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Abstract: Land cover classification data have a very important practical application value, and long
time series land cover classification datasets are of great significance studying environmental changes,
urban changes, land resource surveys, hydrology and ecology. At present, the starting point of
continuous land cover classification products for many years is mostly after the year 2000, and there is
a lack of long-term continuously annual land cover classification products before 2000. In this study,
a long time series classification data extraction model is established using a bidirectional long-term
and short-term memory network (Bi-LSTM). In the model, quantitative remote sensing products
combined with DEM, nighttime lighting data, and latitude and longitude elevation data were used.
We applied this model in China and obtained China’s 1982–2017 0.05◦ land cover classification
product. The accuracy assessment results of the test data show that the overall accuracy is 84.2% and
that the accuracies of wetland, water, glacier, tundra, city and bare soil reach 92.1%, 92.0%, 94.3%,
94.6% and 92.4%, respectively. For the first time, this study used a variety of long time series data,
especially quantitative remote sensing products, for the classification of features. At the same time, it
also acquired long time series land cover classification products, including those from the year 2000.
This study provides new ideas for the establishment of higher-resolution long time series land cover
classification products.

Keywords: time series; land cover classification; Bi-LSTM; quantitative remote sensing

1. Introduction

With population growth, economic development, and various factors, land cover information
has been identified as one of the key data components in many aspects of global change research
and environmental applications [1,2]. Large-scale land cover classification and mapping provides a
source of data for many of the research works on global change and is an important input variable to
global change models (such as net productivity models, ecosystem metabolic models, and carbon cycle
models). Most global change models need to be supported by large areas of land cover information [3,4].
At the same time, the speed and magnitude of land changes are constantly changing with time and
space. For two maps covering long time spans, there is a lack of corresponding process information,
and the long time series of land cover datasets can capture the complexity of ground changes [5]
while quantifying these changes. Therefore, long time series land cover classification data are of great
significance for land change monitoring [6], identification, and planning assessment [7,8].
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With the development of remote sensing technology, the quantity and quality of remote sensing
data are also constantly increasing, and the data can be used for geographic area monitoring around the
clock [9,10]. Therefore, this study of a wide range of long time series land cover classifications can be
carried out well. Many countries and international organizations have used different image processing
techniques and data, such as Landsat, SPOT, Advanced Very High Resolution Radiometer (AVHRR)
and Moderate-resolution Imaging Spectroradiometer (MODIS) data, to conduct land cover research at
the regional, intercontinental and global scales. Global and regional land cover classification products
have been researched and produced by several countries and institutions [11,12].

There are still some shortcomings in the currently existing classified datasets. First, the current
global land cover datasets are mostly concentrated after 2000. Categorical data before 2000, especially
time-continuous products, are scarce due to the lack of continuous time series data [13,14]. In addition,
the current database for this study of land cover classification generally uses surface reflectance
data [15,16] or the vegetation index (VI) obtained from reflectance data [13,17]. The data categories are
relatively singular and lack surface feature information. Different land types have different reflection
features, which is the basis for the use of reflectivity for land cover classification [18]. The similarity
of the vegetation spectrum will cause the confusion of categories when using the reflectance for
vegetation classification. One solution is to use time series data for land cover classification, which
has been accepted by many researchers and has yielded good results [19,20]. Over the past three
decades, remote sensing satellite observations have produced a large number of time series remote
sensing products, which has made it possible to obtain long time series land cover classifications
from up to 2000 years ago, such as Global LAnd Surface Satellite (GLASS) [21]. Global LAnd Surface
Satellite (GLASS) generates a range of geophysical, physical and chemical parameter values using
multi-source data and multi-algorithm integration. Many quantitative remote sensing products have
been produced such as albedo (Albedo) [22], evapotranspiration index (ET) [23], the leaf area index
(LAI) [24], gross primary productivity (GPP) [25], and fraction of absorbed photosynthetically active
radiation (FAPAR) [26]. These products cover the years 1982–2017 at 1–5 km and 8-day resolutions.
These products do not just contain a large amount of land feature information such as vegetation cover,
photosynthetic absorption, surface reflection, radiation emission, latent heat flux and biomass, but also
can extract interannual variation of surface features. Therefore, they are highly suitable for long time
series land cover classification.

Traditional classification methods are classified into supervised classification and unsupervised
classification. The representative of the unsupervised classification is clustering algorithm such as
IOSDATA [27], Maximum Likelihood Classification [28] and K-Means [29]. The supervised classification
is mostly machine learning algorithms. For example, Gopal et al. used the ANN to get the Fuzzy
ARTMAP [30], Boles et al. used the IOSDATA algorithm to obtain the Temperate East Asia classification
map [31], Homer et al. completed the NLCD 2001 by using the Decision Tree [32], and Carrão et al.
used the SVM algorithm to produce land classification maps [33]. These algorithms currently used
in existing land cover classification products are more complex or require more manual intervention
and manual extraction [34,35], and still need a lot of reference data [36]. In recent years, deep
learning [37,38] has demonstrated the excellent performance of neural network models in remote
sensing classification [39–41]. A very typical application is the use of convolutional neural networks
(CNN) for land cover classification [42,43]. However, the characteristics of CNN indicate that they are
more suitable for processing remotely sensed images with strong spatial correlation. These models
cannot process time series information, and each attribute is an independent individual during the
classification process. For the time characteristics of quantitative remote sensing products with strong
temporal correlation, this method does not prove advantageous in classification.

The key to long time series land cover classification is determining how to use time series to
make full use of rich seasonal patterns and order relationships for classification task. Recurrent neural
networks (RNNs), especially long short-term memory networks [44] (LSTM), capture time correlation
very well [45]. Therefore, RNN are generally considered to be a good machine learning method
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for time series and land cover change studies [46,47]. Existing research has shown that the LSTM
model has higher accuracy for time series classification than does CNN, and the accuracy is far better
than that of SVM [48]. The main goal of this study is to establish a long time series classification
data extraction model based on the method of deep learning using long time series quantitative
remote sensing products as the input of the model, which led to this study of long time series land
cover classification. By comparing the difference between the traditional method and the LSTM
model, we propose a Bi-LSTM-based land cover classification method for multi-temporal remote
sensing classification. Furthermore, learning from imbalanced training data is a common problem [49].
Sample imbalances are common in remote sensing land cover classifications, and rare categories may
be insufficient in number compared to large categories. Studies have shown that balanced data sets
have a positive impact on classification results [50]. SMOTE [51] can artificially synthesize new samples
by interpolation. Since the SMOTE algorithm may excessively increases the order of magnitude of
rare samples, we have made some algorithmic improvements. The 10 categories were divided into
three layers by magnitude. SMOTE was used for upsampling in each layer. We combine SMOTE with
stratified sampling, and the resulting land cover classification map generated by the model is closer to
the actual situation.

This study is divided into six parts. After the introduction of Section 1, the data used in this time
series classification model and related information are introduced in Section 2. Section 3 describes
the model architecture used for deep learning to classify and optimize the model. Then, Section 4
summarizes and analyzes the results this study, and calculates the accuracy of the model and the
accuracy and reliability of the time trend. Section 5 clarifies the views of this study and explains our
results. Finally, Section 6 summarizes the paper.

