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Abstract: Object detection is a significant and challenging problem in the study area of remote sensing
and image analysis. However, most existing methods are easy to miss or incorrectly locate objects
due to the various sizes and aspect ratios of objects. In this paper, we propose a novel end-to-end
Adaptively Aspect Ratio Multi-Scale Network (A2RMNet) to solve this problem. On the one hand,
we design a multi-scale feature gate fusion network to adaptively integrate the multi-scale features of
objects. This network is composed of gate fusion modules, refine blocks and region proposal networks.
On the other hand, an aspect ratio attention network is leveraged to preserve the aspect ratios of objects,
which alleviates the excessive shape distortions of objects caused by aspect ratio changes during training.
Experiments show that the proposed A2RMNet significantly outperforms the previous state of the arts
on the DOTA dataset, NWPU VHR-10 dataset, RSOD dataset and UCAS-AOD dataset by 5.73%, 7.06%,
3.27% and 2.24%, respectively.

Keywords: object detection; remote sensing and image analysis; Adaptively Aspect Ratio Multi-Scale
Network (A2RMNet); a multi-scale feature gate fusion network; an aspect ratio attention network

1. Introduction

With the rapid development and progress of remote sensing technology, object detection in remote
sensing images has attracted more and more attention from researchers owing to its wide application
in many areas, such as urban planning [1], resource and environment survey [2], and traffic control [3].
Nevertheless, it is still a challenging task to achieve accurate object detection because the targets usually
appear with diverse sizes and aspect ratios in remote sensing images. For example, as shown in Figure 1,
the vehicle objects are small while the harbor objects are large and their aspect ratios differ significantly.
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Ship Small-vehicle Harbor Tennis-court

Figure 1. An example of annotated image from the DOTA dataset [4]. The annotated image is placed on
the top. Some enlarged subfigures containing objects are exhibited on the bottom. As shown in Figure 1,
there is a significant difference in sizes, e.g., small-vehicles/ships and harbors, and aspect ratios, e.g.,
small-vehicles and tennis-courts/harbors.

Existing methods have made a great effort to overcome this challenge in three ways. The first way is
to use the image/sliding window pyramids at input. Zhang et al. [5,6] resized the input image to multiple
scales, and extracted image features on each scale. Yao et al. [7–9] used multi-scale sliding windows and
different step sizes to sample each training image for generating potential candidate boxes. However, it is
difficult to meet the requirements of practical applications because these methods usually expend more
computation and memory.

The second way is mainly based on various multi-scale features of manual design, such as SIFT [10],
HOG [11], BOW [12] etc. Beril et al. [13] used SIFT keypoints and graph theory to detect the urban
areas and buildings. Shi et al. [14,15] combined the Circle Frequency features with the HOG features to
characterize the appearances and shapes of objects. Sun et al. [16] proposed a spatial sparse coding BOW
model to construct the visual vocabulary by clustering local features (e.g., SIFT, HOG). This model encoded
local features into a global representation, which was more effective than the first two methods. However,
these methods all depend on hand-designed features, which make it difficult to achieve satisfactory
performance since they are extracted according to the human experience and lack of representativeness.

The third way uses semantic features extracted by a convolution neural network (CNN) to detect
objects of various sizes and aspect ratios. Chen et al. [17] presented a hybrid deep convolutional
neural network to extract rich features for vehicle detection at various scales based on the sliding
window technique, which generated thousands of redundant windows. Instead of the sliding windows,
Cheng et al. [18] employed a region proposal method called the selective search algorithm [19] to generate
regions-of-interest (RoI), which segmented the input image into several sub-regions and merged them in
accordance with similarity. In addition, to solve the problem of object rotation variations in remote sensing
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images, they introduced a new rotation-invariant layer on the basis of the existing CNN architectures.
Nevertheless, one drawback of these detection networks is that their region proposal methods consume
excessive running time. To reduce the computing time, Han et al. [20] proposed a fast and efficient
geospatial object detection framework based on Faster R-CNN [21], which adopted a region proposal
network (RPN) that shared convolutional features with the detection network. Specifically, the RPN
was designed by introducing the "anchor" boxes with multiple scales and aspect ratios to predict region
proposals containing objects of various sizes and aspect ratios. Similarity, Chen et al. [22] added more
scales and aspect ratios of "anchor" boxes in RPN to achieve more accurate airport detection. However,
these methods predict the locations and categories of objects on the top of the classification network (e.g.,
VGG16 [23], ResNet-50 [24]). Under consecutive convolution and pooling operations, it is easy to result in
the incorrectly locations of objects due to the loss of details of the feature maps.

To make networks more robust for geometric variations of objects in remote sensing images,
one effective way is to make use of features of middle layers from CNN and then exploit the multi-scale
features with multi-level information [25–31]. Ding et al. [25] directly concatenate the multi-scale features
of CNN to obtain the fine-grained details for detecting small objects. Mou et al. [26] adopted the pixel-wise
summation to incorporate the score maps generated by multilevel context features of different residual
blocks for segmenting small objects such as vehicle. Guo et al. [27] proposed a top-down pathway
and lateral connection to build feature pyramid network that had strong semantic feature maps at all
scales. It assigned the feature maps of different layers to be responsible for objects with different scales.
Jiao et al. [28,29] introduced the dense feature pyramid network (DFPN) for automatic ship detection in
which each feature map was densely connected and merged by concatenation. Furthermore, Li et al. [30]
proposed a hierarchical selective filtering layer that mapped features of multiple scales to the same scale
space for ship detection with various scales. Gao et al. [31] designed a tailored pooling pyramid module
(TPPM) to take advantage of the contextual information of different subregions with different scales.

