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Abstract: Land surface temperature (LST) is an important input to the Atmosphere–Land Exchange
Inverse (ALEXI) model to derive the Evaporative Stress Index (ESI) for drought monitoring. Currently,
LST inputs to the ALEXI model come from the Geostationary Operational Environmental Satellite
(GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) products, but clouds affect
them. While passive microwave (e.g., AMSR-E and AMSR-2) sensors can penetrate non-rainy clouds
and observe the Earth’s surface, but usually with a coarse spatial resolution, how to utilize multiple
instruments’ advantages is an important methodology in remote sensing. In this study, we developed
a new five-channel algorithm to derive LST from the microwave AMSR-E and AMSR-2 measurements
and calibrate to the MODIS and GOES LST products. A machine learning method is implemented to
further improve its performance. The MODIS and GOES LST products still show better performance
than the AMSR-E and AMSR-2 LSTs when evaluated against the ground observations. Therefore,
microwave LSTs are only used to fill the gaps due to clouds in the MODIS and GOES LST products.
A gap filling method is further applied to fill the remaining gaps in the merged LSTs and downscale
to the same spatial resolution as the MODIS and GOES products. With the daily integrated LST at
the same spatial resolution as the MODIS and GOES products and available under nearly all sky
conditions, the drought index, like the ESI, can be updated on daily basis. The initial implementation
results demonstrate that the daily drought map can catch the fast changes of drought conditions
and capture the signals of flash drought, and make flash drought monitoring become possible. It is
expected that a drought map that is available on daily basis will benefit future drought monitoring.

Keywords: LST; MODIS; GOES; AMSR-E; AMSR-2

1. Introduction

Land surface temperature (LST) plays a critical role in the interaction between the Earth land
surface and the atmosphere by controlling the surface upwelling radiation and affecting surface
energy (sensible heat and latent heat flux) exchange with the atmosphere. Thus, LST, as a key
parameter for the Earth’s surface energy balance and exchange, is significant in researching the
fields of climatology, hydrology, meteorology, and ecology [1,2]. LST has been widely used for
environmental modeling [1–3], urban heat island studies [4–7], soil moisture estimate [8–10], derivation
of evapotranspiration (ET) [11–14], and drought monitoring [15,16].

Deriving accurate satellite-based LSTs has long been an interesting and challenging research area
in thermal remote sensing [17]. Significant efforts have been made throughout the past decades to
derive LST from space and aircraft optical sensors, such as polar orbit sensors, like the Advanced
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Very-High-Resolution Radiometer (AVHRR) [18], the Moderate Resolution Imaging Spectroradiometer
(MODIS) [19–21], and the Visible Infrared Imaging Radiometer Suite (VIIRS) [22]; and, geostationary
satellites, like the Geostationary Operational Environmental Satellite (GOS) [23–26]. Optical instruments
can provide good quality LST products under clear sky conditions. However, clouds affect optical
sensors, like AVHRR, MODIS, VIIRS, and GOES. Meanwhile, microwave emission can penetrate
non-precipitating clouds.

Passive microwave (MW) observations have been used to estimate LST since 1990 [27–35]. Njoku
and Li [31] developed an LST algorithm while using the Advanced Microwave Scanning Radiometer
(AMSR) multi-channels at 6.6, 10.7, and 18.7 GHz. Mao et al. [36,37] established a regression model
between the brightness temperature (BT) of the AMSR-E bands at 18.7, 23.8, 36.5, and 89 GHz and
MODIS LST products due to the difficulty of obtaining the matched ground truth for the large scale
pixel (e.g., 25 km × 25 km for AMSR-E) of passive microwave data at the satellite pass. They found
that the 89GHz vertical polarization is the best single band to calibrate MODIS LST, and the average
bias error is about 2–3 ◦C in relative to the MODIS LST products. Holmes et al. [32] found that the
channel with the highest correlation to LST is the 36.5 GHz, because it suffers a weaker atmospheric
effect than the 89 GHz channel and weaker penetration depth effect than the lower frequency channels.

