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Abstract: Hyperspectral (HS) sensors sample reflectance spectrum in very high resolution, which
allows us to examine material properties in very fine details. However, their widespread adoption
has been hindered because they are very expensive. Reflectance spectra of real materials are high
dimensional but sparse signals. By utilizing prior information about the statistics of real HS spectra,
many previous studies have reconstructed HS spectra from multispectral (MS) signals (which can
be obtained from cheaper, lower spectral resolution sensors). However, most of these techniques
assume that the MS bands are known apriori and do not optimize the MS bands to produce more
accurate reconstructions. In this paper, we propose a new end-to-end fully convolutional residual
neural network architecture that simultaneously learns both the MS bands and the transformation to
reconstruct HS spectra from MS signals by analyzing large quantity of HS data. The learned band can
be implemented in hardware to obtain an MS sensor that collects data that is best to reconstruct HS
spectra using the learned transformation. Using a diverse set of real-world datasets, we show how the
proposed approach of optimizing MS bands along with the transformation can drastically increase
the reconstruction accuracy. Additionally, we also investigate the prospects of using reconstructed
HS spectra for land cover classification.

Keywords: hyperspectral spectra; multispectral signals; spectral super-resolution; optimized bands;
convolutional neural networks

1. Introduction

The reconstruction of hyperspectral (HS) spectrum from multispectral (MS) signal is an ill-posed
problem. This is because MS bands are broader and fewer in number, so they do not capture fine
details in reflectance spectra that are captured by HS bands. Therefore, it becomes necessary to use
prior knowledge about the statistics of the real HS spectra in order to accurately reconstruct HS spectra
from MS signals. Past studies have successfully utilised machine learning techniques, such as, sparse
dictionary learning [1] and deep learning [2], for this purpose. However, they have only concentrated
on learning the transformation from MS signal to HS spectrum for fixed MS bands. They do not
optimize the location or the resolution of the MS bands. In this paper, we propose a deep learning
based approach that can jointly optimize the MS bands and the transformation to reconstruct HS
spectra by analyzing large quantity of HS data. Our method is based on a novel end-to-end fully
convolutional residual neural network architecture that utilizes a new band re-sampling layer and a
new loss layer.

Hyperspectral sensors capture reflected energy at very high spectral resolution over hundreds
of narrow, contiguous bands over visible and infrared spectral range, while on the other hand,
multispectral sensors captures energy over the same spectral range with a small number of broad
bands (typically less that 15) [3]. While the higher spectral resolution is essential for analyzing material
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properties in fine detail and at sub-pixel scales, high spectral resolution sensors are very expensive.
It is a well-known fact that HS signals are oversampled signal and lie in a low-dimensional subspace
within a high dimensional space [4]. This means that there is a possibility that HS spectrum could be
reconstructed from low dimensional signal, such as MS signal. Due to the potential of obtained high
resolution spectra from cheaper MS sensor, recently the topic of utilizing super-resolution techniques
to reconstruct HS spectrum from MS signal captured by MS sensors has gained a lot of attention [2].

In the past, super-resolution techniques have been primarily applied to hyperspectral remote
sensing for improving the spatial resolution of the HS images by fusing a low spatial resolution HS
image with a high spatial resolution panchromatic or MS image of the same scene [5]. However,
there have been growing interests in methods, called single image super-resolution, that map low
spatial resolution HS image to high spatial resolution image without the use of high spatial resolution
panchromatic or MS imagery [6–8]. These methods utilize prior knowledge about spatial distribution
of HS images, which is learned by training models on large dataset of imagery. Similarly, models can
be trained to perform single image spectral super-resolution, i.e., reconstruct hyperspectral imagery
from multispectral imagery without the aid of any additional imagery or data. In these methods, the
spatial resolution of the input image and the reconstructed image is the same but the number of bands
is different–the input image contains few broad bands while the output image contains numerous
contiguous narrow bands.

Conventional approaches for single image spectral super-resolution have utilized models such as
PCA [9,10], kernel ridge regression [11], and radial basis network [12]. Most of the modern methods
utilize dictionary learning or deep networks, however there has been on-going research on application
of other machine learning algorithms, such as Gaussian processes, for spectral super-resolution [13].
Arad and Ben-Shahar [1] proposed a method that jointly learned a RGB (red-green-blue) dictionary
that mapped RGB values to sparse code and a HS dictionary that mapped the sparse code to HS
spectrum in the visible spectral range. Similarly, many studies have recently utilized deep neural
networks to map an RGB image to a visible spectral range hyperspectral image [2]. Galliani et al. [14]
trained a 2 dimensional fully-convolutional deep network, inspired from Tiramisu network [15], to
predict hyperspectral image from RGB image. They showed that their method can produce superior
result compared to the dictionary learning approach of Arad and Ben-Shahar [1]. Apart from using
a very deep architecture with 56 layers, their method is different from [1] in one important aspect.
Their method uses spatial context while performing spectral resolution as it uses 2 dimensional
convolutional network trained on patches of HS images. Following this finding, Aeschbacher et al. [16]
proposed a dictionary learning method, based on A+ method [17], that outperformed the method
by Galliani et al. [14] and showed that a very deep network is not necessarily needed for spectral
super-resolution. One of the improvements in their method was that they utilized spatial context by
training on spectra of spatially down-sampled images or training on 3 × 3 neighborhood of pixels.
More recently, studies [18,19] have found that moderately deep residual networks [20] can provide
better performance than very deep model, such as [14], and dictionary learning approaches (shallow
models), such as [16]. Gwn Lore et al. [21] investigated generative adversarial networks (GANs) for
spectral super-resolution, however their method did not outperform previous methods.

The proposed method is different from all of methods discussed so far. The above mentioned
methods only optimize the mapping from MS signal to HS spectrum, however our method jointly
optimizes the MS bands and the transformation from MS signal to HS spectra. Our method is based on
the hypothesis that better reconstructions of HS spectra could be possible if we were to optimize the
centers and the resolutions of the MS bands along with the model to reconstruct HS spectra. The MS
bands and the super-resolution method can be optimized by analyzing a large quantity of HS data
and later the optimized bands can be implemented in hardware to build a MS sensor whose signal
can be used to reconstruct HS signal using learned super-resolution model. This is similar to the idea
of HS compressed sensing, where the goal is to develop hardware and data processing techniques to
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reconstruct high dimensional HS spectra by making measurements much fewer than the dimension of
the HS spectra [22–24].

Many optimization techniques have been applied to select best MS bands for spectra
super-resolution. A classical approach utilized simulated annealing to optimize the centers and
the full-width-half-maximums (FWHMs) of Gaussian MS bands such that those bands produced best
reconstruction [25]. Some recent studies have investigated the feasibility of finding optimum MS bands
for spectral super-resolution using discrete optimization, where the goal in this approach is to find a
subset from a large collection of MS bands which produces the best reconstruction accuracy [26–29].
Unfortunately, these approaches are not scalable when the number of extracted MS bands becomes
much larger than 3 and the spectral range covered is not just visible range, as used in these studies. It is
because in these cases the number of possible combination of bands becomes very large. Nie et al. [30]
used a convolutional neural network to learn the response value of the MS bands at every wavelength
measured by a HS sensor over the visible spectral range. However, their method becomes ineffective
when learning MS bands to cover a larger spectral region, for example, the entire visible to shortwave
spectral region, because their method optimizes bands freely without bounds to the width of the bands.
Hence, a single extracted band could extend very large spectral ranges (have very large FWHM),
possibly the entire visible to shortwave spectral region, which is not realizable in real sensor hardware.