2. Study Area and Data

2.1. Study Area

The study area is located throughout China (Figure 1). There are many types of land cover in
China, ranging from 73◦40′~135◦2′E, 3◦52′~53◦33′N. The types of coverage are mainly grassland,
cultivated land and woodland, but there are many other types of land use. The difference between
China’s eastern and western regions is significant. The cultivated land and forest land are concentrated
in the east, while the main land cover types in the western region are grassland and desert. The remote
sensing features of different land types are very complex and have great differences in temporal and
spatial distribution. Therefore, it is necessary to select a suitable quantitative remote sensing parameter
rich in a large amount of land information for use in the land cover deep learning classification model.
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2.2. Data

2.2.1. Land Cover Classification Sample

The training set, validation set and test set used in this study were derived from the 1 km
CNLUCC dataset of the Institute of Geographical Sciences and Natural Resources Research, Chinese
Academy of Sciences [52]. These data were resampled to a resolution of 0.05◦ by the method of majority
resampling [53]. The dataset has been in existence every five years since 1980, and there is a lack of
1985 classification data. Due to the accuracy of the CNLUCC dataset and the mixed pixel problems
caused by majority resampling, to ensure the reliability and credibility of the sample, we conducted a
sample screening. When eight pixels around a pixel were the same, the cell in the center of the selection
was considered to be a more reliable sample.

In this study, the 7-year 0.05◦ land cover classification data of 1980, 1990, 1995, 2000, 2005, 2010 and
2015 were filtered through reliability, and the 7-year samples were integrated and randomly disordered.
From each category, 10% of the data were randomly extracted as a test set. The remaining samples
were sample-tuned by a stratified SMOTE algorithm to obtain a training set. The sample distribution
is shown in Table 1.

Table 1. Training set and test set.

Class Reliable Samples Training Samples Test Sample

Crop (CR) 525,925 420,000 52,595
Forest (FR) 564,970 420,000 56,499
Shrubs (SR) 101,952 99,952 9484
Grass (GR) 869,197 630,000 86,823
Water (WT) 15,439 28,155 2818
Glacier (GC) 8363 15,850 1588

Wetland (WL) 9197 15,850 1537
City (CT) 5612 9282 931

Desert (DS) 310,044 420,000 53,584
Tundra (TD) 14,417 24,934 2464

2.2.2. Land Cover Percentage Grading Sample

Since the CNLUCC 0.05◦ land cover classification data are obtained by the method of mode
resampling, each pixel class is the category with the largest proportion of the 5 × 5 windows of the
original 1 km land cover classification data. In addition to this, the cell also contains information about
other categories in the original 5 × 5 window [54]. The land type of each pixel is represented by the
category with the largest proportion of all pixels in the same area of the corresponding position in the
original 1 km land use classification data in the pixel. Therefore, each pixel also contains the proportion
information of other categories. Through this principle, the percentage data of other categories in the
original 5 × 5 window are also obtained, and then, the data is discretized.

The specific method is that for a certain 0.05◦ land cover classification sample cell, the proportion of
each category in the cell is divided into 6 levels by intervals of 20%. 0% is separated as an independent
level. According to this method, we convert the obtained land cover percentage data into land cover
percentage grading data. Based on this, a sample of land cover percentages was obtained.

2.2.3. Quantitative Remote Sensing Products

The data used in this study are mainly a variety of time series quantitative remote sensing products,
including LAI, FAPAR, ET, GPP, and Albedo [21]. The leaf area index is defined as the multiple of
the total leaf area of the plant and the unit land area, which is a characteristic parameter describing
the vegetation canopy geometry. The fraction of absorbed photosynthetically active radiation is the
ratio of the photosynthetically active radiation absorbed by plants to the incident solar radiation.
The evapotranspiration index refers to the sum of the soil evaporation and plant transpiration.
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The surface albedo is defined as the ratio of the reflected reflectance to the incident degree of the
target feature. The total primary productivity refers to the total amount of organic carbon fixed by the
photosynthesis of green plants per unit time and unit area.

2.2.4. Supplementary Data

The temperature data [55] and precipitation data [56] of MERRA2 were also selected. The produce
is reanalysis data obtained by the assimilation of site data and remote sensing data with a resolution of
0.625◦ × 0.5◦ [57], which is resampled to 0.05◦.

The night light dataset of DMSP-OLS [58,59], which is based on the nighttime light signals
detected by remote sensing satellites, is from the Defense Meteorological Satellite Program (DMSP).
The nighttime lighting data comes from the DMSP/OLS night lighting products available in its visible
and near-infrared sensors (DMSP/OLS). It is used to extract city categories with very good results [60].
Its spatial resolution is 30 arc second, which was resampled to 0.05◦.

For classification, elevation, latitude and longitude information are also necessary, and different
land cover types are related to the elevation, latitude and longitude [61]. In this study, the DEM data of
ASTER GDEM [62] was obtained, which was also resampled to 0.05◦, and the latitude and longitude
information of the study area was extracted and input into the classification model. All data used in
this study is shown in Table 2.

Table 2. Introduction to data used in this study.

Data Spatial
Resolution Time Resolution Data Source

Albedo VIS 0.05◦ 16 days GLASS
Albedo NIR 0.05◦ 16 days GLASS

Albedo SHORT 0.05◦ 16 days GLASS
ET 0.05◦ 16 days GLASS

FAPAR 0.05◦ 16 days GLASS
GPP 0.05◦ 16 days GLASS
LAI 0.05◦ 16 days GLASS

NDVI 0.05◦ 16 days AVHRR
Nighttime-Lights 0.05◦ DMSP-OLS

MERRA2 0.5◦ 16 days MERRA
DEM 0.05◦ 16 days

Longitude 0.05◦

Latitude 0.05◦

Land cover 0.05◦ CNLUCC

3. Methodology

3.1. Long Short-Term Memory Networks

Time series data are data collected at different points in time. These data reflect the state or extent
of changes of a certain factor, phenomenon, and so on over time. LSTM are a kind of neural network
used for processing sequence data. Typically, a neural network contains an input layer, one or several
hidden layers and an output layer [63]. The output is controlled by the activation function, and the
layers are connected by weights. The activation function is determined in advance. The underlying
neural network only establishes a weighted connection between the layers, and the biggest difference
of the LSTM is that the right connection is also established between neurons in the layer. A typical
LSTM schematic is shown in Figure 2.
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Figure 2. Basic structure of an LSTM. St represents the memory at time t, U represents the weight of
the input layer to the hidden layer, W represents the weight of the hidden layer to the hidden layer and
V represents the weight of the hidden layer to the output layer.

The sigmoid activation function [64] is represented by δ in Figure 2, and the calculation expressions
of the three new gates, the hidden layer output ht and the state update Ct are as follows:

f t = δ
(
W f ×

[
xt , ht−1] + b f

)
, (1)

it = δ (Wi ×
[
xt , ht−1] + bi), (2)

ot = δ (Wo ×
[
xt , ht−1] + bo), (3)

Ct = tan h (Wc ×
[
xt , ht−1] + bc) + f t

× Ct−1, (4)

ht = ot
× tan h

(
Ct

)
, (5)

It can be seen that the inputs of these three doors are xt and ht−1, and each door has its own
weight and skew. These parameters are tuned as the training process continues and play a role in the
calculation of state updates and hidden layer output values.