Although the above methods have achieved promising detection results by aggregating multi-scale
features, there also exist two common problems. (1) These previous works [25–31] aggregate multi-scale
features of CNN to detect objects of various scales using unified weights in Figure 2a, e.g., a simple
summation, which ignore the different importance of different scales. It is easy to interfere with detection
due to some noisy features. For example, in the right of Figure 2a, the background is incorrectly detected
as ship. (2) To extract features of each RoI, these methods [20–22,25,27–30] compress RoI feature maps of
different aspect ratios into the same size in Figure 2c, which is easy to cause excessive shape distortions
of objects and then disturb location and recognition of objects. For example, in the right of Figure 2c,
the large-vehicle is misclassified as small-vehicle and has an incorrect location.

To deal with the above problems, we propose an Adaptively Aspect Ratio Multi-Scale Network
(A2RMNet) for object detection of diverse sizes and aspect ratios in remote sensing images. A2RMNet is
composed of a multi-scale feature gate fusion network and an aspect ratio attention network, which takes
into account various scales of objects and the distortions of aspect ratios, respectively. The main
contributions of this paper are as follows:

• We propose a multi-scale feature gate fusion network to selectively aggregate different-scale features
of CNN from top to bottom for detecting objects of various scales. Instead of simply combining
different-scale features, a gate fusion is developed to control information flow of different-scale
features using the learned weight vector in Figure 2b, and then adaptively select the desired features
and suppress irrelevant features. For instance, the false detection result ship is suppressed in the right
of Figure 2b.

• We propose a novel aspect ratio attention network based on RoIs to solve the shape distortion caused
by the aspect ratio changes. This network can select the RoI features of appropriate aspect ratios in
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accordance with aspect ratios of objects in Figure 2d. It alleviates the excessive shape distortions of
objects caused by aspect ratio changes, and further improves the detection performance of the network
for objects of diverse aspect ratios. For instance, the large-vehicle is correctly detected in the right of
Figure 2d.

• We implement our method on the DOTA dataset [4], NWPU VHR-10 dataset [18], RSOD dataset [6],
and UCAS-AOD dataset [32], respectively. In addition, our method exceeds several existing methods
that are widely applied to object detection in remote sensing images. The experimental results
demonstrate the effectiveness of our method.
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Figure 2. The structures and detection results of different methods. (a) aggregates features of different scales
by simple summation. (b) utilizes the learned weight vector to adaptively aggregate features of different
scales. (c) maps the RoI into the square size (e.g., 7× 7) using RoI Pooling. (d) maps the RoI into different
aspect ratios (e.g., the vertical size, the square size and the horizontal size) and selects the appropriate
size in accordance with aspect ratios of objects. The detection results of different methods are shown on
the right.

The rest of this paper is organized as follows: Section 2 describes the proposed A2RMNet for
object detection in remote sensing images in more detail. Section 3 shows and analyzes the results of
the experiment. Section 4 summarizes the contributions of this paper and looks forward to the future
research directions.
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2. Proposed Method

The overall framework of our Adaptively Aspect Ratio Multi-Scale Network (A2RMNet) for object
detection is illustrated in Figure 3, which is based on Faster R-CNN [21] and FPN [33]. It consists of two
components: Multi-scale Feature Gate Fusion Network and Aspect Ratio Attention Network. Given a
remote sensing image, a multi-scale feature gate fusion network adaptively aggregates semantic features
of different scale using gate fusion modules and refine blocks. A great deal of region proposals at various
scales are generated on the fused multi-scale feature maps using RPN, respectively. Furthermore, in order
to preserve the aspect ratios of objects, an aspect ratio attention network utilizes the relevance scores
to select the RoI features that match the shapes of objects. This network guarantees more accurate
classification and localization for objects of various aspect ratios.
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Figure 3. Overall framework of Adaptively Aspect Ratio Multi-Scale Network (A2RMNet) for object
detection. The framework consists of two main parts: Multi-scale Feature Gate Fusion Network and
Aspect Ratio Attention Network. The multi-scale feature gate fusion network is composed of gate fusion
modules (G), refine blocks (RB) and region proposal networks (RPN). The aspect ratio attention network is
leveraged to select the appropriate aspect ratios of objects based on the attention module.

2.1. Multi-Scale Feature Gate Fusion Network

For typical object detection framework Faster R-CNN [21], it is difficult to achieve object detection of
various sizes using a single scale features of CNN. An effectively way to solve this problem is to utilize
the multi-scale features of middle layers from CNN, such as FPN [33]. Considering that low-resolution
features contain strong semantics and poor details, while high-resolution features have weak semantics
and rich details, FPN [33] combines different-resolution feature of CNN to create a feature pyramid that
has strong representational power at all scale. However, it is noteworthy that not all features is useful
for specific scale object detection when fusing different-scale feature maps. In previous works [25–31],
the different-scale feature maps are fused via a simple summation, which ignores the different importance
of different scales. It is easy to produce the false detection results due to some potential noisy features.
To address this problem, we propose a novel fusion mechanism called gate fusion, which expects that
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different-scale features will be assigned different importance, and thus achieves adaptively select the useful
features and suppress useless or noisy features.

The top of Figure 3 shows the multi-scale feature gate fusion network. The feature maps of different
scales are adaptively aggregated by gate fusion module. The refine block is followed by the gated fusion
features to further refine the expressive powers of the fused feature maps. Finally, we use RPN on
the refined feature maps to generate a great deal of proposals that may contain objects of various sizes and
aspect ratios.