The proposed method assumes the MS bands are Gaussian in shape (similar to [25]) and allows
for optimization of the band center and the band FWHMs using back-propagation along with the
optimization of super-resolution neural network. Our method allows constraints to be applied on the
centers and the FWHMs of the optimized bands to handle design constraints that may arise when
building sensor hardware. Another important aspect of our study is that unlike almost all of the
previous studies which have concentrated on terrestrial HS images with spectral range only in visible
region, we experiment with terrestrial, airborne, and space-based imagery with some of them spanning
a spectral range covering the entirety of visible to shortwave infrared (350 nm to 2500 nm). The main
contributions of the paper are as follows. We present a neural network architecture for optimizing
MS bands and a super-resolution network that provides high fidelity reconstruction of HS spectra.
The network utilizes a novel layer called tunable spectral sub-sampling layer which contains tunable
MS bands. We also propose a new loss function for reconstruction of HS spectra. Experiments are
performed on diverse set of images. The performance of the optimized bands is evaluated for fine-level
land cover classification, one of the important applications of HS imaging [31]. The paper is organized
as follows. Section 2 introduces the proposes method, Section 3 provides experimental evaluation of
the proposed method on various datasets and Section 4 concludes the paper.

2. Proposed Method

We propose an end-to-end convolutional residual neural network, with a novel tunable spectral
sub-sampling layer and a new spectral loss function, to jointly optimize the multispectral (MS) bands
and the transformation to reconstruct hyperspectral (HS) spectra from MS signal. This method can
optimize both the center and the resolution of the MS bands. Only the number of MS bands to be
optimized should be fixed a priori. Additionally, constraints on the MS band centers and resolutions,
that could occur in real sensor design situations, can be incorporated in our method.

2.1. Tunable Spectral Sub-Sampling Layer

Let radiance or reflectance, r(λ), be measured within a wavelength range λmin to λmax by M
consecutive hyperspectral (HS) bands with band centers [λ1, · · · , λM] to obtain a HS signal, h =

[h1, · · · , hM]. Here, hi is the radiance/reflectance measured by the i-th HS band. If we are to assume that
the number of HS bands is very large with the bands being narrow and contiguous (i.e., λi+1 − λi →
0, ∀i ∈ {1, · · · , M− 1}), their responsivities can be approximated by delta functions, e.g., δ (λ− λi)

for i-th band. Then, r(λ) can be approximated as,
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r(λ) ≈
M

∑
i=1

hiδ (λ− λi) . (1)

Let r(λ) be measured again by N multispectral bands to obtain a MS signal, m = [m1, · · · , mN],
such that mj is the radiance/reflectance measured by the j-th MS band. The MS bands are much fewer
in number than the HS bands (N � M). We assume the MS bands to be Gaussian in shape with
[µ1, · · · , µN] being the centers and [σ1, · · · , σN] being the standard deviations. [µ1, · · · , µN] are the
locations (band centers) of the bands and [σ1, · · · , σN] control the resolution of the bands (i.e., FWHM
of i-th band is approximately 2.3548 σi).

The signal measured by each MS band is given by

mj =

λmax∫
λmin

r(λ) g(λ, µj, σj) dλ, ∀j ∈ {1, · · · , N}, (2)

where, g(λ, µj, σj) =
1

σj
√

2π
e
− 1

2

(
λ−µj

σj

)2

.

On combining (1) and (2),

mj ≈
M

∑
i=1

hi g(λi, µj, σj), ∀j ∈ {1, · · · , N}. (3)

This result has been used by numerous past studies, e.g., [10,25,32]. It should be noted that (3) is only
accurate when the spectral resolution and the band spacing of the HS bands are very small compared
to spectral resolution of MS bands as assumed earlier. Equation (3) can be written in matrix algebra
form as,

m1×N = h1×M RM×N, (4)

where, Ri,j = g(λi, µj, σj) is the i-th row and j-th column element of the responsivity matrix R. The
dimensions of the MS signal vector m, the HS signal vector h, and the responsivity matrix are shown
in Equation (4) for clarity.

We define a new layer, called tunable spectral sub-sampling layer, to perform the operation in (3),
i.e., convert a HS signal to MS signal. This layer is similar to a fully connected layer that connects
M input nodes to N output nodes. However, unlike a fully connected layer whose weight matrix is
unconstrained (i.e., each element can take any real value), the weights matrix of the tunable spectral
sub-sampling layer is constrained to have Gaussian column vectors. This is shown in Figure 1. The
values of elements of R are parameterized by [µ1, · · · , µN] and [σ1, · · · , σN]. Therefore, [µ1, · · · , µN]

and [σ1, · · · , σN] are the parameters of the tunable spectral sub-sampling layer. In other words, the
parameters of the sub-sampling layers are the locations and the resolutions of the N MS bands, all of
which are independently tunable.

We can optimize [µ1, · · · , µN] and [σ1, · · · , σN] via backpropagation. The partial derivatives of
the layer output with respect to the parameters, needed for backpropagation, are given by,
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∂mj

∂µj
=

M

∑
i=1

hi
∂g(λi, µj, σj)

∂µj

=
M

∑
i=1

hi
λi − µj

σ2
j

g(λi, µj, σj) (5)

∂mj

∂σj
=

M

∑
i=1

hi
∂g(λi, µj, σj)

∂σj

=
M

∑
i=1

hi

[
(λi − µj)

2

σ3
j

− 1
σj

]
g(λi, µj, σj). (6)

To summarize, (4) gives expression for the forward pass through the tunable spectral sub-sampling
layer and (5) and (6) provide partial derivatives for backward pass through the layer.
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Figure 1. Tunable spectral sub-sampling layer.

2.2. Network Architecture

Figure 2 shows the proposed network architecture. The input to the network is a hyperspectral
spectrum and the output is a reconstructed version of the input spectrum. There are two major parts in
the network–(i) tunable spectral sub-sampler layer and (ii) spectral super-resolution sub-network. The
tunable spectral sub-sampler portion takes as input HS spectrum (h) and resamples the HS spectrum
to produce a MS signal (m). The spectral super-resolution portion of the network takes a MS signal
(m) as input and reconstructs the HS signal (ĥ).

Fully
connected

PReLUConv + PReLUConv +PReLUConv PReLUConv+
Tunable
spectral 

resampling
𝒉1×M 𝒉1×M

𝒎1×N 𝒙1×M
(0)

𝒙F×M
(1)

L residual layers

𝒙F×M
(−1)

N×M
M×N

F filters of
size K 

F filters of
size K 

F filters of 
size K 

1 filter of 
size K 

𝒙F×M
(2)

Figure 2. Proposed network architecture.

The spectral super-resolution sub-network consists of a fully connected layer, followed by a
one-dimensional convolutional layer, a non-linear layer, a series of residual blocks, a one-dimensional
convolutional layer, and a non-linear layer in a cascade. The input of the spectral super-resolution
sub-network is a MS signal and the output is the reconstructed HS signal. The fully connected layer
converts the N dimensional MS signal into M dimensional signal, M being the dimension of HS signal.
Hypothetically, had M ≥ N, we would require only a fully connected layer to reconstruct HS signal
from MS signal. When M = N, the fully connected layer could learn weight matrix R−1 and when
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M > N, the fully connected layer could learn weight matrix R† (pseudoinverse of R) to retrieve h from
m. However, in real world scenario, M is always much smaller than N.

When M � N, we cannot recover HS signal by just using a fully connected layer because
the problem becomes ill-posed. We need to use prior knowledge about real spectra to perform the
conversion. Had real hyperspectral spectra spanned the entire M dimensional space, RM, (i.e., no
structure), it would be impossible to recover them. But, real spectra have structure and they lie in
a subspace within high dimensional space [33]. So we can utilize information about statistics about
real spectra to reconstruct HS spectra from MS signal. In our network, we utilize a residual network
architecture for this purpose. After the fully connected layer, the proposed network consists of a
convolution layer with F 1-D filters of size K and parametric rectified linear unit (PrReLU) layer. The
purpose of this is to obtain F feature maps of length M, x(1). We use PrReLU as non-linearity through
out the network and all of filters used in all convolutional layers are of length K. Following the PrReLU
layer, we have a series of L residual blocks. Each residual block consists of a convolutional layer with
F filters of length K and a PrReLU layer. There is also a skip connection from the input of the first
residual block to the output of the final residual block. After the final residual block, we convolve with
one filter of length K and follow with a PrReLU layer to obtain the final prediction (ĥ).