3.2. Time Series Classification Based on the Bi-LSTM

A multi-layer LSTM in two opposite directions [65] is used in this study to classify multiple
categories of land cover through spatio-temporal data processing and multi-label land cover.
The LSTM-based land cover classification model is shown in Figure 3. In Figure 3, the classification
models are expanded in chronological order. The output layer originally existing in the LSTM network
is removed. The output (h1, h2, . . . , hT−1, hT) in the hidden layer is input into an averaged pooling
layer to obtain a vector h without time information [66]. So far, an LSTM network was established
with the output layer removed and added to the average pooling layer, called a Forward LSTM. At the
same time, we also use a reverse version of the LSTM called the Backward LSTM. The two structures
are basically the same, except that the Backward LSTM network requires the input data to be input
in reverse order of the time series, and the output of this layer is represented by hb. Forward LSTM
speculates the information based on the previous information, and Backward LSTM can push back the
previous information by the following information. Bi-LSTM is a combination of Forward LSTM and
Backward LSTM. This two-way information extraction is helpful for classification. Existing experiments
have shown that the classification effect of Bi-LSTM is better than that of LSTM classification [67].
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The land cover classification model takes the time series of multivariate quantitative remote
sensing products as the input, and its output is the model’s estimate of the category label. It should
be noted that the output of the ordinary RNN network or the LSTM network is a sequence of the
same length as the input sequence, which is obviously inconsistent with the problem of the research.
To this end, changes need to be made based on the LSTM model to adapt the output to the land cover
classification problem.

To perform the task of classification, we construct a deep architecture with multiple layers of
LSTMs stacked together, which will allow the extraction of advanced nonlinear time features in remote
sensing time series. The proposed architecture is similar to the CNN network that combines several
convolutional layers. Since the LSTM itself does not perform the task of class prediction, a softmax
layer is added at the top of the LSTM network to perform multi-category predictions follow previous
studies [68]. The category corresponding to the largest value in the softmax neuron is the final result of
the prediction.

3.3. Time Series Percentage Grading Classification Extraction Model Based on the Bi-LSTM

After obtaining the long time series land cover classification product set, this study studies the
percentage of long time series land cover category extraction. The land cover percentage grading model
takes the multivariate quantitative remote sensing product time series and land cover classification
data as input, and its output is an estimate of the model’s percentage proportion of the category.
The structure of the model is basically the same as that of the LSTM-based land cover classification
model. The difference is that the land cover data added in the input is used as a new feature, and
the output of the model is changed to the estimate of the percentage level of the category. Since we
need to obtain the proportions of different categories in each pixel, a percentage level extraction
model for each category needs to be established to achieve the percentage ratio study of all categories.
The specific approach is to extract the spatial distributions of all levels of the category for a certain
category. The specific form of the performance is shown in Figure 4.
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The different levels of pixels of the category are then extracted as samples as model inputs. Since the
values of the percentages are discretized, the fitting work can be simplified into a classification task.
When the model is trained, this study uses the level of the category as a label and uses land cover and
quantitative remote sensing products as features. After the training, we predict the level of the category
of the pixel by inputting quantitative remote sensing products and land cover. That is to say, the work
of fitting a continuous percentage value of a category can be converted into a classification task of
6 levels of discrete values for the percentage of the category. Therefore, the land cover percentage
grading model can be directly based on the framework of the land cover classification model, with the
land cover percentage grading data and quantitative remote sensing products as inputs. Then, the
land cover percentage grading model is constructed and trained. For the 10 categories, a total of 10
land cover percentage grading models need to be established.

3.4. Stratified SMOTE Algorithm

The different magnitudes of training samples have always been an unavoidable problem affecting
the accuracy of deep learning models. To solve the imbalance of land cover samples, the traditional
approach is to increase the number of small samples by upsampling and force the order of magnitude
of the small samples to the same order of magnitude as the large samples. The common method
is the SMOTE algorithm. In a nutshell, a new sample is generated for a few classes by means of
“interpolation” [51]. The algorithm idea can be summarized in that for each sample x of a few classes,
the distance from all samples in the minority sample set Smin is calculated by the Euclidean distance
standard, and the k-nearest neighbor is obtained. For each minority class sample x, several samples
are randomly selected from their k nearest neighbors. Assuming that the nearest neighbor is Xn, for
each Xn, a new sample is constructed according to Formula (6) using the original sample.

Xnew = x + rand (0, 1)|x− xn|, (6)

However, for the category samples of land cover classification, the sample sizes of different categories
are very different. For example, a sample of the cultivated land category can reach the order of 300,000,
while the sample size of the urban category is only 6000. When using the SMOTE algorithm, the city
category sample will be increased from 6000 to 300,000. Among the results, the city’s 294,000 samples
were obtained by SMOTE. It is very likely that the original characteristics of the city category will be
lost, resulting in inaccuracies in the classification results [69].

To improve the inaccuracy of the classification caused by the excessive sample increase from the
SMOTE algorithm, we used a sampling method called the stratified SMOTE algorithm to calibrate the
sample [70]. The sample set obtained through the method and the sample set obtained through the
traditional SMOTE algorithm are input into the model for training, and the results of the prediction
are compared. The stratified SMOTE algorithm yields better results than does the traditional SMOTE
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algorithm. The number of small sample sizes can be increased within a reasonable range. This result
will be discussed later.

The specific operation of the stratified SMOTE algorithm is to first count the number of samples
in each category. Then, according to the order of magnitude of the samples, they are divided into three
layers. The first layer is farmland, grassland, woodland and bare land. The second layer is shrubs.
The third layer is wetland, water bodies, tundra, city and ice and snow. Then, the SMOTE algorithm is
used in each of the three layers, and the sample set for the model training is obtained.

3.5. Evaluation

This study used the confusion matrix and the overall accuracy of the test set to evaluate the
accuracy of the model and the classification results. The confusion matrix can calculate the accuracy of
the classification of each category and evaluate the accuracies of different models relative to the overall
accuracy. Then, this study also used the F1-score [71] as an indicator of the ability to classify of the
model. This study also takes the user accuracy and charting accuracy of the classification model into
account:

F1type = 2 × Ppred × Puser/
(
Ppred + Puser) (7)

Here, F1type is a single category of the F1-score, Ppred is the cartographic accuracy of the classification
confusion matrix, and Puser is the user precision of the classification confusion matrix. The F1-score
used in this study is the average F1-score obtained by simply averaging the F1-scores of all categories.

Finally, the accuracy standard deviation is used as the evaluation index of the stability and
applicability of the model in different years. One of the concerns of the long time series land cover
classification model is ensuring that the model maintains a high and similarly stable classification
accuracy for different years of classification results, and the accuracy standard deviation can provide
this information.

4. Results

4.1. Model Accuracy and Importance Evaluation of Quantitative Remote Sensing Products

Random forests can assess the importance of different variables in the classification process
through the Gini index [72,73]. From Figure 5 we can see the estimated importance of the variables of
the data. Each histogram corresponds to a quantitative remote sensing parameter. The most important
of these is GPP, ET ranks second, and NDVI ranks third. From this, we can find that quantitative remote
sensing parameters are more important for classification than NDVI statistical indicators. It shows
that quantitative remote sensing parameters play an important role in land cover classification.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 22 
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To prove the performance and accuracy of the Bi-LSTM, this study also carried out a comparison of
five types of machine learning models, Random Forest, SVM, CNN, LSTM and Bi-LSTM, for land cover
classification studies. The difference between the Bi-LSTM and the LSTM is that the Bi-LSTM adds a
layer of a neural network with reverse input data to extract more time information [74]. The CNN
is a common convolutional neural network that is good at dealing with images, especially large
image-related machine learning problems, and is often used in the spatial and spectral fields [75].
The way CNN works is to extract 2D spatial features. We used six quantitative remote sensing
parameters, and the time dimension of each quantitative remote sensing parameter was 23 (equivalent
to one data per half month). We take the six quantitative remote sensing parameters of each sample as
the X-axis and the Y-axis as the time dimension to form a 6 × 23 2-dimensional input, then use the CNN
model to convolve on this array, extract the features, and it carries out training and classification task.
Then CNN usually extracts features layer-by-layer from multiple convolutional layers and pooling
layers and finally completes classification through several fully connected layers. In this comparative
experiment, for the three neural networks, a four-layer network structure is set up, and the number of
neurons remains the same. When the accuracy of the training model is guaranteed to be stable, the five
models all use the same test set to verify the accuracy of the model. The training process and final
accuracy results of the model are shown in Table 3. In the case of using only the GPP as the input, the
accuracies of the five neural network models reached a stable state, at 78.30%, 63.73%, 56.40%, 79.13%,
and 81.86%, respectively, and the Bi-LSTM model had the highest accuracy.