Specifically, we adopt ResNet [24] as backbone network, and the feed-forward computation of which
is executed by bottom-top pathway. To construct a feature pyramid that contains multi-scale feature
maps, following FPN [33], we firstly choose the last layer of residual block conv2, conv3, conv4, conv5
as {C2, C3, C4, C5}, and their strides are {4, 8, 16, 32} pixels respectively for the input images. Then, we
upsample the low-resolution feature maps via nearest neighbor interpolation operation and aggregate
it with the next high-resolution feature maps using gated mechanism by top-down pathway. The final
outputs of feature maps {P2, P3, P4, P5} are obtained by refine blocks. Here, we also assigned the feature
maps P6 which is down-sampling of P5 for larger-scale objects.

2.1.1. Gate Fusion Module

Our gate fusion module is designed to control the information flow of different-scale features and
select the necessary features for objects of specific scale. To achieve this, we leverage the global information
of feature maps at each channel and the dependencies between features to generate important score for
each feature map, which is used to weight different-scale feature maps. In Figure 4a, the network structure
diagram of gate fusion module is shown. In order to aggregate multi-resolution features, we firstly conduct
a upsample layer UP2× with stride of 2 on the coarse resolution feature maps Pi+1 ∈ RC×H×W . Then
the feature maps are stacked with the fine resolution feature maps C̃i ∈ RC×H×W using a concat operator
Conc along the channel, where i = {2, 3, 4, 5}. C, H and W are the channel dimension, height and width,
respectively. The feature maps C̃i are obtained by feeding Ci in the backbone network into a convolution
layer with kernel of 1× 1 to reduce the channel numbers. In this paper, we set up C = 256. The cascaded
feature maps Ũi can be denoted as:

Ũi = Conc(C̃i; UP2×(Pi+1)) (1)

where Ũi = [Ũ1
i , Ũ2

i , ..., Ũc
i , ..., Ũ2C

i ] ∈ R2C×H×W , Ũc
i represents the feature map of the c-th channel of Ũi.

Next, we design a fusion function F f to gather different-scale feature maps and a gate function Fg

to generate the important scores of these feature maps, respectively. For fuse function F f , we employ a
convolution layer with kernel of 3× 3 and a relu layer to understand and aggregate different scale features:

Fi = F f (Ũi)

= Max(w1
gŨi, 0)

(2)

where Fi ∈ RC×H×W . w1
g represents the weight matrix of convolution layer.

In gate function Fg, it is expensive and difficult to converge for calculating the importance of each
pixel of the feature maps, so we statistic the importance for each channel and their relevance of the feature
maps. Naturally, we use the global pooling operator to obtain the global information g of the cascaded
feature maps Ũi:

gc =
1

W × H

W

∑
i=1

H

∑
j=1

Ũc
i (i, j) (3)
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where gc is the c-th element of g = [g1, g1, ..., gc, ..., g2C] ∈ R2C. In order to make the module adaptively
selects meaningful features for objects with different sizes, thus we learn the weight matrix w2

g ∈ R2C×C to
capture the interdependency between different-scale feature maps, and then follow a sigmoid function σ

to dominate the values of weights:
s = σ(w2

gg)

=
1

1 + e−(w
2
gg)

(4)

where s ∈ RC is a weight vector, each element is mapped to 0 ∼ 1. 0 means that the feature information is
not passed, 1 means the feature information is not weaken.

Finally, we use the learned weight vector s to rescale the feature maps from Fi, which contributes to
detect the specific scale objects. The gate fusion module can be defined as:

Ui = ((s⊗ Fi)⊕ Ci)w3
g (5)

where⊗ is channel-wise product operator, and⊕ is element-wise sum operator, w3
g expresses a convolution

layer with kernel of 3× 3.
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Figure 4. (a) The network structure diagram of the gate fusion module. The feature maps C̃i generated
by the feature maps from the backbone network and the last fused feature maps Pi+1 are fed into the gate
fusion module for getting the fused feature maps Ui. (b) The network structure diagram of the refine block.
It is used to refine the expressive powers of the feature maps Ui. (c) The network structure diagram of
the aspect ratio attention network. It adaptively selects the features with suitable aspect ratios or shapes for
more accurate classification and localization. σ and C denote sigmoid function and concatenate operator.
⊗ is channel-wise product operator and ⊕ is element-wise sum operator.

2.1.2. Refine Block

The refine block is followed by the feature map of each level after gate fusion to generate the refined
feature maps Pi, i = {2, 3, 4, 5}, and then these feature maps is used to predict the location and category of
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objects of different sizes. As shown in the Figure 4b, we employ a basic residual block [24] consisting of
two convolution layers with kernel of 3× 3 and a relu layer, which can purify the feature maps. It makes
the network easier to optimize due to the addition of short cut. Furthermore, the refine block can effectively
avoid over-fitting and enhance the expressive powers of features.

2.1.3. Region Proposal Network

Due to the high-resolution features containing richer details, it is better to detect small objects.
The high-resolution features are captured in a larger receptive field, which is helpful for large object
detection. In order to make full use of the advantages of feature maps of different scales after
fusion, the areas of anchors {322, 642, 1282, 2562, 5122} are separately assigned to the feature maps
{P2, P3, P4, P5, P6}, and the aspect ratios of anchors are set to {1 : 1, 1 : 2, 2 : 1}, as shown in Figure 3. After
that, we use RPN [21] to predict the objectness scores and position offsets of anchors of different sizes
on different-scale feature maps separately, and then use non maximum suppression (NMS) to screen out
the regions of interest (RoIs).

