax(XTX) is the
largest value of the p eigenvalues, λmin(XTX) is the smallest value. This paper sets n = 802, p = 21, so
it is calculated as follows:

λmax(XTX) = 7293.16, λmin(XTX) = 1.50, k = 4859.34.
It is generally believed that if k < 100, the degree of multicollinearity is small; if 100 ≤ κ ≤ 1000,

there is a general degree of multicollinearity, and if k > 100, there is severe multicollinearity. It can
be seen that there is a serious linear collinearity problem in the data of this study. It seems very
important to carry out further variable selection or adopt the stable parameter estimation method
when constructing models.

4. Methods

4.1. Study Strategy

The study strategy used in this paper is cross validation, which is often used in statistics as an
important method for generalization error estimation [31,32]. When using this method, all data can
be involved in the training and the test, so the efficiency of data use can be improved. There are
two ways to implement cross validation. One is V-fold cross validation, meaning that the data will
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be randomly divided into V equal parts, and then V tests will be conducted in sequence. In each
test, one of them will be left for testing and the other V-1 will be left for training. The other one is
S cross validation, meaning that s data will be left for testing, and the rest n-s data will be used for
training. The most famous one is leave-one-out cross validation. V-fold cross validation is usually
used for a large sample, while the leave-one-out cross validation is usually used for a small sample.
In the case of classification, Molinaro [33] found that with the increase of the number of training
samples, the deviation gradually decreased. The deviation calculated by leave-one-out cross validation
was the smallest, and the deviation calculated by 10-fold cross validation was almost close to that of
leave-one-out cross validation. By comparing the probability of selecting the real model by various
cross validations, Zhang [32] pointed out that the probability of selecting a real model would increase
with increase of V for V-fold cross validation. In addition, it was also pointed out that the probability
of selecting a real model was almost a constant when v ≤ 10, so this cross validation was undesirable
because the calculation would be complicated when V is greater than 10. Breiman [31] applied V-fold
cross validation to subset selection and NNG prediction error estimation, and the result showed that
the satisfactory result could be obtained when 5 ≤ v ≤ 10. The number of test samples can be increased
by cross validation, and the average value of multiple samples can reduce the variance. Therefore,
ten-fold cross validation is selected in this study analysing the characteristics of each cross validation.

In ten-fold cross validation, the data set will be randomly divided into 10 equal parts, that is,
ς1, ς2, . . . , ς10. Select one from them as the testing set, and the rest (ς(v) = ς − ςv) will be regarded
as training set (or modeling set). Then 10 trainings shall be conducted in sequence. The predicted
value will be expressed by

{
y(v)(x)

}
. The quadratic sum of the difference between predicted and

observed values (expressed by PE in this paper) is regarded as the estimated prediction error. This
study conducted five ten-fold cross validations for a higher precision, so the data set were randomly
divided into 10 equal parts in five times. In this way, each modeling method has been trained 50 times
(50 modelings), and there are 50 models in total. In each ten-fold cross validation, only one-tenth of the
modeling data differs from each other. In addition, between different ten-fold cross validation, the data
are randomly re-grouped. There are 802 data in this paper, so after each random grouping, two of the
10 groups of the data have one more datum than the other groups. Among the total 50 trainings, in
average, each plot was used 802 × 0.9 × 50/802 = 45 times for modeling and 802 × 0.1 × 50/802 = 5
times for testing.

4.2. Model Assumption and Test

4.2.1. Model Assumption

The basic model in this paper is a common multiple linear regression model, which is expressed in:

y = β0 + β1x1 + · · ·+ βpxp + ε (2)

where y means the dependent variable; x = (x1, x2, · · · , xp)
T means explanatory variable set; p means

the number of all explanatory variables; β = (β0, β1, · · · , βp)
T means the parameter set; ε means the

random error. For any xi, εi and ε j from the population, it satisfies the following assumptions: (1)
Linearity, that is E(εi) = 0, E(y

∣∣∣x) = β0 + β1x1 + · · ·+ βpxp ; (2) Equal variance, that is, D(εi) = σ2; (3)
Independence, that is, Cov(εi,ε j) = 0 (i , j); (4) Normality, that is, εi ∼ N(0, σ2).

Many papers are based on the fact that both dependent variables and explanatory variables are
normalized with zero-mean and one-variance. This paper is no exception. However the symbols
of all dependent variables, explanatory variables and parameters will not change. All the later test
indexes are calculated after converting them back to the original variables. The standardized model
with zero-mean and one-variance is:

y = β1x1 + β2x2 + · · ·+ βpxp + ε (3)
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It is assumed that the modeling sample size is n. β̂k = (β̂1, β̂2, · · · , β̂k)
T is the parameter set

estimated by a certain method. k(k ≤ p) explanatory variables are involved in this model. If a variable
is not selected, the corresponding parameter will not be contained in β̂k. The selected variable set
is xk = (x1, x2, · · · , xk)

T. In order to ensure a convenient expression, it is assumed that the selected
k variables are just the first k of the p variables. We can assume that RSSk = ‖y − xT

k β̂k‖
2 is the sum

squared residual of the sample based on xk and β̂k. This number will be used later.

4.2.2. Equal Variance and Normality Test

When estimating model parameters by the least square method, all four assumptions need to be
met. Among the four assumptions, it is considered that “linearity” have been met; “independence” can
be realized; while “equal variance” and “normality” need to be tested. Breusch–Pagan is applied in
this paper for equal variance testing. Having established the Equation (2), the linear regression model
between ε2 and explanatory variables can be established after the residual error is calculated:

ε2 = γ̂0 + γ̂1x1 + · · ·+ γ̂pxp + η (4)

The F-test will be used for testing. If the assumption of γ1 = · · · = γp cannot be overturned,
we cannot consider that the variances are equal. In this paper, all 802 plot data and 21 explanatory
variables were used to establish Equation (2). The results show that F = 27.062, Sig = 0.000, and the
residual ε was calculated. Equation (4) was established with all 21 explanatory variables. The results
show that F = 1.925, Sig = 0.008. That is to say, when the significance level is 0.01, then the result of
the F-test is significant. It cannot be considered that the variances are equal. However from the F
value, the heteroscedasticity is not severe. According to the analysis, 69, 53 and 576 plots have the
greatest impact. After deleting plot 59, the value of F decreases to 1.791, and the value of Sig rises to
0.016, showing that the result of the F-test is not significant at the 0.01 significance level after deleting
only one plot. It can be considered that the equal variance is valid at 0.01 level. Then deleting plot 53
and 576, the value of F decreases to 1.512 and the value of Sig rises to 0.066. That is to say, it can be
considered that the equal variance is also valid at the significant level of 0.05.

Figure 2 is the relationship between the estimated value ŷ of y and error ε. It also shows that no
obvious heteroscedasticity exists between ŷ and ε. Therefore, the heteroscedasticity of the original
data is very weak. In the later study in this paper, it is assumed that the equal variance assumption is
valid, and the data related to the three sample plots will not be deleted.
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Figure 2. Relationship between ŷ and ε.

In this paper, the normal distribution is visually inspected by residual frequency distribution and
P-P diagram. The results are shown in Figure 3, from which we can see that the residuals obey the
normal distribution well.
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4.3. Methods of Subset Selection

These methods attempt to select an optimal subset from the explanatory variable set to establish a
multiple linear regression model. The parameters of the final model are the same based on the OLS
result of this subset.

In principle, we should compare all possible combinations when using these methods. For the
original set with p explanatory variables, the total number of combinations is c1

p + · · ·+ cp
p = 2p

− 1. If
p is large, there will be a huge amount of calculation. So people usually do not use these exhaustive
search methods directly, but use some other efficient search algorithms.