Table 3. Comparison of the classification accuracies between different models and different quantitative
remote sensing products.

Classifier Type Input Overall Accuracy Mean F1-Score

Bi-LSTM GPP only 81.86% 0.819
NDVI only 79.66% 0.801
GPP + ET 83.61% 0.835

GPP + ET + NDVI 84.93% 0.848
GPP + ET + NDVI + LAI 86.34% 0.864

GPP + ET + NDVI + LAI + FAPAR 87.21% 0.872
GPP + ET + LAI + NDVI + FAPAR + Albedo 88.04% 0.878

GPP + ET + LAI + FAPAR + Albedo 87.39% 0.872

LSTM GPP only 79.13% 0.793
NDVI only 75.23% 0.758

GPP + ET + LAI + FAPAR + Albedo 84.37% 0.833

CNN GPP only 56.40% 0.553
NDVI only 53.10% 0.513

GPP + ET + LAI + FAPAR + Albedo 72.35% 0.716

SVM GPP only 63.73% 0.611
NDVI only 60.58% 0.601

GPP + ET + LAI + FAPAR + Albedo 73.90% 0.727

Random Forest GPP only 78.30% 0.773
NDVI only 72.84% 0.72

GPP + ET + LAI + FAPAR + Albedo 79.83% 0.793

Therefore, the Bi-LSTM is chosen as the classification model for long time series land cover
classification task. At the same time, based on this, this study gradually increases the data in
quantitative remote sensing products. For each additional quantitative remote sensing product,
the accuracy of the classification model has been improved to a certain extent, finally achieving a
classification accuracy of 88.04%, and its mean F1-score [76] value also reached 0.878. At the same time,
the importance of the NDVI and quantitative remote sensing products is also evaluated. When the
NDVI is removed and only the quantitative remote sensing product is used as the model input, the
accuracy of the model is only reduced by 0.65%, indicating that the quantitative remote sensing product
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plays a leading role in this land cover classification model. Quantitative remote sensing products can
be used as a new reliable factor for land cover classification research.

4.2. Long Time Series Classification Model Results

After inputting the dataset obtained from the layered SMOTE algorithm into the Bi-LSTM model,
the model achieves an optimal state through multiple iterations. Therefore, the long time series land
cover classification model is obtained. Generally speaking, for a deep learning model, the training
accuracy of the model will continue to rise as iterations increase. When the model is trained to a certain
extent, the model may have an over-fitting [77]. At this point, the generalization of the model will be
reduced. The model works well on the training set, but it works poorly on the test set. So it is necessary
to input the validation set to observe the test accuracy of the model [78]. In the learning curve, if
the training accuracy and the validation accuracy are far apart, the variance of the model is large (in
general, the training accuracy is higher than the validation accuracy), and the model is over-fitting.
Ideally, the two precision curves of the training set and the validation set are close together. Once the
classification accuracy of the validation set is saturated, the model is already in an optimal state. In the
process of model training, the training precision curve, validation accuracy curve and loss function
curve of the model are also depicted, as shown in Figure 6.
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At the same time, the choice of the sample size of the training sample also affects the accuracy of
the model. If the sample size is too small, the features of samples are not representative. In addition, if
the sample size is too large, it will lead to an increase in the training time. To save training time and
ensure training efficiency and training accuracy, we conducted experiments on the influence of different
sample sizes on the accuracy of the model. Finally, we found that when we select 80% of the sample
size as the training sample (Figure 7), the training effect of the model can achieve the best results.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 22 
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The final test accuracy of the model is 84.2%. After inputting the test set into the model, the
confusion matrix of the test set classification result is drawn. As shown in Table 4, the accuracy of each
category has reached more than 80%, and the accuracies of the wetland, water, ice, snow, city, and
tundra categories have reached more than 90%.

Table 4. Long time series land cover classification model precision confusion matrix.

Reference
Classes

Classified

CR FR SR GR WT GC WL CT DS TD

Crop (CR) 43,835 3366 814 3497 341 9 139 223 369 2 83.3%
Forest (FR) 3359 47,280 2395 3011 43 14 94 42 174 19 83.7%
Shrubs (SR) 301 821 7778 544 2 0 10 0 27 2 82.0%
Grass (GR) 3185 3254 1521 72,173 212 165 217 32 5467 596 83.1%
Water (WT) 82 20 0 55 2592 0 20 29 20 0 92.0%
Glacier (GL) 0 8 0 21 0 1497 0 0 57 6 94.3%

Wetland (WL) 41 22 13 19 7 0 1414 0 19 2 92.1%
City (CT) 40 13 0 7 8 0 2 860 2 0 92.4%

Desert (DS) 368 219 107 5787 111 332 88 29 46,179 363 86.2%
Tundra (TD) 0 0 0 91 0 5 0 0 35 2332 94.6%

Overall 84.2%

Since the goal is to obtain a long time series of land cover classification results, there is also a high
requirement for the generalization ability of the model over time. Therefore, 10% of the samples from
the CNLUCC classification data from 1980, 1990, 1995, 2000, 2005, 2010 and 2015 is extracted for test of
the accuracy of the model and the accuracy of each category for the seven years. Furthermore, the
standard deviation of the accuracy of each category during these seven years is determined. The errors
for each category do not exceed 6%, and the error of the overall accuracy is maintained at 0.8%.

To further analyze the stability of the classification accuracy of the model, the maximum and
minimum values and median of each category is also counted for different years and draws a box
diagram (Figure 8). From this we can find that the accuracy of each category is kept at least 80%.
The accuracy dispersion of a single category is relatively small. The accuracy of a single category is
relatively small in time, and only three categories of forests, shrubs, and cities have outliers. However,
the accuracy of these three outliers is greater than 80%, which is within an acceptable range. It is
proven that the model also has good generalization for time series.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 22 
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4.3. Land Cover Percentage Grading Model Results

After obtaining the land cover classification data for 2010, it is used as a common input along
with the quantitative remote sensing products in 2010. The optimal state is achieved through multiple
iterations of the model. Therefore, the land cover percentage grading model of 10 categories in 2010
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was obtained. The training method and training process of the model are roughly the same as those of
the land cover classification model.

After the test set are input into the trained model, the classification accuracies of the different
levels of each category are obtained. According to the statistics, the results of the land cover percentage
grading model training are relatively good. As shown in Table 5, the overall classification accuracy
reached more than 85%, and the accuracies of 8 categories reached more than 90%.