Another way to view our network is in the terms of encoder-decoder network. The tunable
spectral sub-sampler is the encoder and the spectral super-resolution sub-network is the decoder. The
encoder projects the high-dimensional HS signal onto a linear (not non-linear) subspace encoding (MS
signal) and the super-resolution portion of the network projects the low dimensional encoding onto
the original high dimensional space.

The network is trained on a large dataset of unlabeled HS data to find best MS bands and
super-resolution network by jointly optimizing parameters of the tunable spectral sub-sampling layer
and the super-resolution sub-network by back-propagation. Once the network is trained, we can
separate the optimal band information and the super-resolution network. Then, a new MS sensor can
be designed matching the specification of the optimal bands. Any MS image acquired by this sensor
can be projected into HS image using the super-resolution network.

While training the network, we do not directly optimize [µ1, · · · , µN] and [σ1, · · · , σN]. It is
because we want to make sure that the bands lie within the measured spectral range. Failing to
constrain band center could cause network to get stuck in local minima (because MS signal is zero
if the band is outside of the range) or a portion of the band falling outside of the measured spectral
wavelength range, [λmin, λmax]. [σ1, · · · , σN] should be also constrained such that FWHM of the MS
bands are significantly larger than the FWHM of the HS bands, so that assumptions made for (3)
are true. Also, in a real sensor design problem we have limitations on the range of values of band
centers and FWHM. To accommodate all these, we further parameterize [µ1, · · · , µN] and [σ1, · · · , σN]
as functions of [µ′1, · · · , µ′N] and [σ′1, · · · , σ′N]:

σj = σj,min − (σj,max − σj,min) S(σ′j ), (7)

µj = (λj,min − bσj)− (λj,max − λj,min − 2bσj) S(µ′j), (8)

∀j ∈ {1, · · · , N}, where S(x) = 1
1+exp(−x) is the sigmoid function. λj,min and λj,max are

the minimum and maximum values of the wavelengths that the j-th band can span. In other
words, this means that the j-th band can have non-zero responsivity only between the wavelength
range [λj,min, λj,max]. Similarly, σj,min and σj,max are the minimum and maximum value limits of σj,
respectively, for all j ∈ {1, . . . , N}. The values of λj,min, λj,max, σj,min, and σj,max for all j ∈ {1, . . . , N}
are fixed by the sensor designer before training the model. In (7), the sigmoid function maps the
value of σ′j onto [0, 1] and σj gets a value in the range [σj,min, σj,max]. Similarly, µj is mapped within
the range [λj,min − bσj, λj,max − bσj] in (8). The guard gap of bσj guarantees that the width of the band
lie within the limits, [λj,min, λj,max]. If there were no guard gap, the model could possibly put µj too
close to λj,min or λj,max, and a significant portion of the band may fall outside of [λj,min, λj,max] range.
b controls the width of the guard gap and is set by sensor designer. A value of ≥3 is a good choice for
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b, as a value of Gaussian function is negligible past three times of the standard deviation. In this way,
our method gives flexibility to the designer of the sensor, to set specifications for the extracted bands
by fixing limits for individual band centers and band resolution. In the tunable spectral sub-sampling
layer, [µ′1, · · · , µ′N] and [σ′1, · · · , σ′N] are the actual parameters that are optimized via back-propagation.
Their value can be any real number. For back-propagation, we can easily calculate partial derivatives
needed to optimize µ′j and σ′j by calculating partial derivatives of (7) and (8) and combining with (5)
and (6) using the chain rule.

In design situations, where there is no specification for limits of [µ1, · · · , µN] and [σ1, · · · , σN],
λj,min and λj,max has to be set to λmin and λmax so that the extent (or width) of the extracted bands
do not cross the limit [λmin, λmax]. σj,min has to be set to a value much greater than resolution of
the HS bands, but in our study we found that σj,max is unnecessary, so that a simpler form, such as
σj = σj,min + |σ′j |, can be used instead of (7).

While training models, we use different learning rates for the spectral sub-sampling layer and
the super-resolution sub-network, say, αsub and αsup respectively. All of the weights of convolutional
filters in the super-resolution sub-network have L2-regularization with a weight decay factor β.

2.3. Spectral Loss Function

Mean squared error (MSE) is a poor choice for loss function to reconstruct HS spectra because it
tend to produce blurred/smooth reconstruction. This is problematic because in reflectance spectra
the information about material properties is manifested as sharp valleys and peaks in reflectance
curve, called spectral features [34]. Past studies have shown that the first and the second derivative
of the spectra with respect to wavelength can capture these spectral features [35]. This can be seen
in the example in Figure 3, where h, ĥ1, and ĥ2 are the original spectrum and two reconstructions,
respectively. Both of the reconstructions have equal squared Euclidean distance from the original, but
the second, ĥ2, is much smoother and does not capture the shape (features) of the original spectrum
while the first, ĥ2, does. That means if we just look at squared error, both reconstructions are equally
good. However, if we are to compare the first and the second derivatives of the reconstructions to the
original, the difference is clear. The first reconstruction has much smaller squared Euclidean distances
between its and original spectrum’s first and second derivatives.

500 1000 1500 2000
wavelength (nm)

0.2

0.4

0.6 h h1 (SE=2.5) h2 (SE=2.5)

500 1000 1500 2000
wavelength (nm)

0.010
0.005
0.000
0.005
0.010 h′ h′1 (SE=0.0002) h′2 (SE=0.0029)

500 1000 1500 2000
wavelength (nm)

0.002

0.000

0.002 h′′ h′′1 (SE=0.0000) h′′2 (SE=0.0005)

Figure 3. Comparison of magnitude, first derivative, and second derivative of the original spectrum
(h) and two reconstructions (ĥ1 and ĥ2). SE is the squared Euclidean distance between the original
and reconstructions.

Based on this observation, we propose the following error metric dspectral(h, ĥ) to compute the
error between the original and the reconstructed spectra,

dspectral(h, ĥ) =
∥∥∥h− ĥ

∥∥∥2
+ w1

∥∥∥∥∥ dh
dλ
− dĥ

dλ

∥∥∥∥∥
2

+ w2

∥∥∥∥∥ d2h
d2λ
− d2ĥ

d2λ

∥∥∥∥∥
2

.

It is a weighted sum of the Euclidean distances between the original and reconstruction and their first
and second derivatives. w1 and w2 are the hyperparameters. The derivatives can be implemented
using finite difference approximations. The loss function for optimization is given by the average of
the spectral error metrics computed over a batch.
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2.4. Hyperparameter Tuning Using Bayesian Optimization

We tune the hyperparameters of the proposed model (F, K, L, β, αsub, αsup, w1, and w2) using
Bayesian optimization. Bayesian optimization [36] is a derivative-free black-box optimization algorithm
that can optimize an objective function by sequentially querying its value for different input values. It
is best suited for optimizing function whose value is difficult or expensive to evaluate and whose input
space is low dimensional (<20) [37]. Common black-box optimization schemes, such as grid-search
and random search, are not applicable in this scenario as they require a large number of function
evaluations to get accurate results.