LST is a fast-response variable and thus provides proxy information at relatively high spatial
resolution for the rapid changes in land surface soil moisture and crop stress conditions. Therefore,
LST is an important input for the Atmosphere-Land Exchange Inverse (ALEXI) model [3], which has
been used for drought monitoring and it shows promising results. The Evaporative Stress Index (ESI)
that was derived from the ALEXI model describes temporal anomalies in evapotranspiration (ET),
highlighting areas with abnormal states of water use across the land surface. Here, ET is retrieved via
energy balance while using remotely sensed LST as the time-change signals. The LST data input into the
ALEXI is obtained from the GOES. The GOES-based retrievals of LST are currently implemented with
a gap-filling algorithm to estimate ET at spatial resolutions of about 4 km. The ALEXI uses LST at the
morning and midmorning (1 to 1.5 h after sunrise and before local noon) as its driving input, because
this is the signature in the diurnal surface temperature wave that is most closely correlated with soil
moisture content [13]. Recently, it was found that the difference of MODIS daytime and nighttime LST
difference (∆TMODIS) has a very good relationship with the GOES LST difference (∆TGOES) between two
times at 1 to 1.5 h after sunrise and before local noon. Therefore, MODIS LST can also be implemented
into the ALEX model to estimate ET at MODIS spatial resolution of 1 km.

Currently, weekly composite GOES LST is used for the input to the ALEX model, therefore, the
ESI, as well as the US Drought Monitor (USDM) to remove cloud contamination and obtain a clear LST
map, providing weekly drought monitoring. Recently, “flash” drought concept appears. Flash drought
frequently occurred in the central and eastern United States [17]. The 2012 drought over the Northern
American had the worst surface condition since the 1930s Dust Bowl [38]. The drought started in
2011, extended rapidly in 2012 (especially in June and July according to the USDM classifications),
and then continued in 2013. This event was pervasive in the central regions of the United States due
to the absence of rainfall in the growing season. The rapid soil moisture loss led this event as “flash
drought” [39]. The flash drought event was a result of natural weather variations, with little warnings
found from the traditional drought metrics or climate model simulations, unlike the common drought
that is caused by external forcing like SST anomalies [40]. The flash drought event suggests that the
current drought monitoring should enhance its temporal resolution, and thus daily LST data is desired.

The ALEXI requires clear-sky conditions during the time interval for obtaining the LST data
and satisfying the model assumptions of the linear sensible heat rise during the morning boundary
layer growth phase [14]. MODIS and GOES can provide high quality LST products under clear-sky
conditions [19–21,23–26]. However, more than 60% of the areas in the MODIS LST products are
contaminated by weather effects, especially cloud cover [41]. On the other hand, microwave sensors,
such as the polar orbiting satellite sensor AMSR-EOS (AMSR-E), onboard the same Aqua satellite
as the MODIS), can penetrate non-rainy clouds. The AMSR-E stopped rotating on 4 October 2011.
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Fortunately, a similar instrument AMSR-2 on JAXA’s GCOM-W1 spacecraft was launched on 18 May
2012, and it is currently operating. Both the AMSR-E and AMSR-2 can provide LST twice a day (the
Equator crossing time 1:30 pm and 1:30 am) under all weather conditions. How to utilize the multiple
instruments’ advantages is an important approach in remote sensing. Kou et al. [42] proposed blending
MODIS and AMSR-E LST data by using the Bayesian Maximum Entropy (BME) method.

The main goal of this study is to develop new models for LST derivation under all sky conditions
by integrating MW and optical data. We need to calibrate AMSR-E to MODIS LST and establish models
between brightness temperature of AMSR-E to meet the demands of applications in the ALEXI model,
and the LST from MODIS for the historical data and to calibrate AMSR-2 to GOES LST and build
equations between AMSR-2 BT and GOES LST for the current data. In this study, we will conduct
more intensive and comprehensive investigation for the TIR-MW LST retrieval methods and how it
can be used to enhance the temporal resolution for flash drought monitoring.

2. Data and Methods

2.1. Data Used

A comprehensive data set is collected and processed in this study for deriving satellite LSTs
and evaluating the data against the in situ observations. A detailed description is given in the
following subsections.

2.1.1. Satellite Data

The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is
a dual-polarized passive microwave radiometer onboard Aqua that operates at the frequencies of
6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz [43]. The spatial resolution of the
AMSR-E is higher than the previous spaceborne passive microwave radiometers in operation (from
approximately 60 km at 6.9 GHz to 5 km at 89.0 GHz, with the low frequencies being obtained at 25-km
resolution based on oversampling) [44].