4.3.1. Stepwise Regression

Stepwise Regression (SR) is to introduce the variables one by one into the model. After each
introduction of the explanatory variables, the F-test is performed based on the sum of squares of partial
regression. If an introduced explanatory variable becomes inconspicuous because of the introduction
of the subsequent explanatory variable, it is deleted to ensure that only the significant variables are
included in the regression equation before each new variable is introduced. This is an iterative process
until no non-significant explanatory variable is selected into the regression equation and no significant
explanatory variable is removed from the regression equation. Thereby, to ensure that the final set of
explanatory variables is optimal.

In this paper, the SPSS software is used to do the calculation. We set the entry probability 0.05 and
the removal probability 0.10.

4.3.2. Criterions Based on Akaike Information

The AIC (Akaike Information Criterion) [34,35] is derived by H. Akaike from using information
theory and is a typical representative of this type of criterion. Considering that: The density function of
the linear model involving k(k ≤ p) parameters is g(y

∣∣∣θk) ; the maximum value of the corresponding
likelihood function is g(θ̂k|y). Therein, θk means the unknown parameter; θ̂k means MLE (Maximum
Likelihood Estimation). The optimal subset is the one that can make the AIC in the formula below
reach the minimum value:

AIC = −2 ln g(θ̂k|y) + 2k (5)

where ln means the natural logarithm.
The AIC method in this paper is implemented by the step function in R language. The strategy

adopted is the backward method. First, we calculate the AIC that involves p variables, recording
it as AIC{x}p. Then remove xi from the variable set {x}p, and calculate AIC{x− xi}p−1 (i = 1, 2, · · · , p).
If Max(AIC{x}p − AIC{x− xi}p−1) = AIC{x− xi}p−1 > 0, xk should be permanently deleted from the
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variable set {x}p. Repeat this process until the AIC is no longer reduced, then the variable subset is
considered to be the best one.

4.3.3. Criterions Based on The Bayes Method

The typical representative of the Bayesian method is the BIC (Bayesian Information Criterion) [36],
which is equivalent to rewriting the AIC criterion as:

BIC = −2 ln g(θ̂k|y) + k log n (6)

The subset of variables whose values are at a minimum is optimal.
Although BIC is similar to AIC, the R step function can not solve the BIC issue. In this paper, the

BIC criterion, including the following Cp criterion, is calculated based on Regsubsets() function in
Leaps () package in R. and The BIC criterion is used as a parameter input. But Leaps() package can not
solve the AIC issue. Leaps()package performs an exhaustive search for the best subsets of the variables
in x for predicting y in linear regression, using an efficient branch-and-bound algorithm.

4.3.4. Criterions Based on Bayes Information

The representative criterion based on the prediction error (PE) criterion is Mallows’s Cp [37].

Cp =
RSSk
‖y−Xβ̂p‖2

n−p

− (n− 2k) (7)

In the formula, β̂p is the OLS estimate,
‖y−xβ̂p‖

2

n−p is the error variance estimate for the model containing

all p alternative explanatory variables. RSSk = ‖y − xkβ̂k‖
2 means the sum squared residual of the

sample based on xk and β̂k. The optical subset is the one that can make Cp reach the minimum value.
Similar to BIC, Cp is also solved by Regsubsets() function in Leaps(). Cp is the input as a parameter of
Regsubsets(). The BIC and Cp use the same search strategy but different criteria.

4.4. Methods of Coefficient Shrink

The methods of subset selection have a certain advantage, but it may face difficulties because of
huge calculations or other reasons. Another shortcoming of subset selection is its instability [31,38],
and small changes in the data set can cause dramatic changes in the results of variable selection. In
order to resolve the shortcomings, the current research is more about the coefficient shrink method,
which can simultaneously conduct variable selection and parameter estimation.

4.4.1. Non-negative Garrote Method

The non-negative garrote (NNG) method put forward by Leo Breiman [31].
Let β̂p = (β̂1, β̂2, · · · , β̂p)

T be the OLS estimate. Under the constraints,

c j ≥ 0 ( j = 1, 2, · · · , p),
p∑

j=1

c j ≤ λ (λ> 0) (8)

take c j( j = 1, 2, · · · , p) that makes
n∑

i=1

(yi −

p∑
j=1

c jβ̂ jx ji)

2

(9)

minimum. β̃ j(λ) = c jβ̂ j( j = 1, 2, · · · , p) will be used as new predictor coefficients. By reducing λ to
make more c become zero, while its corresponding variable is deleted, so as to achieve the purpose of
variable selection.
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The less the constrained parameter (λ), the fewer variables are selected. The selection criterion for
λ is: For the modeling data, the λ which can reach the smallest prediction error is the best one. The
optimal λ is obtained through searching. In the specific implementation, the ten-fold cross validation
is applied, that is, a series of small ten-fold cross validations are added into the large ten-fold cross
validation. Taking this paper as an example, ς(ν) = ς− ςν is selected. We can assume that 722 sample
data are involved (besides, ςν contains 80 sample data for testing). Now we can find out the optimal λ
by ten-fold cross validation based on these 722 sample data. λ is fixed in each calculation:

∧

PE(ŷλ) =
10∑
ν=1

∑
(yi,xi)∈ςν

(yi − y(ν)
λ

(xi)) (10)

Here, we also use the large ten-fold cross validation symbol. In the formula y(ν)
λ

(xi)) is modeled by the
ς(ν) = ς− ςν (the average sample size is 722 × 0.9). The estimated value of yi is calculated by the data
(the average number of plots is 72.2). We can find out the optimal λ by constantly changing the value of

λ, and the optimal λwill correspond to the minimum
∧

PE(ŷλ). In this paper, ten-fold cross validation is
repeated five times with 50 large modeling processes. Therefore, there are 50 corresponding optimal λ.

4.4.2. Least Absolute Shrinkage and Selection Operator Method

The commonly used formula of Least Absolute Shrinkage and Selection Operator (Lasso) [39] is:

β̂lasso = argmin
β
‖y− xβ‖2 + λ

p∑
j=1

∣∣∣β j
∣∣∣, λ ∈ [0,∞) (11)

In the formula, ‖y− xβ‖2 indicates the goodness of the model fitting and λ
p∑

j=1

∣∣∣β j
∣∣∣ can be regarded as

a penalty. The Lasso method also compresses the smallest coefficient to zero. Once a coefficient is
compressed to zero, the corresponding variable is deleted. The number of the model variables is
adjusted through the value of λ. The smaller the λ, the smaller the penalty in the model and the
more variables in the model. Whereas, the larger the compression, the less the selected variables. The
determination of λ is the same with NNG.