2.2. Aspect Ratio Attention Network

Recently, most of state-of-the-art methods are [7–9,20–22] based on the two-stage object detection
framework Faster R-CNN [21]. This framework firstly extracts the features of each RoI generated by RPN
using RoI Pooling and then leverages a series of classifiers and regressors to obtain the categories and
locations of objects, respectively. However, the RoI pooling maps object regions of different aspect ratios
or shapes into the same size (e.g., 7× 7 (1:1)) to satisfy the requirement that the input size of the network
is consistent. It is easy to cause excessive shape distortions of objects and then disturb the location and
recognition of objects. To address this problem, we propose an aspect ratio attention network based on
RoIs, as shown in Figure 4c. This network extracts RoI features of appropriate aspect ratio more flexibly
according to the relevance scores between each shape and RoI, so that the actual aspect ratio of object is
preserved as much as possible, avoiding the distortion of RoI features. In the following, we will describe
the details for this network.

Unlike previous methods using an RoI Pooling operator [34], we adopt the RoI Align operator
proposed by Mask R-CNN [35] to extract RoI features. It cancels the quantization operation, and uses
bilinear interpolation to get the relative pixel values at the coordinates of floating points replacing nearest
neighbor interpolation, which solves the problem of misalignment of RoI Pooling operator. Similar to
FPN [33], we assign an RoI to the corresponding feature maps {P2, P3, P4, P5, P6} according to to the size of
RoI. Because objects in images often appears in three shapes: vertical, square and horizontal, we map each
RoI to the three shapes by adjusting aspect ratios instead of the previously fix square shape. The aspect
ratios are set to be consistent with that of anchors ({1 : 2, 1 : 1, 2 : 1}).

Denote S = {S1, S2, S3} as a set of multi-shapes RoI feature maps. In this paper, we set up S1 ∈
RC×14×7, S2 ∈ RC×7×7, S3 ∈ RC×7×14, where C = 256 is the channel dimension of the RoI feature maps.
We embed RoI feature map of each shape into a vector fi ∈ Rd respectively for the global information,
where d = 1024, and cascade these feature vectors:

f = Conc(wi
sS)

= Conc(w1
s S1; w2

s S2; w3
s S3)

= Conc( f1; f2; f3)

(6)

where wi
s symbolizes the weight matrix corresponding to the i-th aspect ratios of RoI, f ∈ R3d is the feature

vector after concating.
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To make the network automatically select the RoI feature maps that match the aspect ratio of object,
we design an attention module to generate their relevance scores. The possibility p = [p1, p2, p3] ∈ R3 of
selecting RoI features for each specific aspect ratio can be described as:

pi = So f tmax(w1
afi)

=
ew1

af

∑3
i=1 ew1

afi

(7)

where w1
a ∈ R3d×3 is the attention weight, which combines features of different aspect ratios into a

weight vector with 3 dimension. Based on the above probability values p, the RoI features of each aspect
ratio fi can be weighted and summed to gain the final features f̃ ∈ Rd matching with aspect ratio of
original objects:

f̃ = (p1 ⊗ f1)⊕ (p2 ⊗ f2)⊕ (p3 ⊗ f3) (8)

Subsequently, similar to Faster R-CNN [21], two fully connected layers are needed for achieving
the final classification and location of objects.

v = w3
aw2

a f̃ (9)

where w2
a ∈ Rd×h and w3

a ∈ Rh×h are the weight matrices, h is the dimension of hidden layer, which is
usually set to 1024. v ∈ Rh is the output feature vector. In addition, we use the multi-task loss function [34]
to train the proposed A2RMNet, which is composed of classified loss and regression loss.

3. Experiments

In this section, we will demonstrate the effectiveness of our methods for object detection of remote
sensing images on four popular datasets: DOTA dataset [4], NWPU VHR-10 dataset [18], RSOD dataset [6],
and UCAS-AOD dataset [32]. We firstly introduce the above datasets, the experimental details and
the evaluation criteria. Then, we analyze the impact of each module on the performance of the network.
Finally, we compare the accuracy of our A2RMNet method with the state-of-the-art methods on the
four datasets.

3.1. Datasets

3.1.1. DOTA Dataset

The DOTA dataset [4] is a large-scale dataset for object detection in aerial images, which contains
15 object classes with various scales and 2806 images with higher resolution. The width of images mainly
ranges from 800 to 4000 pixels from different sensors and platforms. For DOTA, there are 1411 images for
training, 458 images for validation, 937 images for testing, of which 188,282 are annotated instances. Since
the annotations are not available for test set, the accuracy evaluation of the test data needs to be submitted
to the website (https://captain-whu.github.io/DOTA/). In this paper, to meet the requirements of our
research, we use the published code (https://github.com/CAPTAIN-WHU/DOTA_devkit) to transform
the coordinates of annotated instances from 8 to 4 points for the detection of horizontal bounding boxes.

3.1.2. NWPU VHR-10 Dataset

The NWPU VHR-10 dataset [18] is a public dataset including 800 images (about 1000 × 1000) with
650 positive samples and 150 negative samples collected from Google Earth and Vaihingen dataset,
and consists of ten categories. In this paper, we divide the dataset into training set, validation set and

https://captain-whu.github.io/DOTA/
https://github.com/CAPTAIN-WHU/DOTA_devkit
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test set according to the ratio of 20%, 20%, 60%, which is randomly selected from images according to
the corresponding proportion.

3.1.3. RSOD Dataset

The RSOD dataset [6] has 936 annotated images, which are mainly comprised of 4993 aircraft in
446 images, 191 playgrounds in 189 images, 180 overpass in 176 overpass and 1586 oiltanks in 165 images.
In this paper, we split 25% of the dataset into training set, 25% into validation set and 50% into test set.