The AMSR-2 that was on board the GCOM-W1 satellite was launched in May 2012. Similar to
AMSR-E, AMSR-2 also measures the microwave emission from the Earth surface and atmosphere.
AMSR-2 has seven frequencies with both vertical and horizontal polarizations when compared to
AMSR-E—with an additional frequency at 7.3 GHz. AMSR-2 has approximately 62 × 35, 62 × 35, 42 ×
24, 22 × 14, 19 × 11,12 × 7, and 5 × 3 km spatial resolution at 6.9 GHz, 7.3GHz, 10.65 GHz, 18.7 GHz,
23.8 GHz, 36.5 GHz, and 89.0 GHz, respectively. The low frequencies can be resampled into a 10 km
resolution (Japan Aerospace Exploration Agency, 2013). The same as the AMSR-E sensor, it can acquire
a set of daytime and nighttime MW data twice a day (the Equator crossing time is 1:30 p.m. for
ascending pass and 1:30 a.m. for descending pass).

• The MODIS daily Aqua LST product (MYD11C1) in version 5.1, with a spatial resolution of 5 km
is used in this study. Only good quality LST data with an accuracy of less than 1 K is selected.

• The MODIS land covers Climate Modeling Grid (CMG) product in version 5.1 (Short Name:
MCD12C1) provides the dominant land cover types at a spatial resolution of 0.05◦.

• The MODIS L3 monthly emissivity product [21], at a 0.05◦ resolution in version 5.1 [45], is used
to estimate the broadband emissivity in this study, because it is found that daily emissivity data
have many missing values, whereas the weekly data include some abnormal values.

• The Normalized Difference Vegetation Index (NDVI) data that were used in the microwave
algorithm development is extracted from the MODIS 16-days NDVI composite (short name:
MYD13C1), with a resolution of 0.05◦ [46]. The daily NDVI data used in the downscaling
process were derived from the MODIS/Aqua surface reflectance product at 0.05◦ grid (short name:
MYD09CMG) [47]. The gaps in the daily NDVI data are filled with the previously available data.

• The Geostationary Operational Environmental Satellite (GOES) monitors the weather conditions
in the Unites States (U.S.). The GOES LST data used in this study, which is available at
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half-hour temporal resolution and 4 km spatial resolution, are derived from the GOES-13 imager
observations at 3.9 µm and 11 µm channels while using the algorithms that Sun and Pinker [24]
and Sun et al. [26] developed.

• The digital elevation model (DEM) data are derived from the National Elevation Dataset (NED)
data [48] at a resolution of 100 m.

2.1.2. In-Situ Data

In-situ LST ground measurements are matched with the retrieved LSTs at the same time over the
same location in order to validate satellite-derived LST data. The Surface Radiation Budget Network
(SURFRAD) observations, which measure the surface long-wave radiation and they are an indirect
measurement of LST, and are used to evaluate the LSTs that were derived from this study. A detailed
description of the SURFRAD network and associated instrumentation can be found in [49]. Table 1
provides brief information regarding the six SURFRAD stations that were used in this study.

Table 1. Surface Radiation Budget Network (SURFRAD) sites for algorithm validation.

Site No. Site Location Lat (N)/Lon(W) Surface Type *

1 Bondville, IL 40.05/88.37 Crop Land

2 Fort Peck, MT 48.31/105.10 Close Shrubland

3 Goodwin Creek, MS 34.25/89.87 Deciduous Forest

4 Table Mountain, CO 40.13/105.24 Crop Land

5 Sioux Falls, SD 43.73/96.62 Grass Land

6 Pennsylvania State
University, PA 40.72/77.93 Mixed Forest

* IGBP surface types.

The surface long-wave radiation (upwelling and downwelling radiative fluxes) data available
from the SURFRAD can be converted to surface skin temperature by the following equation:

Ts =

F↑ − (1− εb)F↓
εbσ


1
4

(1)

where F↑ is the surface upwelling longwave radiation, F↓ is the surface downwelling longwave
radiation, εb is the surface broadband emissivity, and σ is the Stefan–Boltzmann constant.

The broadband emissivity (ε) in Equation (7) can be estimated from the MODIS spectral emissivity
while using narrowband to broadband conversion method [50], as follows:

εb = 0.2122ε29 + 0.3859ε31 + 0.4029ε32 (2)

where ε29, ε31, and ε32 are the spectral emissivity of MODIS bands 29, 31, and 32, respectively.