4.4.3. Adaptive Lasso Method

Zou put forward the Adaptive Lasso (AdaLasso) method [40]. AdaLasso is an improvement of
the Lasso method, resulting in fewer model variables. Additionally at the same time, AdaLasso proved
that the method has Oracle nature [32,41]. Zou believes that the selection of variables in the real model
has a certain relationship with the OLS. The larger the variable coefficients estimated by OLS, the less
penalty value it is. The AdaLasso method is defined as follows:

β̂Adalasso = argmin
β
‖y− xβ‖2 + λ

p∑
j=1

∣∣∣β j
∣∣∣∣∣∣β̂init, j
∣∣∣ , λ ∈ [0,∞) (12)

In the formula, β̂init means the initial estimator of β̂. The OLS estimated value of β̂OLS or LASSO
estimated value of β̂Las can be used. Considering that β̂OLS will be influenced by multicollinearity
under the condition of high dimensionality, β̂Las is applied in this paper. The determination of λ is the
same with NNG.
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4.4.4. Smoothly Clipped Absolute Deviation Method

Fan and Li put forward the Smoothly Clipped Absolute Deviation (SCAD) method and proved
that it has Oracle properties and improved the Lasso method [42]. Its penalty function is defined
as follows:

ρλ(|β|) =


λ
∣∣∣β j

∣∣∣ 0 ≤
∣∣∣β j

∣∣∣< λ
−(

∣∣∣β j
∣∣∣2 − 2aλ

∣∣∣β j
∣∣∣+λ2)/(2a− 2) λ ≤

∣∣∣β j
∣∣∣< aλ

(a + 1)λ2/2
∣∣∣β j

∣∣∣≥ aλ

(13)

In the formula, λ ≥ 0 and a> 2 are both adjustment parameters. Different from the above three
methods, there are two parameters needed to be determined here. Fan and Li have discussed a in their
paper. They select 3.7 as the value of a, and they believe that a is relatively fixed. In this paper, a test
is conducted based on the data of all 802 sample plots. The result is shown in Figure 4. We assume
that the value of a ranges from 1.0 to 5.0, with a step size of 0.1 starting from 3.0. The ordinate in the
figure stands for predictive errors, which are obtained by searching for optimal λ on the basis of fixed
a. From the figures and curve, we can see that 3.7 is the optimal value for a. So in the later study, we
select 3.7 as the fixed value of a.
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4.5. Ordinary Least Squares and Ridge Regression

4.5.1. Ordinary Least Squares

The Ordinary Least Squares (OLS) solution of the linear regression model (2) is:

β̂ = (XTX)
−1

XTY (14)

In the formula, X is the design matrix consisting of n observations of p explanatory variables, Y is a
vector composed of n dependent variables, β̂ is as before.

4.5.2. Ridge Regression

Ridge Regression (RR) is very effective in dealing with multicollinearity between explanatory
variables, but it doesn’t have the ability to select variables. The RR estimation is as follows:

β̂λ = (XTX + λI)
−1

XTY (15)

In the formula, I is the unit matrix of p× p, λ ≥ 0 and when λ = 0, RR degenerates into OLS. We need
to search for λ to find the minimum corresponding predictive error.
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4.6. Evaluation of Biomass Model Development Methods

All the indexes in the paper are calculated based on the original variables. The Equation (3) is
converted to the Equation (2) before the indexes are calculated.

4.6.1. Frequently-Used Evaluation Indicators

The determination coefficient R2, Root-Mean-Square Error (RMSE) and Relative Root-Mean-Square
Error (RMSEr) are frequently-used indicators to measure the performance of a model and are often used
to evaluate biomass models. Usually they can be divided into two kinds, respectively are adjustment and
non-adjustment of degree of freedom. For the linear regression model, y = β0 + β1x1 + · · ·+ βpxp + ε,
the modeling result is y = β̂0 + β̂1x1 + · · ·+ β̂pxp + ε, ŷ = β̂0 + β̂1x1 + · · ·+ β̂pxp. The three indexes
without adjusting the degree of freedom are:

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2
(16)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (17)

RMSEr =
RMSE

y
× 100% (18)

In the formula, n means the number of samples involved in the test. yi is the plot biomass value,
ŷi is the predicted plot biomass value and y is the average of yi. If the test samples are not involved in
the modeling, no adjustment is needed. If the testing data are also the modeling data, the adjustment
is needed. The adjustment of degree of freedom is defined as:

R2
adj = 1−

n∑
i=1

(yi − ŷi)
2/(n− p− 1)

n∑
i=1

(yi − y)2/(n− 1)
(19)

RMSEadj =

√√
1

n− p− 1

n∑
i=1

(yi − ŷi)
2 (20)

RMSEradj =
RMSEadj

y
× 100% (21)

In a ten-fold cross validation, modeling shall be conducted 10 times in sequence and the
corresponding test also needs to be carried out 10 times. The tested data set is ςv. The modeling data
set is ς(v) = ς− ςv (v = 1, 2, . . . , 10). The average sample size of ςv is 0.1n (here n is the total number of
plots involved in the research, n = 802), and the average sample size of ς(v) is 0.9n. In the v-th test, the
three indexes with unadjusted degrees of freedom are defined as:

(v)

R2 = 1−

∑
(yi,xi)∈ςv

(yi − y(v)k (xi))
2

∑
yi∈ςv

(yi − y(v))
2 (22)

(v)
RMSE =

√√
1

0.1n

∑
(yi,xi)∈ςv

(yi − ŷ(v)k (xi))
2

(23)
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(v)
RMSEr =

(v)
RMSE

y(v)
× 100% (24)

Where y(v)k (xi) means the estimated value of yi in the v-th test; k means the number of explanatory

variables contained in the model obtained in the v-th modeling; y(v) means the arithmetic average of
y in ςv. The ten-fold cross-test is repeated five times, so there are 50 index values. In this paper, we
calculate their arithmetic average as the final index value:

R2 =
1

50

5∑
m=1

10∑
v=1

(v)

R2
m (25)

RMSE =
1

50

5∑
m=1

10∑
v=1

(v)
RMSEm (26)

RMSEr =
1

50

5∑
m=1

10∑
v=1

(v)
RMSErm (27)

The test data in this paper are not involved in modeling, so there is no need to adjust the degree of
freedom. However, the number of explanatory variables in the models obtained by different modeling
methods differs greatly, and people tend to select models with fewer explanatory variables in the case
where the accuracy difference is not obvious. In order to reflect this difference, we still calculate the
index with adjustment of the degree of freedom in this paper. The degree of freedom we applied here
shall be the one of modeling data. The number of explanatory variables in 50 models obtained by
the same method is also different. For adjustment of the degree of freedom, the average number of

explanatory variables is used in this paper, that is k =
5∑

m=1

10∑
v=1

k(v)m , then Equations (22)–(24) after DOF

adjustment are as follows:

(v)

R2
adj = 1−

∑
(yi,xi)∈ςv

(yi − ŷ(v)k (xi))
2

∑
yi∈ςv

(yi − y(v))
2

0.9n− 1

0.9n− k
=

(v)

R2(0.9n− 1) − k + 1

0.9n− k
(28)

(v)
RMSEadj =

√√
0.9n− 1

0.1n(0.9n− k)

∑
(yi,xi)∈ςv

(yi − ŷ(v)k (xi))
2
=

(v)
RMSE

√
0.9n− 1

0.9n− k
(29)

(v)
RMSEradj =

(v)
RMSEadj

y(v)
× 100% (30)

The data have been standardized during the process of modeling, and the model has no
constant term (Equation (3)), so the denominator in Equation (28) is 0.9n − k instead of 0.9n − k − 1.
Equations (25)–(27) turns into:

R2
adj =

1
50

5∑
m=1

10∑
v=1

(v)
R

2

adj·m =
1

50

5∑
m=1

10∑
v=1

(v)

R2
m(0.9n− 1) − k + 1

0.9n− k
=

(0.9n− 1)R2

0.9n− k
+

1− k

0.9n− k
(31)

RMSEadj =
1

50

5∑
m=1

10∑
v=1

(v)
RMSEadj·m =

1
50

√
0.9n− 1

0.9n− k

5∑
m=1

10∑
v=1

(v)
RMSEm = RMSE

√
0.9n− 1

0.9n− k
(32)
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RMSEradj =
1
50

5∑
m=1

10∑
v=1

(v)
RMSEradj·m (33)

4.6.2. Evaluation of Prediction Error and Model Error

Prediction error (PE) is the error between the predicted and actual values. The Model error (ME) is
the error caused by the deviation between the constructed model and the real model. The PE consists of
two parts: Noise error and ME. Noise errors are inherent which cannot be eliminated or reduced, while
model errors can be reduced by improving the quality of the model. PE and ME are two important
indicators to test models.