3.1.4. UCAS-AOD Dataset

The UCAS-AOD dataset [32] is a aerial object detection dataset. It is obtained by cropping with
Google Earth software in some parts of the world, which consists of 1510 images (about 1000 × 1000) and
two categories of cars and planes. In this paper, following Xia et al. [4] settings, we randomly choose
1110 images for training, 400 images for testing.

3.2. Implementation Details

The designed A2RMNet is an end-to-end learning network using ResNet [24] pretrained on
ImageNet [36]. For DOTA dataset [4], because of the high resolution of the image, we utilize the sliding
window of size 800 × 800 to cut the original image with step size of 400 for the input image of our
network. For the other three datasets with relatively not high resolution of image (about 1000 × 1000),
we resize the short side of image to 800, the long side is fitted with the same ratio. We adopted
Soft-NMS method [37] with gaussian weighting, where sigma of 0.5 is set. Our network is implemented
on the caffe2 [38] deep learning framework with Nvidia Titan X GPU of 12G memory. We define
the hyper-parameters of our network following FPN [33] provided by Detectron object detection platform
(https://github.com/facebookresearch/Detectron). The mini-batch stochastic gradient descent (SGD)
algorithm is adopted to optimize the network with batch size of images 1, batch size of RoIs 512. The weight
decay is set to 0.0001, and the momentum of 0.9 was selected. In this paper, we choose the learning policy
of step with decay, and set the basic learning rate of 0.01 for the first 20k iterations, 0.001 for the next 10k
iterations, 0.0001 for the last 10k iterations on DOTA dataset [4]. In all our experiments, we do not use any
data augmentation unless otherwise specified.

3.3. Evaluation Criteria

To evaluate the performance of object detectors, we adopt the typical measure of mean Average
Precision (mAP) that is obtained by recall (R) and precision (P). The mAPs are defined using true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) as:

R =
TP

TP + FN
(10)

P =
TP

TP + FP
(11)

where the detection result will be considered true if the IOU with the proposal and matching ground truth
is larger than a certain threshold. In our experiments, the threshold is determined to 0.5. Meanwhile, we
can also leverage Recall and Precision to draw the P-R curve. Furthermore, the area under the curve means
the average precision (AP) of each category. The formula is as follows:

AP =
∫ 1

0
P(R)dR (12)

https://github.com/facebookresearch/Detectron
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The mAP means that the mean value of AP for all categories:

mAP =
∑Ncls

i=1 AP
Ncls

(13)

where Ncls indicates the number of categories.
For ease of understanding, Figure 5 shows the P-R curves of our A2RMNet method and the other

state-of-the-art methods. We can see that the area under the blue line (ours) is larger than that under
the other lines for the 15 categories of DOTA dataset [4]. When the recall is determined, the precision of
A2RMNet is higher than other methods. When the precision value is given, our recall is also higher than
other methods. In short, the proposed A2RMNet method has better performance than the other methods.
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Figure 5. The P-R curves of the proposed A2RMNet method and the other state-of-the-art methods
for plane, baseball-diamond, bridge, ground-track-field, small-vehicle, large-vehicle, ship, tennis-court,
basketball-court, storage-tank, soccer-ball-field, roundabout, harbor, swimming-pool and helicopter on
the DOTA dataset [4]. The horizontal axis represents recall, the vertical axis stands for precision, and the
area under the curve means the average precision (AP) of each category.
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In addition, we also use the receiver operating characteristics curve (ROC) to evaluate the detection
performance, which is obtained by true positive rate (TPR) and false positive rate (FPR).

TPR =
TP

TP + FN
(14)

FPR =
FP

TN + FP
(15)

where TPR is equivalent to recall. Figure 6 shows the ROC curves of different methods for each category
on the DOTA dataset. The closer the ROC curve is to the upper left corner (0,1), the better the detection
performance of the network. It can be observed that our method achieves better performance than other
existing methods.
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Figure 6. The ROC curves of the proposed A2RMNet method and the other state-of-the-art methods
for each category on the DOTA dataset [4]. The horizontal axis stands for false positive rate (FPR) and
the vertical axis for true positive rate (TPR).
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Furthermore, we compare the classification performance of different methods in a rigorous way.
Following [39], we use the proportion correct xi

ni
(xi indicates the number of correctly allocated cases,

ni represents the total number of ground truth) to evaluated the classification accuracy for each detection
method and compare the statistical significance of difference in accuracy using MCNemar test [40] for
related samples. This test is based upon the standardized normal test statistic:

z =
f12 − f21√

f12 + f21
(16)

where fij indicates the entries lying in confusion matrix element i, j. Table 1 shows the paired comparison of
classification accuracy for different methods. It can be observed that our method significantly outperforms
the compared methods. In addition, there is no significant difference between Deformble R-FCN [41] and
R-FCN [42].

Table 1. Comparison of the classification accuracy for different methods using McNemar test on the DOTA
dataset. The 5% level is selected as the level of difference significant.

Method 1 Method 2
Comparison of Proportions

x1
n1

x2
n2

x1
n1

− x2
n2

|z| Significant?