Let us assume we want to minimize an objective function, f (x), whose input is vector x. Elements
of x can be either continuous or discrete. The only operation that can be performed on f (x) is that
it can be evaluated for arbitrary x in its input domain. As stated earlier, it is very costly to evaluate
f (x), so we want to intelligently search over the input space in order to minimize the number of
function evaluations. Bayesian optimization iteratively queries f (x), while internally modeling f (x)
using a function, g(x), learned on the queried input and output. The g(x) is called the surrogate
model. Popular choices for surrogate models are Gaussian processes [38] and random forests [36]. It
captures the beliefs about f (x) and is updated in each iteration with the input-output values of the
query. Acquisition function, γ(g(x)), defined over g(x) picks the next query point based on some
objective that balances searching unexplored regions in the input space and searching around good
solutions to refine them. Some of the common acquisition functions are probability of improvement,
expected improvement, and entropy search [36]. It is important to properly choose g(x) and γ(g(x))
because the form g(x) controls how accurately f (x) is modeled and γ(g(x)) defines the search strategy.
Algorithm 1 shows the steps involved in Bayesian optimization. Readers who are interested in learning
more about Bayesian optimization are encouraged to study the review by Shahriari et al. [36].

Bayesian optimization is commonly used to tune continuous as well as discrete hyperparameters
of machine learning models. When tuning hyperparameters of models, the validation loss can be used
as the objective function, f (x), with the elements of x being the hyperparameters of the model [38].

Algorithm 1: Bayesian Optimization

Let : Objective function: f (x), Surrogate model: g (x), Acquisition function: γ(g(x))
Initialize : n← 0, D0 ← {(x, f (x)) : random x}, ymin ← ∞

1 while not stopping criteria do
2 Select a new query point, xn+1, by maximizing γ: xn+1 ← arg max

x
γ (g (x;Dn))

3 Query objective function: yn+1 ← f (xn+1)

4 if yn+1 < ymin then
5 (xmin, ymin)← (xn+1, yn+1)

6 Augment the data: Dn+1 ← {Dn, (xn+1, yn+1)}
7 Update the surrogate model: learn g (x;Dn+1)

8 n← n + 1

9 return (xmin, ymin)

2.5. Validation Procedure and Datasets

We experiment with six diverse real world datasets. Each dataset was divided into separate
training, validation, and testing sets. Models were trained on the training set, and the performance
of those models were evaluated on the testing set and reported in the results. The validation set
was used for early stopping the training of the network and also to tune the hyperparameters of the
model. For training the neural network, Adam [39] was used as optimizer and a mini-batch size of 128
was used. The weights of the model were initialized using the Xavier method [40]. Early stopping
with validation after every 1000 Adam iteration and a patience of 25 was used as stopping criteria.
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The validation was performed on 64,000 randomly selected spectra from the validation set and the
average spectral angle (SAM) between the input and the reconstruction was used as the measure for
validation loss. The reason average SAM, not root mean square error (RMSE), was used to measure
validation performance is that spectral angle is a better metric to compare the shapes of the spectra
and also because if we are to use RMSE to measure the validation loss, it would be easier to minimize
the loss by setting w1 and w2 to equal to zero and this would suppress the benefits of our unique
loss function.

The hyperparameters of the model were tuned using Bayesian optimization (BO) by selecting
values that minimize the validation loss. There are 8 hyperparameters of the proposed model–F, K,
L, β, αsub, αsup, w1, and w2. Some of them are continuous and some are discrete. Limits were set
for possible values of each hyperparameter. The values of the learning rates (αsub and αsup) and the
weight decay factor (β) are continuous, and were bounded to [10−5, 10−1]. The limit values of w1

and w2 was set to [0, 1]. The number of features (F), the filter size (K), and the number of residual
layers (L) are discrete hyperparameters whose possible values were limited to fixed sets of integer
values. L was limited to a integer a value in the interval [1, 16], K was limited to {3, 5, 7, 9, 11}, and F
was limited to {4, 8, 16, 32, 64, 128}. Gaussian process was used as the surrogate function (g(x)) and
expected improvement was used as the acquisition function (γ(g(x))). The cost minimized by the BO
is the validation loss of the trained neural network. BO was run for 50 function evaluations (BO not
finished by 2.5 days was prematurely stopped). In each evaluation, a model was trained with certain
setting of hyperparmeters (selected by the acquisition function) and the validation loss (as measured
by average spectral angle between 64,000 randomly selected spectra from the validation set and their
reconstructions was computed. The model with lowest validation loss was returned as final model.
The models were trained on a computer with NVIDIA Titan X Pascal GPU, Intel Core i7-980 at 3.3 GHz
processor, and 12 GB of RAM.

Datasets

Outdoor scenes dataset: The first and the second datasets were acquired by terrestrial cameras.
The first dataset, which we call “Outdoor scenes dataset”, contains images of outdoor scenes measured
in raw sensor readings over visible wavelengths. It was collected by Arad and Ben-Shahar [1] and
contains Specim PS Kappa DX4 hyperspectral camera acquired images with 31 HS bands in the visible
wavelengths–400 nm to 700 nm at 10 nm increments. We use “rural” and “park” subsets of the dataset
in the experiment. The rural subset contains 5 images and the park subset contain 9 images, each
1392 × 1300 pixels in size. We train the model on one subset and test on another. From the subset that
is used for training, 70% of spectra is used for training and the remaining 30% is used for validation.
We use this dataset to demonstrate that our method with optimized bands can outperform baseline
methods that use fixed bands and conventional spectral estimation technique.

CAVE dataset: The second dataset, called CAVE dataset [41], contains indoor images of natural
and artificial materials captured over visible wavelengths in raw sensor readings. The images contain
31 bands covering 400 nm to 700 nm at 10 nm increments as well. We use this dataset to compare our
method with state-of-the-art methods for HS reconstructions, as many of them have published results
on this dataset. We follow the same experimental procedure as used by previous studies, e.g., [14,16],
and measure the reconstruction accuracy by performing 4-fold cross-validation by dividing the 32
images into 4 groups, each consisting of 8 images.

Aerial images dataset: The remaining four datasets contain remote sensing images. The third
dataset, which will be referred to as “Aerial images dataset”, contains NASA Goddard’s LiDAR,
Hyperspectral & Thermal Imager (G-LiHT) [42] airborne HS reflectance images collected over different
regions in the United States. The images have 114 bands covering a spectral range in visible and
near infrared (400 nm to 1000 nm) and pixel size on the ground is around 1 m. We construct training,
validation, and testing sets with spectra from images captured at separate geographical locations in the
United States. The training set contains spectra from images collected at Bowie in Maryland, Rhode
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Island, and Hanover in Connecticut. The validation set contains spectra from images captured at San
Marcos in California and University of Tennessee-Knoxville. The testing set contains spectra from
images collected at Cape Cod in Massachusetts, White Mountains in Maine, and Rochester in New
York. This is the largest of all datasets in this paper, containing about 189× 106 training spectra, 9× 106

validation spectra and 53× 106 testing spectra (Cape Cod: 33× 106, White Mountain: 13× 106, and
Rochester: 7× 106). We use this dataset to show how we can constrained the optimized bands in our
method to match real sensor design situations.

Satellite images dataset: The fourth dataset, which we call “Satellite images dataset”, contains
satellite imagery obtained from Hyperion sensor [43]. Spectra in these images are measured as
radiance in W m−2 sr−1 nm−1 and each pixel is around 30 m on the ground. Hyperion has two separate
sensors for visible-near infrared and shortwave spectral ranges with some overlapping bands [43].
We extracted 196 contiguous band ranging from 400 nm to 2500 nm for our experiments. Training,
validation, and testing sets comprises images of different cities in the USA. The training set contains
HS spectra from images collected from Baltimore, Boston, New York, Philadelphia, Pittsburgh, and
Syracuse. The validation set contains HS spectra from image captured from New Heaven. The test set
contains HS spectra from images collected from Atlanta, DC, and Rochester. In total, there are about
8.9× 106 training spectra, 1.8× 106 validation spectra, and 2.5× 106 testing spectra (Atlanta: 8× 105,
DC: 8.9× 105, Rochester: 8.3× 105). We use this dataset to show how learned bands can be better for
reconstruction than bands of LANDSAT-8 [44] MS sensor. Using the third and the fourth datasets, we
also demonstrate how models trained on images collected in one geographical region can be applied
for HS reconstruction in completely different geographical region.