The PE
∧

PE(µ̂k) is:
∧

PE(ŷ) =
1
5

5∑
m=1

10∑
v=1

∑
(yi,xi)∈ςv

(yi − y(v)(xi))
2
m (34)

Where v = 1, 2, . . . , 10 indicates ten-fold cross-validation; m = 1, 2, . . . , 5 means repeating ten-fold

cross-validation five times; y(v)(xi) is the estimated value of yi.
∧

ME(ŷ) can be expressed as

∧

ME(ŷ) =
∧

PE(ŷ) − nσ̂2 (35)

In the formula, σ̂2 is the estimated value of the inherent error σ2 caused by noise is calculated
by the OLS method on the basis of all the explanatory variables and all the modeling samples. By
calculation, it can be obtained that σ̂2 = 875.351. Here, n = 802, that is, all data. Considering adjustment
of the freedom degree, (34) and (35) can be converted as

∧

PE(ŷ)adj =
1
5

n− 1

n− k

5∑
m=1

10∑
v=1

∑
(yi,xi)∈ςv

(yi − y(v)(xi))
2
m (36)

∧

ME(ŷ)adj =
∧

PE(ŷ)adj − nσ̂2 (37)

The smaller the proportion of ME to PE is, the better the model is. So, values of
∧

ME(ŷ)/
∧

PE(ŷ)(%)

and
∧

ME(ŷ)adj/
∧

PE(ŷ)adj(%) are used as the indicators to test models.

4.6.3. Difference Significance Test between Indicators

To know whether there is a significant difference between indicators, different significance tests
between indicators were conducted. It is assumed that these indicators follow normal distribution,
and the same indicator has the same variance although different methods. The T-Test formula is:

t =
ζi − ζ j

sζi−ζ j

=
ζi − ζ j√

(s2
ζi
+ s2

ζ j
− 2cov(ζi, ζ j))/50

∼ t(50− 2) (38)

Here, ζi and ζ j are respectively the mean of the same indicator under method i and under method

j. i, j = 1, 2, · · · , 10, i , j, ζi =
50∑

k=1
ζik/50, ζ2

i =

50∑
k=1

(ζik−ζi)

50−1 , cov(ζi, ζ j) =

50∑
k
(ζik−ζi)(ζ jk−ζ j)

50−1 . The same

indicator under different methods are based on the same original data, so there is a correlation between
the same indicator under different methods.
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4.6.4. Evaluation of Model Parameter Stability

For the same method, the smaller the difference of the parameters of the 50 models, the better. The
variance of the parameters reflects the stability of the parameters. In the test, 50 models are adopted, and
each model has p (number) parameters (in this paper, p = 21). So, there are 50×p parameters (including

parameters with a value of 0). In addition, the sum of squares of deviations is S =
p∑

i=1

50∑
j=1

(βi j − β)
2
,

βi j means the estimated value of parameter i(i = 1, 2, . . . , p) in model j( j = 1, 2, . . . , 50), that is

β = 1
50p

p∑
i=1

50∑
j=1

βi j. The sum of squares of deviations within parameters is Swg =
p∑

i=1

50∑
j=1

(βi j − βi)
2
,

βi =
1

50

50∑
j=1

βi j is the mean of parameter i (i = 1, 2, · · · p). The sum of squares of deviations between

parameters is Sbg =
p∑

i=1
50(βi − β)

2
. It can be proved that S = Swg + Sbg. The freedom degree of Swg

is d fwg = 50p − p, and the freedom degree of Sbg is d fbg = p − 1. In this paper, the indicator Fβ was
constructed through the ratio of variances, reflecting stability of parameters.

Fβ =
Sbg/d fbg

Swg/d fwg
(39)

A larger value of Fβ means a bigger fluctuation between groups (parameters) and a smaller
difference within parameters, and indicates higher stability. No statistical inference was conducted
here, so no assumptions which are necessary for the F-test were needed, but this doesn’t affect the
evaluation result of relative stability given based on Fβ.

4.6.5. Evaluation of Variable Selection Stability

If the 50 models obtained by one method have the same or basically the same explanatory variables,
it indicates that the method has strong ability or good stability in selecting variables. In order to
examine the variable selection stability, the linear regression model parameters are processed. The
variable whose coefficient is non-zero is set to be one (the corresponding variable is selected by the
model), otherwise the parameter is set to be zero (the corresponding variable is not selected by the
model). The parameter after 0–1 is called the variable indicative parameter, which is expressed by α.
The evaluation of variable selecting stability is similar to the evaluation of model parameter stability.
Fα is defined as follows:

Fα =
Zbg/d fbg

Zwg/d fwg
(40)

In the equation, Zbg =
p∑

i=1
50(αi − α)

2 is the sum of the squared deviations of the indicative

parameters between the variables, αi is the arithmetic mean of the indicative parameters of the i

variable, α = 1
50p

p∑
i=1

50∑
j=1

αi j indicates the arithmetic mean of the total of the indicative parameters;

Zwg =
p∑

i=1

50∑
j=1

(αi j − αi)
2 indicates the sum of the squares of the deviations within the indicative

parameters, αi j indicates the indicative parameter of the i variable in the j( j = 1, 2, . . . , 50) modeling.
Statistical inference was not conducted, so assumptions were not made, but this doesn’t affect the
evaluation result of relative stability given based on Fα. A larger value of Fα indicates greater fluctuation
between indicative parameters and smaller fluctuation within indicative parameter. Some explanatory
variable indicative parameters are almost 1 s and this means that these explanatory variables are almost
selected. The others are almost 0 s and this means that those explanatory variables are almost deleted.
On the contrary, the smaller the value of Fα is, the more indicative parameters of many explanatory
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variables fluctuate between zero and one, and the explanatory variables selected for each modeling
vary greatly. In this case, the stability of variable selection is poor.

4.6.6. Evaluation of Variable Selection Ability

Variable stability reflects whether the same variables are selected every time when a model is
constructed. In addition to stability, number of variables in a model and range of number changing
should be taken into consideration. These indicators including the average number of variables,
median, maximum value, minimum value, range and standard deviation, etc. are applied to measure
variable selection ability of each method. In the case of the same accuracy, the smaller the mean,
median, range and standard deviation are, the better the method is.

5. Results

The SPSS, MATLAB, and R language software are used to complete forest biomass modeling
experiments by various methods.

5.1. Results of Frequently-Used Evaluation Indicators and Prediction Error

Fifty parameter estimation (or models) were established by each method. Each estimate was based
on different modeling and test data (See the introductions in the part of ten-fold cross-validation to
know difference in modeling and test data). Data not applied in modeling was used to test. R2, RMSE,
RMSEr, PE, ME and ME/PE (%), as well as the mean of estimated values, were calculated, and listed
in Table 3. ME/PE (%) reflects the proportion of ME to PE. The smaller the proportion is, the better.
The figure in brackets stands for indicator performance sorted from the best to the worst. The bigger
R2 is, the better. The smaller the other indicators are, the better. “adj” means through adjustment of
freedom degree. Table 3 gives the average number, namely, the arithmetic mean of sequence numbers
of R2, RMSE, RMSEr, PE, ME and ME/PE (%) before and after adjustment. Before adjustment of
the freedom degree, they can be sorted as (“>” means “superior”): RR>LASSO>OLS>BIC>AIC =

ADALASSO>SCAD>SR>NNG>Cp, and RR is the best. After adjustment of the freedom degree, they
can be sorted as: BIC> ADALASSO> LASSO>RR>AIC> SCAD>OLS>SR>NNG>Cp, and BIC is the
best, Cp, NNG and SR are worse. The number of variables selected by any of the first three methods
before adjustment is larger. NNG is special. That is the number of variables selected by NNG is
large, and the performance is bad. The number of variables selected by any of the first two methods
after adjustment is smaller. Therefore, it can be found that the freedom degree has a big influence on
evaluation. There is a significant difference in the number of variables selected by different methods,
and the number of variables selected by a method is an important factor of measuring variable selection
ability of the method. The authors of this paper aim to discuss the variable selection issue, so it is
necessary to make the analysis of the freedom degree.