2.2. Methods

2.2.1. Physical Basis for Remote Sensing of LST from Passive Microwave

The physical basis for LST retrieval from passive microwave observations is based on the radiative
transfer theory. The radiance that was received at remote sensor level includes the radiance that was
emitted by the Earth surface and the atmospheric effects. The radiative transfer equation for passive
microwave remote sensing of LST can be expressed, as follows [36,37]:

B f
(
T f

)
= τ f (θ)ε f B f (LST) + τ f (θ)(1− ε f )B f

(
T↓a

)
+ B f (Ta) (3)
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where Ts is the LST, Ta
↓ is the downward atmospheric brightness temperature, and Ta

↓ is the
upward atmospheric brightness temperature, Tf is the brightness temperature of frequency f, τf is the
atmospheric transmittance in frequency f at viewing direction θ (zenith angle from nadir), and εf is the
ground emissivity. Bf (LST) is the ground radiance, and Bf(Ta

↓) and Bf(Ta
↑) are the downwelling and

upwelling path radiances, respectively.
Fily et al. [51] found an empirical linear relationship for emissivity between vertical and horizontal

polarizations: εV = aεH + b, where εV/H stands for surface emissivity at vertical and horizontal
polarization, respectively, and a and b are the linear regression coefficients. Therefore, LST can
be derived:

LST =
[
Tbv − aTbH − (1− b− a)τ f (θ)T↓a − (1− a)T↑a

]
/(bτ f (θ) (4)

where Tb is for brightness temperature and subscripts V and H represent vertical and horizontal
polarization, respectively. Several algorithms were selected here for comparison in order to develop
good LST algorithms for passive microwave sensors AMSR-E and AMSR-2.

2.2.2. Algorithms for Retrieving LST from Passive Microwave Data

In this study, we proposed a new five-channel algorithm to derive LST from microwave
observations (LSTm) by utilizing the AMSR-2 five channels at 6.9, 18.7, 23.8, 36.5, and 89 GHz
in both the vertical and horizontal polarizations. The new proposed five-channel algorithm is also
compared with the two previously published microwave LST algorithms:

The Single-Channel Algorithm with the 36.5 V GHz

The 36.5 GHz is considered to be the most appropriate MW channel for temperature retrieval [32],
but is often invalid in wet seasons due to the scattering effect of rain droplets [52].

LSTm = β1 + β2T36.5V (5)

where β1 and β2 are regression coefficients.

The Four-Channel Algorithm

Mao et al. [36,37] thought: (1) T36.5V is the primary channel to retrieve LST; (2) The brightness
temperature difference at the 36.5 GHz and 23.8 GHz channels in vertical polarization (T36.5V–T23.5V) is
utilized to attenuate the influence of atmospheric water vapor; (3) T36.5V–T18.7H can compensate for the
influence of surface water, and, (4) T89V can decrease the average influence of atmosphere. They used
the following equation:

LSTm = B0 + B1 T36.5V + B2 (T36.5V–T23.8V) + B3 (T36.5V–T18.7H) + B4 T89V (6)

where T refers to brightness temperature, the subscripts refer to frequencies in GHz at different bands,
B0, B1 . . . B4 are the regression coefficients.

A Proposed New Five-Channel Algorithm

In this study, we utilize five channels at 6.9, 18.7, 23.8, 36.5, and 89 GHz in both the vertical and
horizontal polarizations, and microwave data is calibrated to optical data, since the time for the two
types of sensors may be different, so the time of microwave sensor UTC is especially added to count
the time difference between the two sensors.

LSTm = C0 + C1 (T6.9V–c1T6.9H) + C2 (T36.5V–c2T36.5H) + C3 (T23.8V–c3T23.8H)
+ C4 (T18.7V–c4T18.7H) + C5 (T89V–c5T89H) + C6 UTC

(7)
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where T refers to brightness temperature, the subscripts refer to frequencies in GHz at different
bands, UTC is the UTC time of the microwave sensor, and C0, C1 . . . C8, c0, c1 . . . c5 are the
regression coefficients.