Land cover classification dataset: The fifth dataset called “Land cover classification dataset”,
contains radiance images, spanning visible to shortwave infrared wavelengths, collected by NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [45]. The imagery contains 220 bands
and was collected over an agricultural site in northwestern Indiana called Indian pines test site 3 [46].
The spectral range covered is 400 nm to 2500 nm and the ground sampling distance is 20 m. This
dataset contains data from two flight lines. A small portion of one of the flight lines, spanning an area
of about 2 × 2 miles, has a corresponding ground truth land cover map available. This labeled area is
145× 145 pixels in size and a land cover label is available for most of those pixels. We divide unlabeled
pixels (2.7× 106 spectra) into training (70%) and validation (30%). The testing set consists of spectra
in the 145 × 145 area with ground cover class labels. Instead of calculating reconstruction metrics
between the reconstruction and the original signal in the testing subset, we compare the classification
performance of the models trained on the original signal and the models trained on reconstruction. The
classification model used throughout the experiments is a support vector machine (SVM) with radial
basis function kernel. A 3-fold cross-validation is used to tune the cost parameter (C parameter) and
the kernel scale of the SVM. Also, of all the land cover classes in the labeled set, we only experiment
with 13 classes which cover more than 50 pixels in the image.

Transfer test dataset: The last dataset, which we call “Transfer test dataset”, also contains
imagery collected by AVIRIS sensor [47]. We use this dataset to investigate whether the optimized
bands and the super-resolution sub-network trained on data from one sensor can be use applied to
data obtained from a different sensor. For this purpose, we evaluate models trained on G-LiHT sensor
collected data (Aerial images dataset) on this dataset. In total, 28.6× 106 spectra are present in this
dataset and were extracted from imagery collected by AVIRIS sensor during 3 flight lines over Bay
Area in California.
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3. Experimental Results

3.1. Natural Images

3.1.1. Outdoor Scenes

We now evaluate the proposed method on the outdoor scenes dataset. In order to compare
with results published in Arad and Ben-Shahar [1], we optimize three MS bands with the proposed
approach in this experiment. In their work, Arad and Ben-Shahar used sparse dictionary learning to
reconstruct 31 bands from a red-green-blue (RGB) image. They used CIE standard color matching
functions to simulate RGB from 31 bands. We present results of our model with tunable spectral
sub-sampling layer (with no constraints on band centers and FWHMs) and with spectral sub-sampling
layer replaced with CIE color matching function (i.e., no optimization of the MS bands). Table 1 shows
the comparison of reconstruction performance of the proposed method against [1]. Four metrics are
reported. Two metrics (RRMSE and RMSE) are same as the ones reported in Arad and Ben-Shahar [1].
RRMSE and RMSE are relative root mean square error and root mean square error between the test
image and reconstruction, averaged over the test images. RRMSE is root mean square of the difference
between input and reconstruction normalized by the input and RMSE is root mean square of difference
between input and reconstruction normalized to 8-bit (0-255) value. SAM (Spectral Angle Mapper)
and R are the angle and the Pearson’s correlation coefficient between the input spectrum and the
reconstruction averaged over all test spectra in all test images.

Additionally, we have included the results from a traditional PCA-based spectral reconstruction [9]
and a conventional approach to optimize MS bands [25] in Table 1. The PCA-based spectral
reconstruction was performed on MS images obtained with the RGB bands, the learned bands
acquired from our method and the bands optimized by conventional approach. The conventional
approach to band optimization [25] used simulated annealing [48] to find the bands that produces best
reconstruction with PCA-based spectral super-resolution approach [9]. The original approach used a
colorimetric cost function to measure the reconstruction accuracy but we chose to use RMSE, as the
main focus of this paper is remote sensing applications where the spectral range is typically not just
constrained to visible range.

Table 1. Comparison of reconstruction accuracy on Outdoor scenes dataset.

Dataset Method RRMSE RMSE SAM R
Train Test

Rural Park

Ours (Learned bands) 0.0317 1.433 0.0269 0.987
Ours (RGB bands) 0.0443 2.082 0.0307 0.980
PCA [9] (RGB bands) 0.0465 1.964 0.0379 0.948
PCA [9] (Our learned bands) 0.0492 1.609 0.0342 0.943
PCA [9] (bands optimized by simulated annealing [25]) 0.0469 1.579 0.0341 0.946
Arad & Ben-Shahar [1] 0.0801 2.693 - -

Park Rural

Ours (Learned bands) 0.0264 1.591 0.0216 0.995
Ours (RGB bands) 0.0303 2.455 0.0265 0.993
PCA [9] (RGB bands) 0.0337 2.333 0.029 0.991
PCA [9] (Our Learned bands) 0.0283 1.64 0.0235 0.994
PCA [9] (bands optimized by simulated annealing [25]) 0.0342 1.769 0.0246 0.994
Arad & Ben-Shahar [1] 0.0592 3.121 - -

The proposed method showed superior performance to all compared approaches. We find that
optimized MS bands provide better reconstruction accuracy compared to RGB bands. Furthermore,
it is also seen that convolutional neural network based methods can provide better reconstruction
than sparse dictionary learning and traditional PCA-based approach. It is interesting to observe
that the PCA-based approach performed better when reconstructing MS images obtained from our
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learned bands than MS images obtained from the standard RGB bands. In one case (testing on
Park subset), PCA-based method using our learned bands outperformed PCA-based method with
traditional band optimization. This reconfirms the superiority of the bands acquired from our method
for spectral reconstructions.

Figure 4 shows our learned bands along with mean per band RRMSE (with standard deviation)
computed over the test images. Interestingly, the three optimized bands seem to roughly cover blue,
green, and red spectral range. For all examples in Figure 4, we find that per band error is minimum
around centers of the MS bands and increase as the separation from the center increases. The error is
particularly high towards the extreme ends of the spectral range of the HS signal. It should be because
in the edge the network has information from only one side of the HS band being predicted. It is
also seen that error is generally higher in areas where the responsivity of all of the MS bands are low.
This could be happening because in those areas the neural network gets less information from the MS
bands to predict HS reflectance accurately.
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Figure 4. Responsivity of our learned bands and average relative root mean square error (RMSE) across
reconstructed bands (black line) for Outdoor scenes dataset.

For the model trained on Rural subset, our learned MS bands had centers 478.48 nm, 548.58 nm,
and 663.14 nm with FWHMs 56.74 nm, 84.34 nm, and 46.58 nm, respectively. Similarly, for the model
trained on Park subset, our learned MS bands had centers 460.89 nm, 539.79 nm, and 643.52 nm with
FWHMs 42.45 nm, 84.34 nm, and 46.58 nm, respectively. We see that there is slight difference in the
band locations and resolutions when the model was trained in different subsets. It could have stem
from the fact that the size of these subset are relatively small and substantially different from each other.
Another important fact to note is that there is no guarantee that the solution obtained by optimizing a
neural network is a global minimum. Different solutions could be obtained with similar dataset if the
models find different local minima solutions.