Remote Sens. 2019, 11, 1437 18 of 28

Table 3. Average value of evaluation indexes.

Category Method M.N. of V R2 R2
adj RMSE RMSEadj RMSEr RMSEradj PE PEadj ME MEadj

ME/PE
(%)

MEadj/PEadj
(%) MSN MSNadj

Subset
selection
method

BIC 2.32 0.3817(3) 0.3805(1) 29.95(4) 29.98(2) 0.3349(4) 0.3352(2) 727192(5) 728429(1) 25161(5) 26398(1) 3.46(5) 3.62(1) 4.3(4) 1.3(1)
SR 3.68 0.3744(8) 0.3720(6) 30.12(8) 30.18(6) 0.3368(8) 0.3375(6) 734934(8) 737456(8) 32902(8) 35425(8) 4.48(8) 4.80(8) 8.0(8) 7.0(8)
Cp 7.44 0.3663(10) 0.3606(10) 30.29(10) 30.43(10) 0.3389(10) 0.3404(10) 743759(10) 749787(10) 41727(10) 47756(10) 5.61(10) 6.37(10) 10.0(10) 10.0(10)

AIC 9.14 0.3752(7) 0.3680(7) 30.09(7) 30.26(7) 0.3365(7) 0.3384(7) 721790(3) 729219(3) 19758(3) 27187(3) 2.74(3) 3.73(3) 5.0(6) 5.0(5)

Coefficient
shrink

method

ADALASSO 3.88 0.3815(4) 0.3790(2) 29.95(5) 30.01(3) 0.3344(3) 0.3350(1) 727311(6) 729936(4) 25279(6) 27904(4) 3.48(6) 3.82(4) 5.0(6) 3.0(2)
SCAD 6.60 0.3809(5) 0.3761(4) 29.86(2) 29.97(1) 0.3358(6) 0.3371(5) 727683(7) 732806(7) 25651(7) 30775(7) 3.53(7) 4.20(7) 5.7(7) 5.2(6)
LASSO 9.76 0.3840(2) 0.3764(3) 29.89(3) 30.08(4) 0.3343(2) 0.3363(3) 724207(4) 732214(6) 22175(4) 30183(6) 3.06(4) 4.12(6) 3.2(2) 4.7(3)
NNG 10.06 0.3708(9) 0.3628(8) 30.19(9) 30.39(8) 0.3377(9) 0.3398(8) 738836(9) 747289(9) 36805(9) 45257(9) 4.98(9) 6.06(9) 9.0(9) 8.5(9)

Entire set
RR 21 0.3925(1) 0.3752(5) 29.68(1) 30.10(5) 0.3319(1) 0.3366(4) 713903(2) 732185(5) 11872(2) 30154(5) 1.66(2) 4.12(5) 1.5(1) 4.8(4)

OLS 21 0.3797(6) 0.3620(9) 29.98(6) 30.41(9) 0.3353(5) 0.3401(9) 710862(1) 729066(2) 8830(1) 27034(2) 1.24(1) 3.71(2) 3.3(3) 5.5(7)

Note: M.N. of V: Mean number of variables selected. MSN and MSNadj: mean of serial number before and after adjustment of the freedom degree, respectively.
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5.2. The Significance Test of the Coefficient of Determination Difference

In this paper, only the significance test of the mean difference of R2 before and after adjustment of
the freedom degree, was presented, see Tables 4 and 5. The figure in the table stands for t value; the
figure in brackets is Sig value; ** means that the difference is significant at the 0.01 level and * means
that the difference is significant at the 0.05 level. t >0 indicates that the method in the line is superior to
that in the column. Below, >

0.05/0.01
indicates that the former (in line) is significantly superior to the later

(in column) at the level of 0.01 or 0.05; <
0.05/0.01

shows that the former is significantly inferior to the

latter; =
0.05/0.01

means that there is no difference between the two methods. Before adjustment of the

degree of freedom (Table 4), RR >
0.01

(all other methods). That is, it is significantly superior to other

method at the 0.01 level and OLS >
0.05/0.01

(AIC, NNG). The two methods use all explanatory variables.

It can be found that RR is obviously superior to OLS. Among these eight methods with variable
selection ability, (BIC, ADALASSO, SCAD, LASSO) >

0.05/0.01
(SR, Cp, NNG), that is, the former four

methods are significantly superior to the latter three methods at the level of 0.01 or 0.05. There is no
significant difference between the former four methods, and the same between the latter three methods.
In addition, LASSO >

0.05
AIC, AIC >

0.05
Cp.

Table 4. Significance test of the coefficient of determination difference before adjustment of the
freedom degree.

BIC SR Cp AIC ADALASSO SCAD LASSO NNG RR OLS

BIC 2.799 **

(0.007)
2.218 *

(2.031)
1.210

(0.232) 0.474(0.638) −0.171(0.865) −0.654
(0.516)

2.507 *

(0.016)
−2.866 **

(0.006)
0.245

(0.818)

SR −2.799 **

(0.007)
1.432

(0.159)
−0.426
(0.672)

−2.824
**(0.007)

−2.577 *

(0.013)
−4.368 **

(0.000)
1.190

(0.240)
−5.859 **

(0.000)
−1.708
(0.094)

Cp −2.218 *

(2.031)
−1.432
(0.159)

−2.355 *

(0.023)
−2.259 *

(0.028)
−2.457 *

(0.018)
−3.134 **

(0.003)
−0.746
(0.459)

−4.951 **

(0.000)
−3.016 **

(0.004)

AIC −1.210
(0.232)

0.426
(0.672)

2.355 *

(0.023)
−1.149
(0.256)

−1.707
(0.094)

−2.407 *

(0.020)
1.741

(0.088)
−4.801 **

(0.000)
−2.436 *

(0.019)

ADALASSO −0.474
(0.638)

2.824 **

(0.007)
2.259 *

(0.028)
1.149

(0.256)
−0.502
(0.618)

−1.282
(0.206)

2.554 *

(0.014)
−3.688 **

(0.001)
0.081

(0.936)

SCAD 0.171
(0.865)

2.577 *

(0.013)
2.457 *

(0.018)
1.707

(0.094)
0.502

(0.618)
−0.538
(0.593)

2.948 **

(0.005)
−2.710 **

(0.009)
0.441

(0.661)

ASSO 0.654
(0.516)

4.368 **

(0.000)
3.134 **

(0.003)
2.407 *

(0.020)
1.282

(0.206) 0.538 (0.593) 3.921 **

(0.000)
−3.897 **

(0.000)
0.876

(0.385)

NNG −2.507 *

(0.016)
−1.190
(0.240)

0.746
(0.459)

−1.741
(0.088)

−2.554 *

(0.014)
−2.948 **

(0.005)
−3.921 **

(0.000)
−5.095 **

(0.000)
−2.961 **

(0.005)

RR 2.866 **

(0.006)
5.859 **

(0.000)
5.859 **

(0.000)
4.801 **

(0.000)
3.688 **

(0.001)
2.710 **

(0.009)
3.897 **

(0.000)
5.095 **

(0.000)
3.624 **

(0.001)

OLS −0.245
(0.818)

1.708
(0.094)

1.708
(0.094)

2.436 *

(0.019)
−0.081
(0.936)

−0.441
(0.661)

−0.876
(0.385)

2.961 **

(0.005)
−3.624 **

(0.001)
** Difference is significant at the 0.01 level and * is significant at the 0.05 level.