A2RMNet YOLOv2 [43] 0.895 0.407 0.488 112.29 Yes, 0.0%
A2RMNet SSD [44] 0.895 0.429 0.466 109.55 Yes, 0.0%
A2RMNet Faster R-CNN [21] 0.895 0.608 0.287 83.59 Yes, 0.0%
A2RMNet R-FCN [41] 0.895 0.650 0.245 76.48 Yes, 0.0%
A2RMNet Deformable R-FCN [42] 0.895 0.650 0.244 76.41 Yes, 0.0%

Deformable R-FCN [42] YOLOv2 [43] 0.650 0.407 0.244 67.26 Yes, 0.0%
Deformable R-FCN [42] SSD [44] 0.650 0.429 0.222 63.27 Yes, 0.0%
Deformable R-FCN [42] Faster R-CNN [21] 0.650 0.608 0.042 16.54 Yes, 0.0%
Deformable R-FCN [42] R-FCN [41] 0.650 0.650 0.000 0.193 No, 84.7%

R-FCN [41] YOLOv2 [43] 0.650 0.407 0.244 66.91 Yes, 0.0%
R-FCN [41] SSD [44] 0.650 0.429 0.221 63.25 Yes, 0.0%
R-FCN [41] Faster R-CNN [44] 0.650 0.608 0.042 16.47 Yes, 0.0%

Faster R-CNN [21] YOLOv2 [43] 0.608 0.407 0.202 57.18 Yes, 0.0%
Faster R-CNN [21] SSD [44] 0.608 0.429 0.179 52.54 Yes, 0.0%

SSD [44] YOLOv2 [43] 0.429 0.407 0.022 6.84 Yes, 0.0%

3.4. Ablation Study

In this subsection, we reveal the impact of each module of the proposed network on performance.
For ablation experiments, the backbone network with ResNet-50 [24] is used to evaluate the performance
on DOTA dataset [4], where these networks are trained on the training set, and tested on the validation set.

3.4.1. Ablation for Multi-Scale Feature Gate Fusion Network

To demonstrate the effectiveness of the multi-scale feature gate fusion network, we set up the baseline
detection network (Faster R-CNN [21]) and FPN [33] with a lateral connection to be consistent with our
network in the implement details. The fourth row of Table 2 shows that the results of introducing the gate
fusion module on the baseline detection network. The module adaptively aggregates different-scale
feature maps for object detection of various sizes, which significantly improves the detection accuracy
by 6.58%. Further, in order to enhance the discrimination of features, the refined block is appended after
the gate fusion module. As shown in Table 2, the detection accuracy is increased from 70.79% to 71.49%.
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Furthermore, the performance of the multi-scale feature gate fusion network also overwhelms the popular
multi-scale method FPN [33] by 1.52%, which fuses different-scale feature maps by simple summation.

Table 3 shows the influences of different combination ways regarding the different-scale feature maps
on the detection accuracy. Following [4], we measure the sizes of objects according to the height of objects.
The height ranges from 0 to 50 for a small object, from 50 to 300 for a medium object, and over 300 for a
large object. In Table 3, it can be observed that the mAP of only the last feature map P5 is lowest while
the AP of large objects is best in four combination ways due to the large receptive field. By gradually
incorporating the feature map P4, P3, P2, the detection accuracy is constantly improved. The fusion of all
the feature maps performs the best in Table 3, and the performance is boosted from 65.11% to 72.89%.
Meanwhile, the detection accuracies (APs, APm, Apl) of small objects, medium objects and large objects
have been greatly improved, which indicates the effectiveness of the designed multi-scale feature gate
fusion network for object detection of various sizes. The main reason for this result is that the high-level
feature maps P5 have strong semantic information and a large receptive field, which are good for large
object detection. The low-level feature maps with rich details are continuously integrated to strengthen
the expressive power of the network, thus, improving the detection accuracy.

Table 2. Ablation study on the components of Adaptively Aspect Ratio Multi-scale Network (A2RMNet)
(SF: Sum Fusion, GFM: Gate Fusion Module, RB: Refined Block, ARAN: Aspect Ratio Attention Network).
The bold numbers represent the best detection result.

Method mAP

Baseline (Faster R-CNN [21]) 64.21
+SF (FPN [33]) 69.97

+GFM 70.79
+GFM+RB 71.49
+GFM+RB+ARAN 72.89

Table 3. Different combination ways of the feature maps. The bold numbers represent the best
detection results.

Method mAP APs APm APl

P5 65.11 41.75 65.88 43.65
P5 + P4 69.98 53.57 69.46 35.35
P5 + P4 + P3 71.76 56.88 69.75 34.61
P5 + P4 + P3 + P2 72.89 62.16 70.25 43.53

3.4.2. Ablation for Aspect Ratio Attention

The fifth row of Table 2 shows the results of introducing the aspect ratio attention network,
which adaptively selects the appropriate features from three different aspect ratios of RoIs using
the designed attention module. This network improves the detection accuracy by 1.4%. Other results
in Table 2 only use RoIs with an aspect ratio of 1:1 at the stage of region feature extraction, like Faster
R-CNN [21]. Table 4 compares three different designs about the attention module for the region feature
extraction network. The first row of Table 4 shows the results of without aspect ratio attention network
(ARAN), which maps the RoIs of all scales to the features of same size 7 × 7. In order to verify
the effectiveness of the proposed aspect ratio module, we also exhibit the result of the plain method,
which is a natural feature fusion method. Unfortunately, We can notice that the performance of the plain
method is lower than without ARAN. In the plain method, we first cascade the RoI feature vectors with
different aspect ratios using a concat operator, and then combine the features of different channels with a
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inner product layer. Nevertheless, the performance of the attention module designed in this paper can
reach 72.1%, which demonstrates that the attention module performs better than the simple plain method.
In addition, we evaluate the detection accuracy of objects of different aspect ratios. The aspect ratio from 0
to 0.5 for a vertical object, from 0.5 to 2 for a square object, and over 2 for a horizontal object. Meanwhile,
we can see that the detection accuracies (APv, APsq, APh) of objects of diverse aspect ratios have been
increased by adding the aspect ratio attention module.