For comparison, the MS bands obtained from the traditional approach had centers 473.09 nm,
538.09 nm, and 643.16 nm with FWHMs 57.16 nm, 50.56 nm, and 45.17 nm, respectively, for Rural
subset and centers 478.73 nm, 554.12 nm, and 625.19 nm with FWHMs 57.16 nm, 61.45 nm, 51.5 nm,
and 58.11 nm, respectively, for Park subset. It is interesting to observe the similarity between the bands
found by ours and the traditional approach.

Figures 5 and 6 show examples of reconstructed spectra and examples of bands in the
reconstructed image obtained from our model with learned bands, respectively. These plots indicate
that there is variability in the reconstruction error observed for pixels belonging to different material
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classes. This is expected as reconstruction accuracy for particular class of material is assumed to be
function of how many training pixels belonging to that class were present in the training set and how
much inter-class spectral variability is shown by that material.
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Figure 5. Examples of spectra reconstructions from our method with learned bands. Spectra randomly
selected from the test set of Outdoor scenes dataset. The RMSE shown is unnormalized.
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Figure 6. Five bands of an image in Outdoor scenes dataset reconstructed from learned bands by
our method.

3.1.2. Comparison with State-of-the-Art Approaches on CAVE Dataset

We compare our method with the state-of-the-art methods on CAVE [41] dataset. Our approach
is different than other methods in that our method optimizes three MS bands along with the
super-resolution network while the other approaches use fixed three MS bands (RGB bands) and only
optimize the transformation from RGB to HS. Table 2 lists the reconstruction error of our method and
the state-of-the-art approaches in terms of per-pixel mean root mean square error (RMSE). RMSE is
only shown because this is the common metric published by most of the state-of-the-art methods.

We find that our method outperforms state-of-the-art methods. The result is congruent to
the results in the last experiment and demonstrate that optimizing the MS bands along with the
transformation from MS signal to HS spectra can vastly improve the reconstruction accuracy. It should
be noted that most of the state-of-the-art methods utilize spatial contextual information in their
prediction, which our method does not. The reconstruction performance of our method could be
further improve if we are to replace the current spectral super-resolution sub-network with a two
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dimensional network and train on image patches. However, that is currently out of the scope of this
paper and will be explored in future studies.

Table 2. Comparison with state-of-the-art approaches on CAVE dataset.

Method RMSE

Ours 3.47
Galliani et al. [14] 4.76
Arad & Ben-Shahar [1] 5.4
A+ [16] 6.70
Can & Timofte [18] 3.49
Han et al. [19] 4.78
Gwn Lore et al. [21] 8.06

3.2. Remote Sensing Imagery

3.2.1. Aerial Images

We will now use Aerial images (G-LiHT sensor) dataset to demonstrate the feature of the proposed
model that allows constraining the center and the resolution (FWHM) of the optimized bands. Such
constraints may arise in real sensor design scenario due to restriction in sensing hardware and
technology. Table 3 shows a comparison of reconstruction accuracy of models trained with different
constraints on MS bands. In the table, there are 7 different models. “Free” is a model trained to optimize
4 MS bands without any constraints. Similarly, “Free (8 bands)” is a model trained to optimize 8 MS
bands without any constraints. Except for “Free (8 bands)”, all models are trained to optimize 4 MS
bands. In “Fixed centers”, only FWHM is optimized and the centers of the 4 MS bands are fixed to
500 nm, 600 nm, 700 nm, and 800 nm respectively. Similarly, in “Fixed FWHMs”, the FWHM of all four
bands are set fixed to 100 nm and only the band centers are optimized. In “Bounded centers”, the
extent of 4 bands are bounded to 450 nm to 550 nm, 550 nm to 650 nm, 650 nm to 750 nm, and 750 nm
to 850 nm, respectively. In “Bounded FWHMs", the FWHM of the bands are limited to a range 13.55 nm
to 22.59 nm while the band center is freely optimized. Finally, in “Bounded centers & FWHMs” both
the extent and the FWHM of each of the bands are bounded by limits during optimization. The extent
and the FWHM of the first band were bounded to ranges 482 nm to 520 nm and 50 nm to 100 nm,
respectively. The extent and the FWHM of the second band were bounded to ranges 580 nm to 620 nm
and 50 nm to 100 nm, respectively. The extent and the FWHM of the third band were bounded to
ranges 680 nm to 720 nm and 50 nm to 100 nm, respectively. Finally, the extent and the FWHM of the
fourth band were bounded to ranges 780 nm to 824 nm and 50 nm to 150 nm, respectively.

These kind of constraints are important in real sensor design scenarios. For examples, if we know
the location of a certain important spectral feature, we may want to set the band center of one of the
MS band at that location and only optimize FWHM. If there is some uncertainty in the location of the
spectral feature, we could bound the center of the MS bands to an interval around the location of the
feature. Similarly, for many filters that are used to build MS sensor, there are limits to FWHM values, so
we may need to bound the FWHM value of the optimized bands. For MS hardware that capture large
spectral span, they might contain different kind of sensors. For example, Silicon sensor can be used
to capture visible (400 nm to 1000 nm) radiations but different technology is needed to sense spectral
range beyond 1000 nm. In this case, we do not want to have a MS band that spans over spectral range
covered by two different sensor technologies. This can be handled by setting appropriate limits on the
values of band centers and band FWHM in our model.

In Table 3, we find that increasing the number of MS bands from 4 to 8, significantly reduces the
reconstruction error. This is expected as larger number of MS bands can capture more information
about the reflectance spectra. Another interesting finding is that as constraints are added to the
optimized bands, the reconstruction error increases, which is also expected. This happens because as
constraints are added the set of all possible solutions decreases in size.
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Figure 7 shows the optimized MS bands along with per band RMSE. It is seen that the error is
high in areas where the responsivity of all MS bands are low and towards the ends of the spectral range
of the HS spectra, as it was observed in previous experiment with Outdoor scenes dataset. Figure 8
shows reconstructed bands of a portion of test imagery obtained using the model trained on 4 bands
without any restriction. We see smaller objects with high reconstruction error in the images. They
could be material classes that were readily not present in the training set.

Table 3. Comparison of our model with different constraints on multispectral (MS) bands using Aerial
images dataset.

Test Dataset Bands RMSE SAM R

Cape Cod

Free 0.0027 ± 0.0022 0.0252 ± 0.0243 0.9917 ± 0.0433
Free (8 bands) 0.0016 ± 0.0009 0.0157 ± 0.0174 0.9973 ± 0.0149
Fixed centers 0.0047 ± 0.0029 0.0382 ± 0.0319 0.9866 ± 0.0664
Fixed FWHMs 0.0036 ± 0.0021 0.0309 ± 0.0294 0.9918 ± 0.0396
Bounded centers 0.0025 ± 0.0017 0.0231 ± 0.0147 0.9977 ± 0.0186
Bounded FWHMs 0.0029 ± 0.0019 0.0261 ± 0.0229 0.9937 ± 0.0300
Bounded centers & FWHMs 0.0033 ± 0.0019 0.0303 ± 0.0265 0.9924 ± 0.0346

White Mountains

Free 0.0024 ± 0.0011 0.0296 ± 0.0183 0.9958 ± 0.0428
Free (8 bands) 0.0018 ± 0.0007 0.0228 ± 0.0176 0.9963 ± 0.0449
Fixed centers 0.0040 ± 0.0023 0.0471 ± 0.0279 0.9939 ± 0.0481
Fixed FWHMs 0.0040 ± 0.0019 0.0479 ± 0.0273 0.9920 ± 0.0705
Bounded centers 0.0033 ± 0.0016 0.0404 ± 0.0229 0.9940 ± 0.0549
Bounded FWHMs 0.0029 ± 0.0016 0.0372 ± 0.0244 0.9948 ± 0.0447
Bounded centers & FWHMs 0.0026 ± 0.0015 0.0314 ± 0.0176 0.9958 ± 0.0433

Rochester

Free 0.0040 ± 0.0014 0.0291 ± 0.0157 0.9927 ± 0.0356
Free (8 bands) 0.0030 ± 0.0009 0.0216 ± 0.0114 0.9965 ± 0.0173
Fixed centers 0.0054 ± 0.0026 0.0366 ± 0.0214 0.9895 ± 0.0479
Fixed FWHMs 0.0055 ± 0.0029 0.0355 ± 0.0186 0.9920 ± 0.0357
Bounded centers 0.0048 ± 0.0019 0.0333 ± 0.0164 0.9913 ± 0.0390
Bounded FWHMs 0.0042 ± 0.0016 0.0300 ± 0.0172 0.9930 ± 0.0318
Bounded centers & FWHMs 0.0046 ± 0.0022 0.0322 ± 0.0175 0.9927 ± 0.0323
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Figure 7. Responsivity of multispectral bands obtained using Aerial images dataset and RMSE across
reconstructed bands (dotted line).
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Figure 8. Examples of reconstructed bands for a portion of test imagery predicted using model with 4
free bands trained on Aerial images dataset.