Results after adjustment of the degree of freedom are shown in Table 5. RR >
0.05/0.01

(Cp, AIC, NNG, OLS) means that RR is only slightly superior to the four methods in brackets at
the level of 0.05 or 0.01. So, it can be observed that the advantage of RR is obviously weakened.
OLS <

0.05/0.01
(BIC, SR, AIC, ADALASSO, SCAD, LASSO, RR), OLS =

0.05/0.01
(Cp, NNG), from

which it can be known that after adjustment of the degree of freedom, OLS completely has no advantage.
Among these eight methods with variable selection ability, (BIC, ADALASSO, LASSO) >

0.05/0.01
(SR, AIC, Cp, NNG, OLS), there is no significant difference between the former three methods, they
have the same advantages basically, but BIC has weak advantages in comparison with the other two
methods. SCAD >

0.05/0.01
(AIC, Cp, NNG, OLS), SCAD =

0.05/0.01
(BIC, ADALASSO, LASSO), SCAD

is basically at the same level with BIC, ADALASSO and LASSO. Compared to SR, the advantage of
SCAD is not significant. SR >

0.05/0.01
( Cp, NNG, OLS), AIC >

0.05
OLS. Generally, (BIC, ADALASSO

and LASSO) and SCAD have a better performance.
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Table 5. Significance test of the coefficient of determination difference after adjustment of the
freedom degree.

BIC SR Cp AIC ADALASSO SCAD LASSO NNG RR OLS

BIC 3.219 **

(0.002)
2.855 **

(0.006)
2.321 *

(0.025)
1.139

(0.260) 1.097 (0.278) 1.696 (0.096) 3.868 **

(0.000)
1.067

(0.291)
3.203 **

(0.002)

SR −3.219 **

(0.002)
2.067 *

(0.044)
0.854

(0.397)
−2.775 **

(0.008)
−1.816
(0.076)

−2.028 *

(0.048)
2.753 **

(0.008)
−1.387
(0.172)

2.160 *

(0.036)

Cp −2.855 **

(0.006)
−2.067 *

(0.044)
−1.953
(0.057)

−2.743 **

(0.008)
−2.571 *

(0.013)
−2.767 **

(0.008)
−0.182
(0.856)

−2.809 **

(0.007)
−0.398
(0.692)

IC −2.321 *

(0.025)
−0.854
(0.397)

1.953
(0.057)

−2.109 *

(0.040)
−2.256 *

(0.029)
−2.256 *

(0.029)
1.982

(0.053)
−2.096 *

(0.041)
2.591 *

(0.013)

ADALASSO −1.139
(0.260)

2.775 **

(0.008)
2.743 **

(0.008)
2.109 *

(0.040)
0.323 (0.748) 1.115 (0.270) 3.756 **

(0.000)
0.622

(0.537)
3.112 **

(0.003)

SCAD −1.097
(0.278)

1.816
(0.076)

2.571 *

(0.013)
2.256 *

(0.029)
−0.323
(0.748) 0.606 (0.548) 3.644 **

(0.001)
0.299

(0.766)
3.435 **

(0.001)

LASSO −1.696
(0.096)

2.028 *

(0.048)
2.767 **

(0.008)
2.256 *

(0.029)
−1.115
(0.270)

−0.606
(0.548)

3.993 **

(0.000)
−0.077
(0.939)

3.565 **

(0.001)

NNG −3.868 **

(0.000)
−2.753 **

(0.008)
0.182

(0.856)
−1.982
(0.053)

−3.756 **

(0.000)
−3.644 **

(0.001)
−3.993 **

(0.000)
−3.081 **

(0.003)
−0.293
(0.771)

RR 1.067
(0.291)

1.387
(0.172)

2.809 **

(0.007)
2.096 *

(0.041)
−0.622
(0.537)

−0.299
(0.766) 0.077 (0.939) 3.081 **

(0.003)
3.624 **

(0.001)

OLS −3.203 **

(0.002)
−2.160 *

(0.036)
0.398

(0.692)
−2.591 *

(0.013)
−3.112 **

(0.003)
−3.435 **

(0.001)
−3.565 **

(0.001)
0.293

(0.771)
−3.624 **

(0.001)
** Difference is significant at the 0.01 level and * is significant at the 0.05 level.

5.3. Analysis of Coefficient Stability

From Table 6, it can be seen that methods can be sorted based on Fβ calculated according to
formula (39): RR > BIC > Lasso > AdaLasso > SR > SCAD > OLS > AIC > NNG > Cp. The larger
the F value, the better the parameter stability. So, it can be seen that the stability of the RR is the best
and the stability of Cp is the worst. RR has the best stability, and the stability of OLS that also uses all
variables is not high, which are consistent with general experience. Regardless of RR and OLS, the
subset selection method BIC has the highest parameter stability, the coefficient shrink method Lasso
ranks second, and AdaLasso ranks third. The parameter stability of AIC, Cp, NNG and other methods
is even worse than that of OLS.

Table 6. Coefficient stability analysis.

Category Method No. of
Variables

Intraclass
Variance

Interclass
Variance

Fβ Value

Subset selection
method

BIC 2.32 0.00060836 0.578876 951.54(2)
SR 3.68 0.00124032 0.580049 467.66(5)
Cp 7.44 0.00558907 0.551412 98.66(10)

AIC 9.14 0.00473800 0.681560 143.84(8)

Coefficient
shrink method

ADALASSO 3.88 0.00079854 0.533293 667.84(4)
SCAD 6.60 0.00146555 0.649157 442.95(6)
LASSO 9.76 0.00056700 0.394677 696.34(3)
NNG 10.06 0.00508605 0.620707 122.04(9)

Total subset
RR 21 0.00015593 0.331947 2128.81(1)

OLS 21 0.00389200 0.950698 244.30(7)

5.4. Evaluation of Variable Selection Stability

Values of Fα for the eight methods with variable selection ability were calculated according to
formula (40), shown in Table 7. According to the value of Fα. These eight methods can be sorted
as: BIC > SR > LASSO > SCAD > ADALASSO > AIC > Cp > NNG. In terms of variable selection
stability, BIC is the most stable, while NNG is the most unstable. The highest variable selection
stability indicates smallest variable changes; lowest variable selection stability indicates biggest
variable changes. Table 8 records the number of times of each variable selected in models in 50
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experiments. The biggest number is 50, and the minimum number is 0. From this table, it can be found
that variables selected by BIC, SR, ADALASSO, etc. are relatively stable. Variables selected through
BIC mainly are B7 and B7_W5_ME, and other variables only occupy a small part. Variables selected
through SR mainly are B7, B7_W5_ME, B7_W9_CC and B2_W5_ME, and other variables selected are
rare. Variables selected through NNG and Cp are scattered. In this table, “Total” is the total number
of times of the variable being selected, “%” is the “total”/400 (8 × 50, possible maximum number
of times of variable being selected), and “Rank” is the sequence number of the ratio. Explanatory
variables are sequenced as: B7>B7_W9_CC>B7_W5_ME>B2_W5_ME>B3_W5_ME>B5>B7_W9_ME
>B3>B3_W5_CC>B4_W9_ME>B2>B3_W5_SM>B2_W9_ME>B5_W9_ME>B2_W5_SM>B3_W9_ME
>B4>B4_W5_ME>B5_W5_ME>B5_W9_CC>B3_W9_SM. Explanatory variables B7 and B7_W5_ME
selected by BIC take the first and the third place. Variables selected through SR take the first three
places. Overall, main options go to B7, B7_W9_CC and B7_W5_ME, which are the short-wave infrared
band and two texture features of the band. From this, it can be known that short-wave infrared bands
and texture features from them play an important role in the estimation of forest biomass.