Table 5. Land cover percentage grading accuracy for 2010.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Overall

CR 0.844 0.911 0.924 0.927 0.937 0.924 0.911
FR 0.844 0.911 0.924 0.927 0.937 0.924 0.911
SR 0.926 0.82 0.855 0.887 0.952 0.967 0.901
GR 0.777 0.902 0.881 0.869 0.854 0.967 0.875
WT 0.942 0.944 0.945 0.976 0.984 0.993 0.964
GL 0.995 0.945 0.972 0.971 0.980 0.976 0.972
WL 0.960 0.947 0.945 0.969 0.980 0.986 0.961
CT 0.945 0.914 0.948 0.968 0.961 0.976 0.951
DS 0.929 0.873 0.891 0.853 0.829 0.974 0.892
TD 0.993 0.955 0.955 0.965 0.969 0.930 0.963

5. Discussion

5.1. Use of Quantitative Remote Sensing Products

This study used a variety of quantitative remote sensing products, rather than only vegetation
indices. The main reason behind this decision was that quantitative remote sensing products
could reflect multiple ecological and physical characteristics of the surface at more levels [21,78].
The classification of the surface can be distinguished by more refined surface features. Among the
features, LAI is a characteristic parameter describing the vegetation canopy geometry, which can reflect
the growth and development of vegetation. FAPAR characterizes the intensity of photosynthesis in
the vegetation. ET is an important process of water movement in a soil-plant-atmosphere continuous
system. Its strength is closely related to the underlying surface conditions and plants. Albedo is
an important parameter of the numerical climate model and the surface energy balance equation.
GPP refers to the total amount of organic carbon fixed by the photosynthesis of green plants per unit
time and unit area.

Vegetation first showed an increase and then a decrease in the NDVI year time series curve due
to the growth cycle characteristics of budding-flowering-deciduous [79]. This feature contributes to
the distinction between vegetation and non-vegetation. Because of human activities, cultivated land
mostly undergoes two or three workings per year. Crops exhibit more than two peaks or three peaks on
the NDVI year time series curve [80], and this curve has good characteristics for the distinction between
crops and other vegetation in North China, South China and Sichuan. The albedo reflects the ability of
the surface to absorb solar radiation. In general, the albedo of ice and snow is higher than those of other
categories [81], followed by bare soil covered by waste soil and gravel. The albedo of a city is generally
higher than that of vegetation or water. The albedo has a very good effect in distinguishing between
cities and water bodies [82]. Grassland, woodland and shrubs also have certain differences in leaf area.
The LAI also has a very good advantage in distinguishing between different vegetation groups [83].
The GPP, ET and FAPAR have explained the differences in the inter-annual variations of different
types of land types from biological and thermal aspects. As shown in Figure 9, the performance of
different land types in quantitative remote sensing parameters is different. The different performances
of quantitative remote sensing products of different land types in one year is the theoretical basis for
the long time series land cover classification.
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Through the evaluation of the feature importance of random forests, feature importance of each
category was extracted in the classification process, as shown in Figure 10. The first is cultivated land.
ET and NDVI are more important for the crop category, mainly due to the cyclical NDVI characteristics
of crops and the strong correlation between crops and ET [84]. Forest is mainly affected by NDVI
and LAI. Mainly because of the high vegetation coverage of forest land. The vegetation coverage
of grassland is similar to the coverage of forest land, shrubs and crops, but in GPP it may be lower
than these three categories, so the importance of GPP will be higher. Because of its high albedo, the
feature importance of glacier is higher in albedo. Cities are more affected by ET and albedo. GPP and
NDVI are of high feature importance to the desert due to their extremely low GPP values and lower
NDVI values. These results confirm to some extent the conclusion that quantitative remote sensing
parameters are helpful for land cover classification.
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By extracting the annual characteristic curves of six quantitative remote sensing products as the
input of the model, the model does not just obtain the characteristic parameter information of various
surfaces but can also obtain the time change information. The time performance of different surface
parameters in the same feature parameter is also different. This time information is also provided to
the classification model, which has a very positive effect on the classification of different categories.

5.2. Sample Equalization Method

To solve the classification accuracy problem caused by the sample size difference between
categories, we choose SMOTE method which could solve the gap problem of the sample size. However,
this method cannot be directly applied into our study because the sample size difference between the
categories with the largest sample number and the minimum sample size is too large, which causes
most samples of the category to be interpolated and causes samples of small sample categories to lose
their original basic characteristics [85].

Although the sample set obtained from the SMOTE algorithm can yield a better training accuracy
and test accuracy, it is found that the China 2010 classified products obtained by this method are quite
different from the 2010 CNLUCC classified products in China. The main differences are distributed in
the areas enclosed by the three rectangular boxes shown in Figure 11.

1. The region 1 rectangular frame indicates the northeastern region of China. Among the CNLUCC
land cover classification products, the main land cover types in the area are cultivated land
and forest land, and a small amount of water is covered in the middle. This result is consistent
with the actual land cover type in the area. However, in the results obtained from the SMOTE
algorithm, it can be found that a large number of water bodies have appeared in Northeast China.

2. The region 2 rectangular frame indicates the western part of China. Among the CNLUCC land
cover classification products, the main land cover types in the area are grassland and bare land,
and a small amount of tundra covers the middle. This result is consistent with the actual land
cover type in the area. However, in the results obtained from the SMOTE algorithm, it can be
found that a large number of tundra distributions occur in western China.

3. The region 3 rectangular frame indicates the southwestern region of China. Among the CNLUCC
land cover classification products, the main land cover types in the area are woodland and shrubs,
in which shrubs and woodlands are intersecting. This result is consistent with the actual land
cover type in the area. However, in the results obtained from the SMOTE algorithm, it can be
found that a large number of dense shrubs are distributed in southwestern China. The results
of the above three regions obtained through the SMOTE algorithm are obviously not consistent
with the actual land cover.

To correct this problem, this study improves the SMOTE algorithm and uses the stratified SMOTE
algorithm. After inputting the dataset obtained from the algorithm into the model and after several
iterations, it finds that the training accuracy and test accuracy of the land cover classification model
can also achieve good results. To prove that the stratified SMOTE algorithm has a positive effect
on the actual classification results, the dataset obtained from the algorithm to acquire the 2010 land
cover type products was this study used. The results were compared with the 2010 products obtained
from CNLUCC products and the 2010 products obtained from the SMOTE algorithm, as shown in
Figure 11. The misclassification of areas within the corresponding three rectangular boxes is very well
solved. In addition, the results of the two SMOTE algorithms are referenced to CNLUCC data, and the
number of correctly classified cells in the 10 categories of the two algorithms is counted. The results
after statistics are shown in Table 6. For each category, the stratified SMOTE algorithm improves the
accuracy of the classification, and the method is simple and effective. The accuracies of the six small
sample categories of shrubs, water bodies, ice and snow, wetland cities and tundra are much higher.
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greater than 90 k) and small sample (Sample size is less than 90 k) category accuracy improvement
trend chart.
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Table 6. SMOTE algorithm and stratified SMOTE algorithm precision comparison.

Truth Value SMOTE-Predicted S-SMOTE-Predicted SMOTE S-SMOTE

CR 75,749 63,996 65,220 84.5% 86.1% +1.6%
FR 83,285 69,539 76,206 83.5% 91.5% +8.0%
SR 13,893 9505 11,948 68.4% 86.0% +17.6%
GR 117,764 94,265 104,928 80.0% 89.1% +9.1%
WT 3911 2619 3555 67.0% 90.9% +23.9%
GL 1336 925 1416 69.2% 93.3% +24.1%
WL 2539 882 1978 34.7% 77.9% +43.2%
CT 2238 803 2035 35.9% 91.0% +55.1%
DS 81,293 64,517 75,829 79.4% 93.3% +13.9%
TD 2201 1217 1983 55.1% 90.1% +35.0%

5.3. Sample Selection for Accuracy Assessment Methods

The sample in this study was collected from the CNLUCC China Land Cover Classification
Dataset of the Institute of Geographical Sciences and Natural Resources Research, Chinese Academy
of Sciences. The training set, validation set and test set were obtained from this dataset. To ensure
the reliability of the sample, when the eight pixels around the central pixel are the same, the central
pixel of the selected center is considered to be a highly reliable sample. All the samples selected for
accuracy assessment are obtained by this method. For land cover classification studies, the best test set
are generally field data, and the results are closest to the actual land categories.