Table 4. Different designs about the attention module. ar denotes the aspect ratios of objects. w/o
ARAN denotes without Aspect Ratio Attention Network (ARAN). The bold numbers represent the best
detection results.

Method mAP
APv APsq APh

(0 < ar ≤ 0.5) (0.5 < ar ≤ 2) (ar > 2)

w/o ARAN 71.49 41.89 68.64 27.85
Plain (Concat+FC) 70.95 41.65 67.99 29.51
Attention 72.1 43.6 69.72 30.04

3.5. Comparison with the-State-of-the-Art Methods

In this subsection, we compare the proposed method with the state-of-the-art detection networks
on different remote sensing datasets, and exhibit qualitative results, thus, verifying the generality and
effectiveness of our detection network.

3.5.1. Results on DOTA Dataset

In Table 5, the performance of some current state-of-the-art detection networks on DOTA
dataset [4] is evaluated, such as YOLOv2 (https://pjreddie.com/darknet/yolo/) [43] based on
Darknet19, Inceptionv2 [45] for SSD (https://github.com/tensorflow/models/tree/master/research/
object_detection) [44], and ResNet-101 [24] for R-FCN (https://github.com/msracver/Deformable-
ConvNets) [41], Deformable R-FCN (https://github.com/msracver/Deformable-ConvNets) [42] and
Faster R-CNN (https://github.com/msracver/Deformable-ConvNets) [21]. Note that the performance of
existing methods in Table 5 is taken from [4,46]. In order to evaluate the performance of our method on
the test set of DOTA dataset [4], we adopt multi-scale training and testing strategies due to the large-scale
of DOTA dataset [4]. In Table 5, it is remarkably shown that our approach has better performance, which
greatly exceeds the Faster R-CNN [21] by 18% at mAP. The detection performance of SSD [44] is the lowest
among these approaches mentioned in Table 5, although it uses multi-scale feature maps. The main reason
may be that it only uses the low-level feature maps for small objects, resulting in inadequate feature
extraction, high-level feature maps for large targets, resulting in the loss of detail information. Moreover,
the performance of our method also exceeds Deformable R-FCN [42], which adjusts the size and shape of
receptive field to detect objects of various sizes and aspect ratios. In addition, our method outperforms
the recent two methods by Azimi et al. [47] and Yan et al. [46] by 6% and 5.73%, respectively.

To evaluate the computational efficiency of our method, we run other recent methods that have
released code and our method on the same machine Nvidia GTX Titan X GPU with 12 G memory to ensure
a fair comparison. Table 6 shows the average computing time per image for different detection models.
It can be observed that our A2RMNet expends a little more computing time than other recent methods for
adaptively detecting objects of various sizes and aspect ratios.

https://pjreddie.com/darknet/yolo/
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/msracver/Deformable-ConvNets
https://github.com/msracver/Deformable-ConvNets
https://github.com/msracver/Deformable-ConvNets
https://github.com/msracver/Deformable-ConvNets
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Table 5. Comparison of the performance of different detection models on the test set of DOTA dataset [4].
The abbreviation names of category follow [4] (BD: Baseball diamond, GTF: Ground field track, SV: Small
vehicle, LV: Large vehicle, TC: Tennis court, BC: Basketball court, ST: Storage tank, SBF: Soccerball field, RA:
Roundabout, SP: Swimming pool, and HC: Helicopter.). The bold numbers represent the best detection
results on each category.

Method YOLOv2 SSD Faster R-FCN Deformable Azimi Yan
A2RMNet[43] [44] R-CNN [21] [41] R-FCN [42] et al. [47] et al. [46]

Backbone DarkNet19 InceptionV2 ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-101

Plane 76.9 57.85 80.32 81.01 87.97 89.97 88.62 89.84
BD 33.87 32.79 77.55 58.96 76.69 77.71 80.22 83.39

Bridge 22.73 16.14 32.86 31.64 46.97 53.38 53.18 60.06
GTF 34.88 18.67 68.13 58.97 68.76 73.26 66.97 73.46
SV 38.73 0.05 53.66 49.77 55.86 73.46 76.3 79.25
LV 32.02 36.93 52.49 45.04 63.5 65.02 72.59 83.07

Ship 52.37 24.74 50.04 49.29 56.9 78.22 84.07 87.88
TC 61.65 81.16 90.41 68.99 90.13 90.79 90.66 90.90
BC 48.54 25.1 75.05 52.07 75.81 79.05 80.95 87.02
ST 33.91 47.47 59.59 67.42 64.8 84.81 76.24 87.35

SBF 29.27 11.22 57 41.83 51.73 57.20 57.12 60.74
RA 36.83 31.53 49.81 51.44 60.01 62.11 66.65 69.05

Harbor 36.44 14.12 61.69 45.15 74.96 73.45 74.08 79.88
SP 38.26 9.09 56.46 53.3 71.41 70.22 66.36 79.74
HC 11.61 0 41.85 33.89 52.95 58.08 56.85 65.17

mAP 39.2 29.86 60.46 52.58 66.56 72.45 72.72 78.45

Table 6. The average computing time per image for different detection models.

Method YOLOv2 SSD Faster R-FCN Deformable
A2RMNet[43] [44] R-CNN [21] [41] R-FCN [42]

Computing Time per image (second) 0.024 0.023 0.092 0.079 0.100 0.125

3.5.2. Results on NWPU VHR-10 Dataset

In Table 7, we validate the effectiveness of our method and other state-of-the-art methods on
the NWPU VHR-10 dataset [18]. The proposed A2RMNet improves the detection performance of Faster
R-CNN [21] and Deformable R-FCN [42] by 12.76% and 7%, respectively. For fair comparison, we train
and test all methods using the same data.