2.3. Regression Tree Algorithm

Chen et al. [41] stratified the regression models, according to the intervals of Microwave Polarization
Difference Index (MPDI).Sun et al. [26] introduced the regression tree (RT) methods to stratify the
regression models for LST retrieval, because the RT [53] method offers a robust tool for handling
nonlinear relationships within complex data sets. The RT was adopted to develop an operational LST
algorithm that uses a set of independent parameters (in this case, at-sensor brightness temperatures;
satellite and solar zenith angles; and, surface emissivity) to recursively split a dependent variable (in
this case, LST) into different subsets that minimize the errors [26].

An alternative approach to nonlinear regression is to sub-divide the space into smaller regions to
which simple models can be fitted, unlike traditional linear regression, which is a global model where
there is a single predictive formula holding over the entire data-space unless the manual separation of
different sub-divisions is performed. Regression trees use the tree to represent the recursive partition.
Each of the terminal nodes or leaves of the tree represents a cell of the partition to which a simple
model is attached; the simple model only applies to that cell.

As a data mining tool, the Regression Tree (RT) can provide a flexible and robust analytical method
for identifying the relationships between complex environmental data [35]. The regression tree presents
a clear, logical model that can be easily understood. The RT program constructs an unconventional
type of tree structure, with the tree leaves containing linear regression models. The RT techniques can
help us to automatically identify threshold values and rules. It is possible to discern the conditions
that lead to a relationship within computer-determined subsets of the data by applying rule induction
techniques. RT techniques, such as the M5P, are a powerful tool for generating rule-based models that
balance the need for accurate prediction [54].

The implementation of the regression tree algorithm is performed, as follows. Two samples of
matched satellite pixel-truth are taken from the data sets. One sample is used for training the regression
tree, and the other sample is used for testing. In this way, the over fitting problem should be avoided.
The regression tree output yields an LST regression model that is based on training pixels present in
each node. The predicted LST values can be determined by applying these linear models for each node.

2.4. Gap Filling and Downscaling Method

In this study, we do not fill the missing values based on previous days since LST is a fast changing
variable. Instead, we assume that each gap pixel horizontally relies on its neighbours, vertically and
diagonally. Thus, the value of the gap pixel can be interpolated by its neighbours, from up and down,
from left and right. Some TIR LSTs can be available inside the MW passing gaps, and they can partially
fill the gaps, and also help to reduce the errors of the interpolation.

However, such a regular gap-filling method cannot catch the observations when there is a big gap,
as shown in Figure 2d. Accordingly, we propose a gap-filling method based on the Geographically
Weighted Regression (GWR). In addition to the gap filling function, the coarse spatial resolution of
the microwave observation, such as 25 km for the AMSR-E and 10 km for the AMSR-2, can also be
downscaled to the same spatial resolution of the thermal LST products, like 5km for MODIS LST
and 4 km for GOES LST. The traditional GWR algorithm has been used to interpolate the regression
coefficients and the residual term [55].This process requires two auxiliary data: NDVI and elevation.
The daily NDVI data is derived from the MODIS/Aqua surface reflectance product at 0.05◦ grid (short
name: MYD09CMG) [30]. The elevation data is obtained from the National Elevation Dataset (NED)
data [48], at a resolution of 100 m, and resampled to 5 km via bi-cubic interpolation, as well as 25 km.
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The specific procedures are as follows:

(1) Aggregate NDVI and NED to microwave resolution (25 km for AMSR-E and 10 km for AMSR-2).
Here, we take the AMSR-E and MODIS as an example, NDVI5km and NED5km denote the
auxiliary variables at the MODIS pixel resolution, whereas NDVI25km and NED25km represent the
aggregated auxiliary variables at the AMSR-E pixel resolution.

(2) Establish the non-stationary relationship between the AMSR-E 25 km LST with the same spatial
resolution auxiliary data:

LST25km = a0
25km(x,y) + a1

25KM(x,y) NDVI25km + a2
25km(x,y) DEM25km + ε25km (8)

Equation (8) shows the non-stationary relationship that is to be built at coarse microwave resolution
between the microwave LST (MLST) (here is for AMSR-E) and the aggregated thermal LST (here is for
MODIS) with the auxiliary data.

(3) Estimate the regression coefficients a0(x,y), a1(x,y), a2(x,y), and the error term ε via Gaussian
distance weighting at the coarse microwave resolution.

(4) Apply the regular gap-filling algorithm to both MODIS LST and AMSR-E LST, so that the first
gap-free observations can be obtained.