However, it is not realistic to obtain annual actual test set for long time series land cover
classification research, which requires a large amount manpower and time, and there are currently no
relevant test set. Most of the test set are collected during a given year and does not reflect changes in
land cover. Furthermore, each cell of the 0.05◦ classification data covers a larger area. Due to the scale
effect, the field data does not reflect the actual category of 0.05◦ pixels. The sliding window is used to
ensure that the sample is consistent with the surrounding pixel categories. The sliding window can be
filtered to ensure the purity of the sample under limited conditions, thus ensuring the accuracy of the
sample. Under the premise of ensuring the accuracy of the sample, the results obtained using the field
sample for classification studies are also acceptable [76].

5.4. Model Stability Analysis

This study performed a statistical analysis of the accuracy of different years for each category
in Section 4.2. In addition, we found that the accuracy is good in each year. Moreover, the annual
accuracy has good stability. The results show that the accuracy of the different years for each category
is roughly the same. The standard deviation of interannual precision is no more than 6%. However,
the accuracy of the wetland has a higher dispersion than the other categories, with a difference of 13.3%
between the maximum and the minimum. Although the accuracy is still high (85.4% for the year of the
lowest precision), it has awful stability of the different years for wetland.

We hold it is the following two reasons that cause the problem. Firstly, there are many types of
wetlands such as coastal wetland, inland wetland and artificial wetland [86]. Wetlands occupy an
intermediate position between truly terrestrial and aquatic ecosystems and therefore encompass a
diverse array of habitats. This array of habitats is difficult to define [87]. In addition, there are many
different types of organisms in the wetlands. Therefore, the quantitative remote sensing characteristics
of wetlands are complex and easily confused with water bodies and other vegetation types. At the
same time, the sample size of the wetland is too small, so the model is easy to misclassify the wetland
into other categories. Secondly, in terms of methods, we use time series quantitative remote sensing
features to classify land cover. However, the similarity in time series between wetlands and other
categories can cause certain difficulties for our classification task. We will improve in the follow-up
work in this part of the study.
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6. Conclusions

A long time series land cover classification deep learning model based on the Bi-LSTM is proposed.
This model uses CNLUCC China land cover classification data to form a set of long time series land
cover classification samples. Then, the corresponding relationship between the land cover type and the
sequence quantitative remote sensing products is established. Afterward, a self-classification model of
0.05◦ long time series land cover depth learning in China was trained, and the accuracy of the model
was evaluated.

The LSTM model has advantages over other models in processing time series data, which preserves
the temporal information of the data for time series classification. A set of data was used to train and
compare the accuracies of three deep learning models, the CNN, LSTM and Bi-LSTM. The Bi-LSTM
model achieves higher accuracy with consistent parameters. Therefore, the Bi-LSTM model was chosen
as the basic model for the long time series land cover model.

In this study, the long time series land cover classification sample set is randomly disrupted and
input into the Bi-LSTM model to carry out model training. In the process of model training, the training
process of the model is monitored through visual operation. Since the deep learning model may begin
over-fitting after the number of training iterations reaches a certain level, it is necessary to monitor the
process of the model. The training is ended after the model test accuracy has stabilized and before the
test accuracy has decreased. Finally, a long time series land cover classification model was obtained
with an overall accuracy of 84.2%.

The CNLUCC China land cover classification data in 1980, 1990, 1995, 2000, 2005, 2010 and 2015
is used as a reference to evaluate the accuracy of the land cover classification data obtained in the
same years. There are 10 categories with accuracies of over 82%, and 5 of them have accuracies of
over 90%. While ensuring the accuracy, we evaluate the classification accuracies of different years
for the same category. The results show that the accuracies of different years for the same category
are about the same, and the deviation is not large. The errors of 10 categories are not more than 6%,
and the accuracy error does not exceed 0.8%. Due to the large amount of mixed category information
contained in the 5 km classification pixels, we also extract the information by grading, and the overall
classification accuracy of each category reached more than 85%. There are 8 categories with accuracies
of over 90%, which proves the feasibility and reliability of the Bi-LSTM model for time series land
cover classification.

Author Contributions: H.W. and X.Z. conceived of and designed the experiments. H.W. processed and analyzed
the data. All authors contributed to the ideas, writing, and discussion.

Funding: This study was supported by the National Key Research and Development Program of China (No.
2016YFB0501404).

Acknowledgments: The authors thank Qian Wang, Jia Chen, Rongyun Tang and Yifeng Peng for helpful comments
that improved this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The
Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [CrossRef]
[PubMed]

2. Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.;
Woodcock, C. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sens. Environ.
2008, 112, 955–969. [CrossRef]

3. Bathiany, S.; Claussen, M.; Brovkin, V.; Raddatz, T.; Gayler, V. Combined biogeophysical and biogeochemical
effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 2010, 7, 1383–1399.
[CrossRef]

http://dx.doi.org/10.1126/science.1118160
http://www.ncbi.nlm.nih.gov/pubmed/16339443
http://dx.doi.org/10.1016/j.rse.2007.07.004
http://dx.doi.org/10.5194/bg-7-1383-2010


Remote Sens. 2019, 11, 1639 19 of 22

4. Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact
on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [CrossRef]

5. Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu.
Rev. Environ. 2003, 28, 205–241. [CrossRef]

6. Liu, D.; Cai, S. A spatial-temporal modeling approach to reconstructing land-cover change trajectories from
multi-temporal satellite imagery. Ann. Assoc. Am. Geogr. 2012, 102, 1329–1347. [CrossRef]

7. Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change.
Prog. Plan. 2004, 61, 301–325. [CrossRef]

8. Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar
urban centre. Egypt. J. Remote Sens. 2017, 20, 125–145. [CrossRef]

9. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From
pixel-based to object-based approaches. ISPRS J. Photogramm. 2013, 80, 91–106. [CrossRef]

10. Hegazy, I.R.; Kaloop, M.R. Monitoring urban growth and land use change detection with GIS and remote
sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [CrossRef]

11. Loveland, T.R.; Belward, A. The IGBP-DIS global 1km land cover data set, DISCover: First results. Int. J.
Remote Sens. 1997, 18, 3289–3295. [CrossRef]

12. Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s
National Land Cover Data Set for the Conterminous United States from Landsat Thematic Mapper Data and
Ancillary Data Sources. Am. Soc. Photogram. Remote Sens. 2010, 67, 650–655.

13. Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS
Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens.
Environ. 2010, 114, 168–182. [CrossRef]

14. Pouliot, D.; Latifovic, R.; Zabcic, N.; Guindon, L.; Olthof, I. Development and assessment of a 250 m spatial
resolution MODIS annual land cover time series (2000–2011) for the forest region of Canada derived from
change-based updating. Remote Sens. Environ. 2014, 140, 731–743. [CrossRef]

15. Gray, J.; Song, C. Consistent classification of image time series with automatic adaptive signature
generalization. Remote Sens. Environ. 2013, 134, 333–341. [CrossRef]

16. Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using
Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244.
[CrossRef]

17. Yu, W.; Zhou, W.; Qian, Y.; Yan, J. A new approach for land cover classification and change analysis:
Integrating backdating and an object-based method. Remote Sens. Environ. 2016, 177, 37–47. [CrossRef]

18. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]

19. Franklin, S.E.; Ahmed, O.S.; Wulder, M.A.; White, J.C.; Hermosilla, T.; Coops, N.C. Large area mapping of
annual land cover dynamics using multitemporal change detection and classification of Landsat time series
data. Can. J. Remote Sens. 2015, 41, 293–314. [CrossRef]

20. Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing
algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ.
2016, 174, 258–265. [CrossRef]

21. Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H. A long-term
Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33.
[CrossRef]

22. He, T.; Liang, S.; Song, D.X. Analysis of global land surface albedo climatology and spatial-temporal variation
during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos. 2014, 119, 10281–10298. [CrossRef]

23. Nishida, K.; Nemani, R.R.; Glassy, J.M.; Running, S.W. Development of an evapotranspiration index from
Aqua/MODIS for monitoring surface moisture status. IEEE Trans. Geosci. Remote Sens. 2003, 41, 493–501.
[CrossRef]

24. Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-time-series global land surface satellite leaf
area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens.
2016, 54, 5301–5318. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2015.12.040
http://dx.doi.org/10.1146/annurev.energy.28.050302.105459
http://dx.doi.org/10.1080/00045608.2011.596357
http://dx.doi.org/10.1016/S0305-9006(03)00066-7
http://dx.doi.org/10.1016/j.ejrs.2016.11.003
http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006
http://dx.doi.org/10.1016/j.ijsbe.2015.02.005
http://dx.doi.org/10.1080/014311697217099
http://dx.doi.org/10.1016/j.rse.2009.08.016
http://dx.doi.org/10.1016/j.rse.2013.10.004
http://dx.doi.org/10.1016/j.rse.2013.03.022
http://dx.doi.org/10.1016/S0034-4257(00)00169-3
http://dx.doi.org/10.1016/j.rse.2016.02.030
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1080/07038992.2015.1089401
http://dx.doi.org/10.1016/j.rse.2015.12.023
http://dx.doi.org/10.1080/17538947.2013.805262
http://dx.doi.org/10.1002/2014JD021667
http://dx.doi.org/10.1109/TGRS.2003.811744
http://dx.doi.org/10.1109/TGRS.2016.2560522


Remote Sens. 2019, 11, 1639 20 of 22

25. Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global LAnd Surface Satellite incident shortwave
radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ.
2014, 152, 318–332. [CrossRef]

26. Xiao, Z.; Liang, S.; Sun, R.; Wang, J.; Jiang, B. Estimating the fraction of absorbed photosynthetically active
radiation from the MODIS data-based GLASS leaf area index product. Remote Sens. Environ. 2015, 171,
105–117. [CrossRef]

27. Dhodhi, M.K.; Saghri, J.A.; Ahmad, I.; Ul-Mustafa, R. D-ISODATA: A distributed algorithm for unsupervised
classification of remotely sensed data on network of workstations. J. Parallel Distrib. Comput. 1999, 59,
280–301. [CrossRef]

28. Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and
maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [CrossRef]

29. Lv, Z.; Hu, Y.; Zhong, H.; Wu, J.; Li, B.; Zhao, H. Parallel k-means clustering of remote sensing images based
on mapreduce. In International Conference on Web Information Systems and Mining; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 162–170.

30. Gopal, S.; Woodcock, C.E.; Strahler, A.H. Fuzzy neural network classification of global land cover from a 1
AVHRR data set. Remote Sens. Environ. 1999, 67, 230–243. [CrossRef]

31. Boles, S.H.; Xiao, X.; Liu, J.; Zhang, Q.; Munkhtuya, S.; Chen, S.; Ojima, D. Land cover characterization
of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sens. Environ. 2004, 90,
477–489. [CrossRef]

32. Homer, C.; Huang, C.; Yang, L.; Wylie, B.; Coan, M. Development of a 2001 national land-cover database for
the United States. J. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [CrossRef]

33. Carrão, H.; Gonçalves, P.; Caetano, M. Contribution of multispectral and multitemporal information from
MODIS images to land cover classification. Remote Sens. Environ. 2008, 112, 986–997. [CrossRef]

34. Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification:
A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [CrossRef]

35. Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover
classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [CrossRef]

36. Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J.
Adv. Signal Process. 2016, 2016, 67. [CrossRef]

37. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A
comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

38. Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image
classification. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1349–1362. [CrossRef]

39. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

40. Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification
of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [CrossRef]

41. Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the
art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]

42. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale
remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [CrossRef]

43. Yu, S.; Jia, S.; Xu, C. Convolutional neural networks for hyperspectral image classification. Neurocomputing
2017, 219, 88–98. [CrossRef]

44. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

45. Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land cover classification via multi-temporal spatial data by
recurrent neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1685–1689. [CrossRef]

46. Mou, L.; Bruzzone, L.; Zhu, X.X. Learning spectral-spatial-temporal features via a recurrent convolutional
neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57,
924–935. [CrossRef]

47. Lyu, H.; Lu, H.; Mou, L. Learning a transferable change rule from a recurrent neural network for land cover
change detection. Remote Sens. 2016, 8, 506. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2014.07.003
http://dx.doi.org/10.1016/j.rse.2015.10.016
http://dx.doi.org/10.1006/jpdc.1999.1573
http://dx.doi.org/10.1016/j.jag.2009.11.002
http://dx.doi.org/10.1016/S0034-4257(98)00088-1
http://dx.doi.org/10.1016/j.rse.2004.01.016
http://dx.doi.org/10.14358/PERS.70.7.829
http://dx.doi.org/10.1016/j.rse.2007.07.002
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.008
http://dx.doi.org/10.3390/rs70100153
http://dx.doi.org/10.1186/s13634-016-0355-x
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.1109/TGRS.2015.2478379
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.3390/rs71114680
http://dx.doi.org/10.1109/MGRS.2016.2540798
http://dx.doi.org/10.1109/TGRS.2016.2612821
http://dx.doi.org/10.1016/j.neucom.2016.09.010
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/LGRS.2017.2728698
http://dx.doi.org/10.1109/TGRS.2018.2863224
http://dx.doi.org/10.3390/rs8060506


Remote Sens. 2019, 11, 1639 21 of 22

48. Rußwurm, M.; Körner, M. Multi-temporal land cover classification with long short-term memory neural
networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 551. [CrossRef]

49. Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling
on random forest performance for large area land cover classification using the ensemble margin. ISPRS J.
Photogramm. Remote Sens. 2015, 105, 155–168. [CrossRef]

50. Estabrooks, A.; Jo, T.; Japkowicz, N. A multiple resampling method for learning from imbalanced data sets.
Comput. Intell. 2004, 20, 18–36. [CrossRef]

51. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

52. Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing
Monitoring Data Set (CNLUCC); Resource and Environment Data Cloud Platform: Beijing, China, 2018.

53. Tao, X.; Liang, S.; Wang, D. Assessment of five global satellite products of fraction of absorbed
photosynthetically active radiation: Intercomparison and direct validation against ground-based data.
Remote Sens. Environ. 2015, 163, 270–285. [CrossRef]

54. Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1)
Product; USGS: Reston, VA, USA, 2018.

55. Lim, Y.-K.; Schubert, S.D.; Nowicki, S.M.; Lee, J.N.; Molod, A.M.; Cullather, R.I.; Zhao, B.; Velicogna, I.
Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: Insights from
MERRA-2. Environ. Res. Lett. 2016, 11, 024002. [CrossRef]

56. Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.; Partyka, G.S. Land surface precipitation in
MERRA-2. J. Clim. 2017, 30, 1643–1664. [CrossRef]

57. Bosilovich, M.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification; GMAO Office Note NO.9(Version 1.0);
2015. Available online: https://ntrs.nasa.gov/search.jsp?R=20150019760 (accessed on 1 June 2019).

58. Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data
from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734.

59. Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.;
Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [CrossRef]

60. Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban
area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [CrossRef]

61. Fahsi, A.; Tsegaye, T.; Tadesse, W.; Coleman, T. Incorporation of digital elevation models with Landsat-TM
data to improve land cover classification accuracy. For. Ecol. Manag. 2000, 128, 57–64. [CrossRef]

62. Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.;
Curtis, B.; Haase, J. ASTER Global Digital Elevation Model Version 2-Summary of Validation Results; NASA, 2011.
Available online: https://pubs.er.usgs.gov/publication/70005960 (accessed on 1 June 2019).

63. Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks;
Springer International Publishing: Cham, Switzerland, 2017.

64. Yin, X.; Goudriaan, J.; Lantinga, E.A.; Vos, J.; Spiertz, H.J. A flexible sigmoid function of determinate growth.
Ann. Bot. 2003, 91, 361–371. [CrossRef] [PubMed]

65. Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-Spatial Attention
Networks for Hyperspectral Image Classification. Remote Sens. 2019, 11, 963. [CrossRef]

66. Sun, Z.; Di, L.; Fang, H. Using long short-term memory recurrent neural network in land cover classification
on Landsat and Cropland data layer time series. Int. J. Remote Sens. 2019, 40, 593–614. [CrossRef]

67. Graves, A. Long Short-Term Memory. Supervised Sequence Labelling with Recurrent Neural Networks; Springer,
2012; pp. 37–45. Available online: https://link.springer.com/chapter/10.1007/978-3-642-24797-2_4 (accessed
on 1 June 2019).

68. Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. arXiv
2016, arXiv:1605.05101.

69. Hu, Y.; Guo, D.; Fan, Z.; Dong, C.; Huang, Q.; Xie, S.; Liu, G.; Tan, J.; Li, B.; Xie, Q. An improved algorithm
for imbalanced data and small sample size classification. J. Data Anal. Inf. Process. 2015, 3, 27. [CrossRef]

70. Zhao, H.; Chen, X.; Nguyen, T.; Huang, J.Z.; Williams, G.; Chen, H. Stratified over-sampling bagging method
for random forests on imbalanced data. In Proceedings of the 2016 Pacific-Asia Workshop on Intelligence
and Security Informatics, Auckland, New Zealand, 19 April 2016; pp. 63–72.

http://dx.doi.org/10.5194/isprs-archives-XLII-1-W1-551-2017
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.014
http://dx.doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.rse.2015.03.025
http://dx.doi.org/10.1088/1748-9326/11/2/024002
http://dx.doi.org/10.1175/JCLI-D-16-0570.1
https://ntrs.nasa.gov/search.jsp?R=20150019760
http://dx.doi.org/10.1088/1748-9326/10/5/054011
http://dx.doi.org/10.1016/j.rse.2014.03.004
http://dx.doi.org/10.1016/S0378-1127(99)00272-8
https://pubs.er.usgs.gov/publication/70005960
http://dx.doi.org/10.1093/aob/mcg029
http://www.ncbi.nlm.nih.gov/pubmed/12547689
http://dx.doi.org/10.3390/rs11080963
http://dx.doi.org/10.1080/01431161.2018.1516313
https://link.springer.com/chapter/10.1007/978-3-642-24797-2_4
http://dx.doi.org/10.4236/jdaip.2015.33004


Remote Sens. 2019, 11, 1639 22 of 22

71. Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for
evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela,
Spain, 21–23 March 2005; pp. 345–359.

72. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J. Random forests for land cover classification. Pattern Recognit.
Lett. 2006, 27, 294–300. [CrossRef]

73. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P.; Sensing, R. An assessment
of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote
Sens. 2012, 67, 93–104. [CrossRef]

74. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural
network architectures. Neural Netw. 2005, 18, 602–610. [CrossRef] [PubMed]

75. Dang, Y.; Zhang, J.; Zhao, Y.; Luo, F.; Ma, W.; Yu, F. Quality Evaluation of Land-Cover Classification Using
Convolutional Neural Network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 257–262.
[CrossRef]

76. Zhong, L.; Hu, L.; Zhou, H. Deep learning-based multi-temporal crop classification. Remote Sens. Environ.
2019, 221, 430–443. [CrossRef]

77. Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]
78. Yeom, S.; Giacomelli, I.; Fredrikson, M.; Jha, S. Privacy risk in machine learning: Analyzing the connection to

overfitting. In Proceedings of the 2018 IEEE 31st Computer Security Foundations Symposium (CSF), Oxford,
UK, 9–12 July 2018; pp. 268–282.

79. Gandhi, G.M.; Parthiban, S.; Thummalu, N.; Christy, A. NDVI: Vegetation change detection using remote
sensing and GIS—A case study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [CrossRef]

80. Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection
method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [CrossRef]

81. Dozier, J.; Marks, D. Snow mapping and classification from Landsat Thematic Mapper data. Ann. Glaciol.
1987, 9, 97–103. [CrossRef]

82. Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102,
146–160. [CrossRef]

83. Lotsch, A.; Tian, Y.; Friedl, M.; Myneni, R. Land cover mapping in support of LAI and FPAR retrievals from
EOS-MODIS and MISR: Classification methods and sensitivities to errors. Int. J. Remote Sens. 2003, 24,
1997–2016. [CrossRef]

84. Dinpashoh, Y. Study of reference crop evapotranspiration in IR of Iran. Agric. Water Manag. 2006, 84, 123–129.
[CrossRef]

85. Bunkhumpornpat, C.; Sinapiromsaran, K.; Lursinsap, C. Safe-level-smote: Safe-level-synthetic minority
over-sampling technique for handling the class imbalanced problem. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Bangkok, Thailand, 27–30 April 2009; pp. 475–482.

86. Gong, P.; Niu, Z.; Cheng, X.; Zhao, K.; Zhou, D.; Guo, J.; Liang, L.; Wang, X.; Li, D.; Huang, H. China’s
wetland change (1990–2000) determined by remote sensing. Sci. Chin. Earth Sci. 2010, 53, 1036–1042.
[CrossRef]

87. Finlayson, C.; Valk, V.D. Wetland classification and inventory: A summary. Vegetatio 1995, 118, 185–192.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patrec.2005.08.011
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
http://dx.doi.org/10.5194/isprs-archives-XLII-3-257-2018
http://dx.doi.org/10.1016/j.rse.2018.11.032
http://dx.doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
http://dx.doi.org/10.1016/j.procs.2015.07.415
http://dx.doi.org/10.1016/j.rse.2005.03.008
http://dx.doi.org/10.3189/S026030550000046X
http://dx.doi.org/10.1016/j.rse.2006.02.010
http://dx.doi.org/10.1080/01431160210154858
http://dx.doi.org/10.1016/j.agwat.2006.02.011
http://dx.doi.org/10.1007/s11430-010-4002-3
http://dx.doi.org/10.1007/BF00045199
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area 
	Data 
	Land Cover Classification Sample 
	Land Cover Percentage Grading Sample 
	Quantitative Remote Sensing Products 
	Supplementary Data 


	Methodology 
	Long Short-Term Memory Networks 
	Time Series Classification Based on the Bi-LSTM 
	Time Series Percentage Grading Classification Extraction Model Based on the Bi-LSTM 
	Stratified SMOTE Algorithm 
	Evaluation 

	Results 
	Model Accuracy and Importance Evaluation of Quantitative Remote Sensing Products 
	Long Time Series Classification Model Results 
	Land Cover Percentage Grading Model Results 

	Discussion 
	Use of Quantitative Remote Sensing Products 
	Sample Equalization Method 
	Sample Selection for Accuracy Assessment Methods 
	Model Stability Analysis 

	Conclusions 
	References