3.2.2. Satellite Images

In this subsection, we compare the reconstruction performance of learned bands and Landsat-8
MS sensor bands on satellite images (Hyperion sensor) dataset. We extract 9 MS bands without any
constraints. The reconstruction accuracy of a model using those 9 bands is compared with the one of a
model that uses fixed Landsat-8 MS bands (Gaussian bands with Landsat-8 centers and FWHMs) in
Table 4. The metrics are the same as the last (aerial images) experiments. Figure 9 shows the extracted
bands with per band RMSE computed over the entire testing set and Figure 10 shows few sample
reconstructions. We again find that learned MS bands are more accurate that fixed MS bands for
reconstruction. The per band error was high in areas where all of the MS bands had low responsivity
as observed before. It is interesting to see that the model did not place any band in the spectral range
1800 nm to 2000 nm because this region contains atmospheric water absorption bands and the HS
signal in that region highly attenuated [49].
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Table 4. Reconstruction accuracy for satellite images. RMSE is measured in W m−2 sr−1 nm−1.

Test Image Bands RMSE SAM R

Atlanta Learned 6.751 ± 2.081 0.033 ± 0.007 0.999 ± 0.001
Landsat 26.460 ± 10.869 0.119 ± 0.042 0.986 ± 0.009

DC Learned 4.978 ± 3.039 0.047 ± 0.016 0.998 ± 0.004
Landsat 11.046 ± 4.952 0.096 ± 0.024 0.990 ± 0.007

Rochester Learned 4.797 ± 1.701 0.078 ± 0.038 0.995 ± 0.007
Landsat 7.369 ± 5.359 0.094 ± 0.034 0.994 ± 0.008
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Figure 9. Responsivity of multispectral bands obtained using the satellite images dataset and RMSE
across reconstructed bands (dotted line).
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Figure 10. Examples of Hyperion spectra (satellite images dataset) reconstructions using learned bands
(randomly selected from testing set). RMSE between the original and the reconstructed spectrum is
measured in W m−2 sr−1 nm−1.

3.2.3. Land Cover Classification

In previous experiments, we evaluated the reconstruction accuracy of the optimized MS bands,
now we will examine the performance of the optimized bands for the task of land cover classification.
We optimize separate sets of 5 MS bands and 10 MS bands using the proposed network and the land
cover classification dataset. The optimized bands are shown in Figure 11. It is interesting to see that the
model has placed most of the MS bands in visible and near infrared region (esp. in case of 10 bands)
because for this dataset those regions are the important ones as majority of the spectra are vegetation
spectra. Table 5 shows comparison of classification performance of various models measured in terms
of overall accuracy (OA), average accuracy (AA), and kappa coefficient for different training sizes. We
randomly sampled a fixed number of pixels belonging to each land cover class to train classification
model and evaluated the model on the remaining pixels. This process was repeated 30 times to obtain
the mean and the standard deviation of the metrics which have been listed in the table. We observe
that when training set is large, models trained on real (original) data and tested on real data performs
the best. This is expected because MS bands and reconstructions from MS bands are likely to have less
information contents than the original signal. However, surprisingly, when the training set was very
small (equal to 5 per class), models tested on reconstruction from 10 MS bands performed the best. This
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could be because the reconstruction is less noisy than the original signal because many details in the
original signal that are not relevant to overall shape of the spectra are removed during reconstruction.
This is similar to how dimensionality reduction improves classification performance when the dataset
is small [50]. As expected, we also observe that models trained and tested on reconstructions from
10 bands performed better than the ones trained and tested on reconstructions from 5 bands.
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Figure 11. Bands extracted from Land cover classification dataset.

The importance of spectral super-resolution sub-network is also seen in the results. Models
trained and tested on reconstructed HS signal performed better than the ones that utilized MS signal
for training and testing. This means if we are to use our approach to optimize bands for a MS sensor
and design a MS sensor in real-world, it is better to convert the MS signal observed by the new sensor
to HS signal using the super-resolution sub-network before analysis. This is probably due to the fact
that reconstructed HS signal, which utilizes statistics of real HS signal, in a way, acts like a feature
extractor for MS signal. Finally, we observe interesting results regarding models that were trained on
real HS data but tested on reconstructed HS data. We find that such models can provide sufficiently
accurate classification performance. This is important because this means that if we build a real MS
sensor using our method, the data obtained from the new sensor could be analyzed by pre-existing
methods/models which were developed for real HS spectra by projecting the captured data to HS
signal space using the spectral super-resolution sub-network. This could save time and costs associated
with developing new models for analysing the data obtained from the new sensor.

Table 5. Comparison of classification performance on real and reconstructed hyperspectral images.

Number of Training Pixels per Class

Image 5 25 50

Train Test OA (%) AA (%) kappa (%) OA (%) AA (%) kappa (%) OA (%) AA (%) kappa (%)

Real Real 51.4 ± 6.8 59.6 ± 5.9 45.5 ± 7.3 73.6 ± 1.6 81.6 ± 1.3 70.2 ± 1.7 78.8 ± 1.3 85.9 ± 0.6 75.9 ± 1.4
Real HSI-5 47.6 ± 4.2 55.3 ± 3.0 41.6 ± 4.1 53.8 ± 4.0 58.8 ± 3.6 48.2 ± 4.2 53.3 ± 4.8 57.6 ± 3.9 47.5 ± 4.9

HSI-5 HSI-5 48.8 ± 5.8 57.2 ± 4.6 43.0 ± 6.1 66.7 ± 2.6 73.9 ± 1.8 62.5 ± 2.8 69.5 ± 3.3 76.7 ± 2.1 65.5 ± 3.6
MSI-5 MSI-5 46.8 ± 4.4 54.2 ± 4.9 40.5 ± 4.9 65.2 ± 2.5 72.3 ± 2.0 60.8 ± 2.7 65.5 ± 3.3 73.8 ± 1.8 61.0 ± 3.5
Real HSI-10 52.6 ± 5.3 60.7 ± 4.7 47.1 ± 5.7 68.1 ± 2.4 73.7 ± 2.5 63.9 ± 2.6 70.0 ± 2.3 74.7 ± 2.7 66.0 ± 2.5

HSI-10 HSI-10 54.6 ± 5.0 62.5 ± 3.7 49.2 ± 5.3 72.3 ± 2.7 79.4 ± 1.7 68.7 ± 2.9 74.5 ± 3.1 81.6 ± 2.1 71.1 ± 3.4
MSI-10 MSI-10 48.0 ± 5.6 55.8 ± 4.8 41.8 ± 6.0 68.2 ± 2.3 75.8 ± 1.7 64.1 ± 2.5 69.9 ± 4.5 77.7 ± 3.7 65.9 ± 4.9

MSI-5 and MSI-10 are derived 5-band and 10-band multispectral images. HSI-5 and HSI-10 are synthetic
hyperspectral images recontructed from MSI-5 and MSI-10 with RMSE of 0.0685 ± 0.018 and 0.0589 ± 0.014
W cm−2 sr−1 nm−1 respectively.