(5) The bi-cubic interpolation is used to interpolate the regression coefficients and the residual at
coarse microwave resolution to MODIS 5km resolution a0

5km (x,y), a1
5km(x,y), a2

5km(x,y), and
error term ε5km.

(6) The final downscaled LST at 5 km resolution can be calculated while using the auxiliary variables
(NDVI and NED) at 5 km resolution in conjunction with the regression coefficients and the
residual term at 5 km m resolution:

LST5km = a0
5km(x,y) + a1

5km(x,y) NDVI5km + a2
5km(x,y) DEM5km + ε5km (9)

Equation (9) shows how microwave LST can be downscaled to the same resolution of thermal
LST (e.g., 5 km for MODIS in this study) that were based on the GWR.

Figure 1 demonstrates an example for the gap filling and downscaling method. Figure 1a shows
the original MODIS LST, Figure 1b is the merged LST that are based on MODIS and AMSR-E. We
selected a zoom region to demonstrate the effects of the gap filling and downscaling method, as shown
in Figure 1a,b; Figure 1e shows the result using the regular gap-filling algorithms, and the error is quite
large within the big gaps. Figure 2f is the result after applying the GWR-based gap-filling algorithm.

The GWR-based interpolation (Figure 1f) outperforms the regular gap filling method (Figure 1e).
In addition to gap filling, the GWR based method can simultaneously downscale the merged LST at
coarse spatial resolution (25 km here) to the same spatial resolution of the thermal LST product (5 km
here). This process is time consuming. The more MODIS observations can be available inside the MW
gaps; the more accurate LST can be obtained.
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3. Results

3.1. Results from the Calibrations

3.1.1. Results from the AMSR-E to MODIS Calibration

The MODIS LST data were aggregated to 25 km, the same resolution as the AMSR-E. Only
high quality LST data with standard deviation less than 1 K are used for training the coefficients in
Equations (1)–(6).

The above algorithms were then applied to the real AMSR-E observations. The LST retrieved
from the AMSR-E are compared with the MODIS LST product. Correlation coefficients with 0.05
significance level, the mean absolute errors (MAE), and Root Mean Square (RMS) error in relative to
MODIS LST products are used to evaluate the retrieval results of the models.

Implementation of the Single-Channel Algorithm

Tables 2 and 3 list the implementation results for the single-channel algorithm. From Table 2,
regarding the daytime results with the AMSR-E ascending data, we can see the average mean absolute
errors (MAE) are about 4.5 K with the single frequency (band). The MAEs during nighttime are about 4
K and show a little bit better than those during the day time. This may be because the influence of the
soil water and atmosphere during night time is less than that during the daytime. The results using
only one frequency (band) indicate a root mean square error of about 6 K and average absolute error of
about 4.5 K, which may be too big to meet our application requirements.

Table 2. LST derived from AMSR-E Ascending data with the single-channel algorithm in relative to
MODIS LST in daytime.

Seasons Correlation Coefficient MAE (K) RMS (K) Sample Number

Spring 0.89 4.73 5.99 215,184
Summer 0.70 4.56 6.44 348,823

Fall 0.67 4.45 6.54 341,448
Winter 0.83 4.22 5.42 168,043

Table 3. LST derived from AMSR-E Descending data with the single-channel algorithm in relative to
MODIS LST in nighttime.

Seasons Correlation Coefficient MAE (K) RMS (K) Sample Number

Spring 0.82 5.03 6.28 139,793
Summer 0.75 3.56 5.34 255,269

Fall 0.61 3.89 5.23 253,139
Winter 0.74 4.51 6.01 105,963

Implementation of the Four-Channel Algorithm

The four-channel algorithm that Mao et al. proposed [20,21] is also implemented to the real
AMSR-E data and compared with the MODIS LST product. As shown in Tables 4 and 5, the results
are similar to those from Mao et al. [20,21]. The mean absolute error (MAE) is about 2–3 K and the
RMS error is about 3–4 K during daytime and the MAE is about 2 K, and RMS error is about 2.5 K
during night time in relative to the MODIS LST product. These results are very similar to those from
Mao et al. [20,21].
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Table 4. LST derived from the AMSR-E ascending data with the four-channel algorithm. [20] vs.
MODIS LST product.

Seasons Correlation Coefficient MAE (K) RMS (K) Sample Number

Spring 0.90 3.21 4.12 215,184
Summer 0.88 3.35 4.32 348,823

Fall 0.90 2.89 3.87 341,448
Winter 0.93 2.43 3.02 168,043

Table 5. LST derived from the AMSR-E descending data with the four-channel algorithm [36] vs.
MODIS LST product.