Table 7. Stability analysis of screening variables.

Category Method No. of
Variables

Intraclass
Variance

Interclass
Variance Fα

Subset selection
method

BIC 2.32 0.025748 3.839369 149.11(1)
SR 3.68 0.057765 4.615810 79.91(2)
Cp 7.44 0.150243 4.280286 28.49(7)

AIC 9.14 0.134245 5.998198 44.68(6)

Coefficient
shrink method

ADALASSO 3.88 0.072847 4.159810 57.10(5)
SCAD 6.60 0.101613 6.086286 59.90(4)
LASSO 9.76 0.109310 7.435810 68.02(3)
NNG 10.06 0.190068 3.322952 17.48(8)

5.5. Evaluation of Variable Selection Ability

Table 9 shows the number of explanatory variables in models and their changes, including the
mean, median, the maximum value, the minimum value, range and the standard deviation of number
of variables. The number in brackets stands for the performance level. At the circumstance of equal
precision, the fewer explanatory variables in models are, the better; the steadier number of variables is,
the better; the smaller the range is, the better. Overall, the mean of number of variables is between
2.32 and 10.06; the median is between two and 10; the maximum value is between three and 21; the
minimum value is between two and six; the range is between one and 19; and the standard deviation
is between 0.4712 and 4.9132. There is significant difference in the number of variables selected by
different methods. All indicators under BIC are the best, the number of variables is 2–3, and the range
is one. NNG has the worst performance. The number of variables selected by this method is up to 21,
the minimum number of variables is two, and the range reaches 19. According to the comprehensive
evaluation, BIC>SR> Cp> ADALASSO> AIC> SCAD>LASSO> NNG. Overall, the variable selection
ability of subset selection method is stronger than that of the coefficient shrink method.
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Table 8. Statistics on the number of variables selected.

Category Method Mean Number
of Variables B2 B3 B4 B5 B7
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7_

W
9_
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3_

W
9_

SM

Subset
selection
method

BIC 2.32 0 2 0 0 50 0 9 0 0 0 43 0 0 0 5 1 1 0 0 7 0
SR 3.68 2 5 0 5 50 9 22 3 0 0 46 0 1 0 33 0 5 0 1 5 0
Cp 7.44 25 26 3 18 50 15 31 42 4 7 14 3 14 1 47 18 8 17 12 17 0

AIC 9.14 43 44 10 24 50 18 39 45 5 3 17 8 14 1 49 11 5 33 29 7 3

Coefficient
shrink

method

ADALASSO 3.88 1 3 0 23 50 8 11 8 0 0 46 2 1 0 17 2 4 3 0 15 0
SCAD 6.60 9 22 5 8 50 42 16 8 1 3 1 9 13 3 50 30 3 7 1 48 1
LASSO 9.76 8 14 2 50 50 43 34 36 0 2 50 27 19 8 50 10 12 28 0 45 0
NNG 10.06 30 38 14 34 50 17 32 41 19 9 23 20 25 3 36 15 7 35 34 12 9

Total 118 154 34 162 400 152 194 183 29 24 240 69 87 16 287 87 45 123 77 156 13
% 29.5 38.5 8.5 40.5 100 38 48.5 45.75 7.25 6 60 17.25 21.75 4 71.75 21.75 11.25 30.75 19.25 39 3.25

Rank 11 8 17 6 1 9 4 5 18 19 3 15 12 20 2 13 16 10 14 7 21

Note: Bi, spectral band i of Landsat TM image; BiWjXX, textural measure image developed from spectral band i with a window size of j×j pixels using texture measures: Correlation (CC),
entropy (EN), homogeneity (HO), dissimilarity (DI), mean (ME), second moment (SM), variance (VA).
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Table 9. Evaluation of variable selection ability.

Category Method Mean Median Max Min Range STD Mean Rank

Subset
selection
method

BIC 2.32(1) 2.0(1) 3(1) 2 1(1) 0.4712(1) 1.0(1)
SR 3.68(2) 3.0(3) 6(2) 3 3(3) 0.9988(3) 2.6(2)
Cp 7.44(5) 7.5(5) 8(3) 6 2(2) 0.6115(2) 3.4(3)

AIC 9.14(6) 9.0(6) 11(5) 6 5(4) 1.1782(4) 5.0(5)

Coefficient
shrink

method

ADALASSO 3.88(3) 2.5(2) 11(5) 2 9(5) 2.5446(5) 4.0(4)
SCAD 6.60(4) 5.0(4) 17(7) 3 14(7) 3.1168(6) 5.6(6)
LASSO 9.76(7) 10.5(7) 17(7) 4 13(6) 3.1788(7) 6.8(7)
NNG 10.06(8) 10.0(8) 21(8) 2 19(8) 4.9132(8) 8.2(8)

6. Discussion

The linear regression models are often used in quantitative remote sensing, but usually there
are too many variables, and the correlation between variables is high, which brings difficulties to
model development and model application. Among these applications, in addition to model accuracy,
the ability of the estimation method in terms of variable selection also needs to be considered. This
paper takes the quantitative estimation of biomass on the aboveground biomass as an example, and
comprehensively considers the conventional precision indicators, PE, ME, model parameter stability,
variable selection stability and variable selection ability, and conducts comparative study on the 10
common parameter estimation/variable selection methods. Research data includes Landsat TM data,
its derived texture data, and field plot biomass data measured in the sample field. As an article that
specially focuses on variable selection methods, the number of variables selected by each method is an
important factor that needs consideration. Since the mean of variables selected is quite different, the
analysis of adjustment of the degree of freedom was made in this paper.

(1) About OLS and RR. RR completely lacks variable selection ability, and OLS is not used
in variable selecting generally. They are mainly used to compare with other methods that have
variable selection ability in this paper. If the six indicators involving R2, RMSE, RMSEr, PE, ME
and ME/PE were taken into consideration, RR had the best performance among the ten methods
and OLS was listed in the third before adjustment of the degree of freedom; and after adjustment,
RR was listed 4th place and OLS took the 7th place. According to the significance test of R2,
RR >

0.01
(all the other ), OLS >

0.05/0.01
(AIC, NNG). RR has obvious advantages, while OLS lacks

obvious advantages before we adjust the degree of freedom. After the adjustment of the degree of
freedom, RR >

0.05/0.01
(Cp, AIC, NNG, OLS), OLS =

0.05/0.01
(Cp, NNG). So, it can be found that after

adjustment, RR’s advantages were weakened obviously, while OLS completely has no advantage,
having only the same accuracy as the other two methods. In terms of parameter stability, RR takes
the first place and OLS is ranked as No.7. Although RR has higher parameter stability, its precision
performance is not outstanding, while OLS has no obvious advantages in any aspect. OLS is easily
subject to collinearity effect, so it is not applied in the case of many variables and severe collinearity.
Studies on other fields also show that OLS is inferior to the coefficient shrink method in the prediction
accuracy, RMSE, etc. [21,22,26]. Although RR has anti-collinearity ability, it completely lacks variable
selection ability. Main variables among lots of variables can’t be found by the RR method, meanwhile,
a model can’t be simplified, so RR is also not applicable. RR is far inferior to coefficient shrink and
subset selection methods in reducing of complexity of the model. These issues have been demonstrated
in the previous studies [23–26].

The following discussion doesn’t cover RR and OLS, and we only consider situations that involve
the adjustment of the degree of freedom.

Conclusion on a general analysis of frequently-used evaluation indicators and PE. Through the
comprehensive analysis of indicators including R2, RMSE, RMSEr, PE, ME, ME/PE, etc., it can be found
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that BIC> ADALASSO> LASSO> AIC> SCAD>SR>NNG>Cp; BIC is the best, and Cp, NNG and SR
are relatively poor.