3.5.3. Results on RSOD Dataset

We also compare the performance of our method A2RMNet with other existing methods on RSOD
dataset [6], and our method A2RMNet achieved the best detection performance of 93.57% in Table 8.
For fair comparison, we train and test all methods using the same data.
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Table 7. Comparison of the performance of different detection models on the test set of NWPU VHR-10
dataset [18].The abbreviation names of category can be described as follows. (ST: Storage tank, BD: Baseball
diamond, BC: Basketball court and GTF: Ground track field). The bold numbers represent the best detection
results on each category.

Method YOLOv2 [43] SSD [44] Faster R-FCN [41] Deformable
A2RMNetR-CNN [21] R-FCN [42]

Backbone DarkNet19 InceptionV2 ResNet-101 ResNet-101 ResNet-101 ResNet-101

Airplane 90.16 92.3 94.7 95.9 95.9 99.69
Ship 82.22 82.42 79.8 83.4 83.8 90.98
ST 20.72 52.42 55.5 65.0 66.8 74.34
BD 94.39 97.62 92.2 94.6 95.3 97.74
TC 44.75 60.16 57.4 69.3 73.6 89.27
BC 65.74 61.84 69.1 73.9 76.8 91.42
GTF 99.85 98.67 99.5 97.4 98.1 97.91
Harbor 66.45 75.68 72.9 77.5 77.9 90.26
Bridg 66.45 72.27 62.9 47.8 57.8 62.96
Vehicle 41.82 53.82 58.0 71.3 72.8 74.99
mAP 67.96 74.72 74.2 77.6 79.9 86.96

Table 8. Comparison of the performance of different detection models on the test set of RSOD dataset [6].
The bold numbers represent the best detection results on each category.

Method YOLOv2 [43] SSD [44] Faster R-FCN [41] Deformable
A2RMNetR-CNN [21] R-FCN [42]

Backbone DarkNet19 InceptionV2 ResNet-101 ResNet-101 ResNet-101 ResNet-101

Aircraft 64.8 72.5 76.6 84.3 84.1 94.27
Oiltank 93.77 92.83 95.0 95.7 96.8 96.44
Overpass 90.85 91.43 68.0 74.9 82.4 83.8
Playground 99.98 97.71 96.0 98.0 97.9 99.76
mAP 87.35 88.62 83.9 88.2 90.3 93.57

3.5.4. Results on UCAS-AOD Dataset

As shown in Table 9, the detection accuracy of our method A2RMNet is 96.94% on UCAS-AOD
dataset [32], which goes beyond the other state-of-the-arts. In particular, the mAP of Plane is almost
perfect. For fair comparison, we train and test all methods using the same data.

Table 9. Comparison of the performance of different detection models on the test set of UCAS-AOD dataset
[32]. The bold numbers represent the best detection results on each category.

Method YOLOv2 [43] SSD [44] Faster R-FCN [41] Deformable
A2RMNetR-CNN [21] R-FCN [42]

Backbone DarkNet19 InceptionV2 ResNet-101 ResNet-101 ResNet-101 ResNet-101

Plane 86.66 92.18 95.0 97.6 97.6 99.24
Car 55.82 65.58 83.0 89.3 91.7 94.65
mAP 71.24 78.88 89.0 93.5 94.7 96.94
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3.5.5. Qualitative Results

Figure 7 exhibits the detection results of the proposed network A2RMNet in the test set of DOTA
dataset [4], whose ground truth is not available. It can be observed that our method performs well for
objects of diverse sizes and aspect ratios.

3.6. Discussion

In order to compare our method with other state-of-the-art methods in more detail, we show some
subjective detection results obtained on the DOTA dataset in Figure 8. It can be observed that the existing
methods are easy to miss and incorrectly detect some objects. For example, other methods miss the vehicle
objects (small-vehicle, large-vehicle) of different sizes in second column and the objects (harbor, ship)
of different aspect ratios in fourth column. In addition, SSD incorrectly classifies basketball-court as
tennis-court in third column. YOLOv2 incorrectly locates the ship objects in the fourth column. Compared
with other recent methods, our method adaptively chooses more appropriate scale and aspect ratio object
features, thus achieving more accurate object detection.

Figure 9 shows two main types of mistakes. The first type of mistake occurs when objects have
similar appearance features. For example, in Figure 9a, our method incorrectly classifies the plane object
as helicopter. Another case is that our method sometimes generates some noisy bounding boxes that do
not tightly surround the objects. For instance, in Figure 9b, some bounding boxes inaccurately located
the ship objects, although they are correctly classified. One possible reason for this case is that we divide
positive and negative samples using a lower IoU threshold of 0.5 during training, which makes it difficult
to train detectors that can effectively reject close false positive samples.Remote Sens. 2019, xx, 5 18 of 22
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Figure 9. Failed detection results of our method on the DOTA dataset.

4. Conclusions

In this paper, we have proposed a novel and effective approach to learn an end-to-end
Adaptively Aspect Ratio Multi-Scale Network (A2RMNet) for object detection in remote sensing images,
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which adaptively selected useful and discriminative features for objects of various sizes and aspect ratios.
The proposed A2RMNet approach consisted of a multi-scale feature gate fusion network and an aspect
ratio attention network. The ablation study demonstrated the performance improvement of the two
components of the overall architecture. Compared with other state-of-the-art methods, the quantitative
comparison results on four public datasets for remote sensing object detection have shown the higher
detection accuracy of the proposed A2RMNet approach. In the future, we hope to leverage the context
information to further enhance the discriminability of features and select the appropriate IoU threshold to
train object detectors for more accurate location and classification.
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