Seasons Correlation Coefficient MAE (K) RMS Error (K) Sample Number

Spring 0.89 2.21 3.27 139,793
Summer 0.92 2.03 2.40 255,269

Fall 0.93 1.85 2.34 253,139
Winter 0.87 2.43 3.27 105,963

Implementation of the Proposed Five-channel Algorithm

As shown in Tables 6 and 7, the five-channel algorithm, as represented by Equation (5) by using the
6.9, 18.7, 23.5, 36.5, and 89 GHz in both vertical and horizontal polarizations, show some improvements
to four-channel algorithm (Tables 4 and 5), especially during autumn season during daytime, but no
improvements during night time.

Table 6. LST derived from the AMSR-E ascending data with the proposed new five-channel algorithm,
compared with the MODIS LST product during daytime.

Seasons Methods Correlation Coefficient MAE (K) RMS (K) Sample Number

Spring L 0.92 2.95 3.95 215,184
RT 0.99 0.16 0.83

Summer
L 0.90 3.32 4.38 348,823

RT 0.99 0.70 0.84

Fall
L 0.91 2.92 3.98 341,448

RT 0.99 0.70 0.78

Winter
L 0.95 2.25 2.99 168,043

RT 0.99 0.63 0.46

Table 7. LST derived from the AMSR-E descending data with the proposed new five-channel algorithm,
as compared with the MODIS LST product during nighttime.

Seasons Methods Correlation Coefficient MAE (K) RMS (K) Sample Number

Spring L 0.89 2.25 3.02 139,793
RT 0.99 0.33 0.43

Summer
L 0.91 1.88 2.55 255,269

RT 0.99 0.41 0.52

Fall
L 0.94 1.83 2.44 253,139

RT 0.99 0.46 0.57

Winter
L 0.88 2.52 3.35 105,963

RT 0.99 0.39 0.64
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If we use regression tree (RT) method, the algorithm can be significantly improved. The mean
errors or accuracies can be reduced from about 2–3 K with linear regression (L) to less than 1 K with
the RT and RMS errors can be reduced from 3–4 K with linear regression (L) to less than 1 K with the
RT and the correlations with 0.05 significance level can be increased to 0.99 from about 0.90 with linear
regression (L).

Results from the AMSR-2 to GOES Calibration

The five-channel algorithm is also applied to real AMSR-2 data and compared with the GOES
LST products [10]. During daytime (Table 8), the mean absolute errors are about 2–3 K with the linear
regression (L) method, 1–1.5 K with the regression tree (RT) method, and the RMS errors are about
3–4 K from the linear regression and about 1.5 K from the RT method, and the correlation coefficients
with 0.05 significance level are about 0.9–0.95 from linear regression and about 0.99 from the RT method.
During nighttime (Table 9), the mean accuracies are about 2.5 K and RMS errors are about 3 K from the
linear regression, and the MBEs are reduced to about 1 K, and RMS errors are reduced to about 1–1.5 K
from the RT method.

Table 8. LST derived from the AMSR-2 Ascending data with five-channel algorithm, as compared with
the GOES LST at 1.5 h before noon.

Seasons Methods Correlation
Coefficient

Mean Absolute
Error (K)

Root Mean
Squared Error (K)

Total Number
of Instances

Spring L 0.93 2.96 3.83 382,965
RT 0.985 1.18 1.64

Summer
L 0.91 3.22 4.14 757,026

RT 0.981 1.21 1.70

Fall
L 0.92 2.88 3.70 897,344

RT 0.990 1.048 1.44

Winter
L 0.92 2.54 3.29 203,571

RT 0.990 0.912 1.27

Table 9. LST derived from the AMSR-2 descending data with five-channel algorithm, as compared
with the GOES LST at 1.5 h after sunrise.