Significance test of the coefficient of determination difference. Here we see
(BIC, ADALASSO, LASSO) >

0.05/0.01
(SR, AIC, Cp, NNG), the three former coefficients are

significantly superior to the later four coefficients at the level of 0.01 or 0.05. There are no significant
differences among the former three coefficients, and the same among the latter four coefficients. In
addition, SCAD >

0.05/0.01
(AIC, Cp, NNG), SR >

0.05/0.01
(Cp, NNG).

Stability of model coefficients. Through the analysis of the ratio of variance within parameters to
that among parameters based on the same method, a conclusion can be drawn that BIC > LASSO >

ADALASSO > SR > SCAD > AIC > NNG > Cp. Stability of coefficients reflects changes of parameters
found when models were established based on data having differences through a method. Higher
stability means small changes, and lower stability means big changes. A good method should have
high parameter stability.

Variable selection stability. Through the analysis of the ratio of variance of indicative data within
parameters to that of indicative data among parameters based on the same method, it can be drawn
that BIC > SR > LASSO > SCAD > ADALASSO > AIC > Cp > NNG. Variable selection stability
reflects changes of explanatory variables selected when models were constructed based on data having
differences through a method. Higher stability indicates higher possibility that the same variables are
selected when models are constructed based on data having differences. Low stability indicates big
changes in variable selecting. A good method should have high variable selection stability.

Variable selection ability. Through the analysis of the number and changes of explanatory variables
used to construct models by different methods, and comparison of the mean, median, maximum,
minimum, range and standard deviation of number of variables, these eight methods can be ranked as
BIC > SR > Cp > ADALASSO > AIC > SCAD > LASSO > NNG. The mean of number of variables is
between 2.32 and 10.06; the median is between two and 10; the maximum value is between three and
21; the minimum value is between two and six; the range is from one to 19; the standard deviation is
between 0.4712 and 4.9132. All indicators under the BIC method are the best, number of variables is
2–3, and the range is one. The BIC method is the optimization of AIC. In terms of penalty, when n >

8, k ln(n) > 2k, so BIC gives more penalty to model parameters than AIC when there exists a large
amount of data. This leads to that BIC tends to choose a simple model with a small number of variables.
NNG has the worst performance. The number of variables selected by this method is up to 21, the
minimum number is only two, and the range reaches 19. Overall, the variable selection ability of the
subset selection method is stronger than the coefficient shrink method.

Comprehensive evaluation of the eight methods having variable selection ability. Sequence
numbers of each method in each indicator are shown in Table 10. According to the evaluation sequence
number, BIC gives the best performance, and it takes the first place in terms of all indicators. Overall,
NNG, Cp and AIC perform badly. Performance of other methods evaluated through various indicators
is quite different. ADALASSO is good in terms of accuracy, but it is just Ok in the aspects of variable
stability and variable selection ability. LASSO is particularly poor in terms of variable selecting, but it
is not bad in other aspects. SCAD has a weak overall performance. SR has stronger ability to choose
variables, but it has bad performance in terms of common performance. There are no significant
differences in prediction accuracy and other indicators according to the study results. From this point
of view, variable selection ability is a factor that should be given much more attention, so SR, as a
common method, is used frequently due to its strong ability to choose variables. Among the eight
methods, only BIC and AIC are both based on the Maximum Likelihood Estimation. AIC performs not
as good as BIC does and the reason maybe the different penalty function. The best BIC performance
may be related to the maximum likelihood estimate and its penalty function.
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Table 10. General evaluation.

Subset Selection Methods Coefficient Shrink Methods

Indicators BIC SR Cp AIC ADALASSO SCAD LASSO NNG
Frequently-used Indicators 1 6 8 4 2 5 3 7

Parameter Stability 1 4 8 6 3 5 2 7
Variable selection stability 1 2 7 6 5 4 3 8
Variable selection ability 1 2 3 5 4 6 7 8

Significance test of R2 1 3 4 4 1 2 1 4
Mean 1.0 3.4 6.0 5.0 3.0 4.4 3.2 6.8

In 400 (8 × 5 × 10) experiments of eight methods with variable selection ability in five ten-fold
cross validations, explanatory variables B7, B7_W9_CC and B7_W5_ME are mostly used, which are
the short-wave infrared band and two texture features of the short-wave infrared band. From this, it
can be known that the short-wave infrared band and its special texture features play an important
role in the estimation of forest biomass. In the estimation model of biomass, a short-wave infrared
band is more important than a visible-light band because the former is more sensitive to humidity and
shadow information in the structure of forest, and atmospheric condition has a smaller influence on it,
in comparison with other bands (e.g., visible light band and near infrared band).

7. Conclusions

By comparing four methods of subset selection and four methods of compression coefficients with
variable selection ability, and OLS and RR without variable selection ability, the following conclusions
are obtained:

1. RR has high parameter stability and anti-multicollinearity ability, but its accuracy performance is
not outstanding, OLS has no obvious advantages in any aspect. Both methods lack the ability to
select variables, so they are not applicable when there are many variables.

2. By comparing the R2, RMSE, RMSEr, PE, ME and ME/PE indicators, the order of performance is
as follows: BIC> ADALASSO> LASSO> AIC> SCAD>SR>NNG>Cp.

3. By comparing the differences in the significance of coefficients of determination, the result is
as follows, (BIC, ADALASSO, LASSO) >

0.05/0.01
(SR, AIC, Cp, NNG), SR >

0.05/0.01
(Cp, NNG) and

SCAD >
0.05/0.01

(AIC, Cp, NNG).

4. Comparing the stability of the coefficients of models, the following result is obtained: BIC >

LASSO > ADALASSO > SR > SCAD > AIC > NNG > Cp.
5. Comparing the stability of variable selection, the following result is obtained, BIC > SR > LASSO

> SCAD > ADALASSO > AIC > Cp > NNG.
6. Comparing the capability of variable selection, the following result is obtained: BIC>SR> Cp>

ADALASSO> AIC> SCAD> LASSO> NNG.
7. Comprehensive evaluation of eight methods with variable selection ability. The BIC method has

shown the best performance, while NNG, Cp, and AIC were generally poor. Other methods
have a large difference in performance on each indicator. ADALASSO performs well in terms of
accuracy, but performs not so bad in terms of variable stability and variable selection capability.
LASSO is particularly poor in terms of variable selection, but relatively well in other aspects.
SCAD is also weak overall; however, it is poor in common indicators. Variable selection ability is
a factor that should be given much more attention, so SR, as a common method, is used frequently
due to its strong ability to choose variables.

8. The most frequently selected variables are B7, B7_W9_CC and B7_W5_ME, which are the
short-wave infrared and two texture features of short-wave infrared, respectively. It can
be seen that the short-wave infrared band and its texture features are important in forest
biomass estimation.
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In this paper, the model construction methods are evaluated by five categories of indicators:
Commonly used indicators, prediction error and model error, model parameter stability, variable
selection stability and variable selection ability. For the same method, different indicators may have
different performance, which brings difficulties to the method selection. Therefore, comprehensive
consideration is needed. For one method, its advantage is particularly obvious on a certain indicator,
or the disadvantage is particularly obvious. Such an indicator needs to be given more attention. You
can give priority to this method or give up the method. On the contrary, there is no obvious advantage
or disadvantage in a certain indicator, so one does not need to pay too much attention on such an
indicator, that is, such an indicator has little effect on the selection of methods. In addition, we can
consider the main indicators based on the needs. For example, when the main purpose is to choose a
simpler model, we can pay more attention to variable selection ability, variable selection stability and
model parameter stability, etc. The other indicators are only for reference.
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