Figure 12 plots average accuracy (the mean and the standard deviation of 30 random trial) as
a function of training set size, as the training set size is increased from 15 per class to 150 per class.
The experimental procedure used to obtain the result is same as the one used in Table 5, except that
classes which covered more than 200 labeled pixels in the labeled image were only considered to
accommodate larger training set sizes. We find that the performance of all methods initially increases as
the training set size is increased but saturates after reaching a certain training set size. The performance
of the methods that were trained on real data and tested on reconstructions saturated earlier at around
a training set size of 25, while the same for methods that were trained and tested on either real data or
reconstructions started saturating at around a training set size of 100. In general, models that were
trained and tested on same data source (real or reconstructions) had much better performance than
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models trained on real data and tested on reconstructions when the training set was large. This could
have happened because the classifier trained on real spectra (which has never seen reconstructed
spectra during training) cannot find subtle features in reconstructions which it deemed as important
while training looking at the real data. So adding more training data does not help much because the
subtle features are not present in the reconstructed data that is used for testing.

5 25 50 75 100 125 150
No. of training pixels per class

50

60

70

80

90
AA

 (%
)

Train:Real, Test:Real Train:HSI-5, Test:HSI-5 Train:HSI-10, Test:HSI-10
Train:Real, Test:HSI-5 Train:Real, Test:HSI-10

Figure 12. Average accuracy as a function of training set size for different models trained on land cover
classification dataset.

Figure 13 shows normalized confusion matrices for models trained on real HS data and tested on
real data and reconstructions when training set was set to 25 pixels per class. It is observed that when
the classification model is tested on real data, reconstructions from 10 MS bands and reconstructions
from 5 MS bands get more confused about similar classes (such as different types of soybeans, corn
and grasses) in increasing order. This is because less fine details about the reflectance spectra are
present in reconstructions from 10 MS bands than in real and in reconstructions from 5 MS bands than
in reconstructions from 10 MS bands. So depending on the application, the number of optimized MS
band should be adjusted to obtain desired level of performance.
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Figure 13. Normalized confusion matrices (25 training samples per class) averaged over 30 trials for
classification model trained on real data and tested on real, HSI-10 (reconstruction from 10 MS bands),
and HSI-5 (reconstruction from 5 MS bands).

3.2.4. Transfer of Learned Bands

Up to this point, we trained and evaluated our method on data from the same sensor, albeit
different geographical locations. In this section, we will evaluate the reconstruction accuracy of the
learned bands and the spectral super-resolution sub-network on data from a separate sensor. Figure 14
shows a block diagram explaining the design of the experiment.
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Figure 14. Evaluation of MS bands learned using G-LiHT data on AVIRIS imagery.

We utilize two models trained on G-LiHT spectra (Aerial images dataset) in Section 3.2.1 for
the experiments. The two models used are the networks to extract 4 MS bands and 8 MS bands
(without bounds on the band centers and the FWHMs). We evaluate these models on data obtained
from AVIRIS sensor. For evaluation, we first convert AVIRIS spectra to MS signal using the learned
bands’ responsivity functions. Then, this MS signal is used to reconstruct HS spectra using the spectral
super-resolution sub-network. The reconstructed HS spectra has the same spectral range and band
spacing as G-LiHT spectra. It cannot be directly compared with the original AVIRIS spectra.

The AVIRIS sensor measures a spectral range of 400 nm to 2500 nm at approximately 10 nm
increments, while the G-LiHT sensor measures a spectral range of 400 nm to 1000 nm at approximately
4.43 nm increments. Hence, the visible and near infrared portion of the original AVIRIS spectra was
resampled to match the bands of the G-LiHT spectra. Then, performance metrics were computed to
compare the predicted spectra and the resampled version of the original spectra. The results are shown
in Table 6. For comparison, we also trained the conventional method (PCA + simulated annealing) on
G-LiHT spectra and tested on resampled AVIRIS data. Since, the Aerial images dataset is very huge,
we used Incremental PCA [51] to find the principal components needed for the conventional approach.

Table 6. Performance of MS bands learned using G-LiHT data on AVIRIS imagery.

Methods RMSE SAM R

Ours (4 bands) 0.0148 ± 0.01 0.0729 ± 0.0363 0.9520 ± 0.1492
Ours (8 bands) 0.0046 ± 0.0028 0.0227 ± 0.0087 0.9843 ± 0.0589
PCA with simulated annealing [9,25] (4 bands) 0.4436 ± 0.02 0.0772 ± 0.0116 0.95081 ± 0.1324
PCA with simulated annealing [9,25] (8 bands) 0.46055 ± 0.01808 0.10655 ± 0.00381 0.95729 ± 0.09921

The results show that our method performed much better than the traditional approach. In fact,
the model learned using the traditional approach showed very high error when tested on the AVIRIS
spectra, even though it had better reconstruction error for the G-LiHT test set (e.g., 0.006 ± 0.0003
RMSE for Rochester subset using 4 bands). We hypothesize that the traditional approach is more
vulnerable to noise and variability, which led to poor performance in this experiment.

The reconstruction performance of our method is also weaker compared to the results in Table 3.
This is expected as the training data and the testing data come from two different HS sensors with
different parameters, such as ground sampling distance, flying altitude, and signal-to-noise ratio.
However, the error of the reconstruction from 8 bands is significantly smaller than the reconstruction
from 4 bands and comparable to reconstruction error for Rochester subset (4 bands) in Table 3. This
indicates more bands are better when there is large variability in the properties and distribution of the
training set and the testing set. Figure 15 shows the sample reconstructions.
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Figure 15. Reconstructions of AVIRIS spectra using G-LiHT trained models. (Left to right) the worst
reconstruction with 4 bands, the best reconstruction with 4 bands, the worst reconstruction with 8
bands, and the best reconstruction with 8 bands. RMSE-4 and RMSE-8 are RMSE between original
spectra and reconstructions from 4 bands and 8 bands respectively.

4. Conclusions

We showed the efficacy of the proposed method on six real world HS dataset. The results of
the experiments showed that optimizing MS bands along with the transformation from MS signal
to HS spectrum can greatly improve the reconstruction accuracy compared to only optimizing the
transformation for fixed MS bands. The proposed method allows for constraining the location and the
resolution of the optimized bands, which could be very helpful to handle design constraints of sensor
hardware. We also showed that the reconstructed HS spectra can be used for land cover classification.

In future, we want to investigate if more accurate reconstructions can be obtained using generative
adversarial networks (GANs) with the super-resolution sub-network. Currently, we are using the mean
squared error between the first and the second derivatives of the original signal and the reconstruction
to capture fine details in HS spectra. However, leveraging GAN as prior for HS reconstruction
could provide better reconstruction of fine details. Another promising avenue for improving the
reconstruction accuracy is to utilize spatial contexts in the super-resolution sub-network by using a
two dimensional convolutional neural network architecture, which is trained end-to-end to predict
HS image from MS image. It would also be interesting to evaluate the performance of reconstructed
HS image for other image analysis applications, such as, physical/chemical parameter estimation,
target detection and unmixing. We would also like to investigate tunable sub-sampling layer with
non-Gaussian bands. One of the limitations of this study is that we have only validated the proposed
method in software. Future goal would be to implement the MS bands acquired from our method
in hardware and evaluate the reconstruction performance of a framework containing the hardware
implementation of the MS bands followed by a data processing pipeline containing the spectral
super-resolution sub-network.
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