Seasons Methods Correlation
Coefficient

Mean Absolute
Error (K)

Root Mean
Squared Error (K)

Total Number
of Instances

Spring L 0.84 2.63 3.38 159,725
RT 0.982 0.881 1.25

Summer
L 0.84 2.33 3.07 550,810

RT 0.977 0.815 1.17

Fall
L 0.87 2.18 2.87 613,528

RT 0.986 0.841 1.16

Winter
L 0.82 2.83 3.86 195,493

RT 0.982 0.902 1.29

The rules and regression models obtained from the RT machine learning or training for the
proposed new five-channel algorithm with the auxiliary data are applied to the real AMSR-E and
AMSR-2 observations since the RT method shows significant improvement over the traditional linear
regression method.
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3.2. Results from the Validation against Ground Observations

Examples for the evaluation results against the SURFRAD ground observations are also presented
in Figure 2 for MODIS and AMSR-E for the year of 2008 and Figure 3 for GOES and AMSR-2 for the
year of 2015. For the MODIS LST product, the mean bias is −2.48 K during daytime and −0.62 K
during nighttime, the RMS errors are 2.88 K during daytime and 2.75 K during nighttime, and the
correlation coefficient (R) with 0.05 significance level is 0.97 during daytime (ascending pass) and 0.96
during nighttime (descending pass).For LST that were derived from the AMSR-E data, the bias is 0.77 K
during daytime and −2.45 K during nighttime; the RMS error is 2.80 K during daytime and 3.84 K
during nighttime, and the correlation is about 0.97 for the ascending and 0.93 for the descending data.
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For the GOES LST product, the bias is −2.10 K, the RMS is 3.43 K, and correlation is 0.96 for the
time at 1.5 h before the noon, and the bias is −0.94 K, the RMS is 3.93 K, and the correlation is 0.93 for
the time at 1.5 h after the sunrise. For LSTs that were derived from the AMSR-2 observations, the bias
is 0.44 K, the RMS error is 4.16 K, and correlation is 0.95 for the ascending data; the bias is −0.04 K,
the RMS error is 4.34 K, and the correlation is 0.93 for the descending data. We can see, in general,
LST from thermal IR measurements, such as MODIS and GOES, have higher correlations and they are
still better than those from microwave sensors, such as AMSR-E and AMSR-2. Therefore, for clear sky
conditions, we still use thermal IR data, only under cloudy conditions, we use microwave data.
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3.3. Results from the Implementation to the Real Observations

Figures 2 and 3 shows the validations of LSTs that are derived from the real microwave observations
against the ground observations and compared with the MODIS and GOES LST products. Here, we
show some examples for the spatial distributions of the implementations to the real observations.

Figures 4 and 5 demonstrate examples of MODIS LST product (a), LST derived from the AMSR-E
observation (b), the merged AMSR-E LST and MODIS LST, in which the LSTs are obtained from MODIS
product under clear conditions, while under cloudy conditions, LST are derived from the AMSR-E
measurements (c); MODIS LSTs can help to fill some pass gaps in the AMSR-E observations, there are
still some gaps left, so we applied the GWR-based gap filling method to fill the gaps, as shown in (d).
We can see there may be a lot of areas without data in the MODIS LST products on daily basis, while
microwave, like the AMSR-E, can fill the gaps due to clouds, and give a more complete picture.
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Figure 4. (a) Cloud free MODIS LST at 5 km resolution, (b) the derived AMSR-E LST at 25 km resolution,
(c) the merged MODIS and AMSR-E LST at 25 km resolution, and (d) the integrated LST from MODIS
and AMSR-E with the GWR-based method applied to fill the gaps and also downscale to the same
5 km resolution as the MODIS LST, during daytime on 5 December 2008.

Figures 6 and 7 demonstrate the GOES LST product at the original 4 km resolution (a), the
AMSR-2 LST at 10 km resolution derived from the proposed new five channel algorithm with the RT
implementation (b), the merged GOES and AMSR-2 LST at 10 km resolution, where there is some
cloud contamination in GOES LST; the integrated GOES and AMSR-2 LST with the GWR based
algorithm being applied to fill the gaps and also downscale to the same 4 km resolution as the GOES
LST product (d).
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AMSR-E with the GWR-based method applied to fill the gaps and also downscale to the same 5 km
resolution as the MODIS LST, during nighttime on 2 June 2008.
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Figure 6. (a) Cloud free GOES LST with 4 km resolution at 1.5 h before noon, (b) the AMSR-2 ascending
LST at 10 km resolution, (c) the merged GOES and AMSR-2 LST at 10 km resolution, and (d) the
integrated GOES and AMSR-2 LST with the GWR-based method applied to fill the gaps and also
downscale to the same 4 km resolution as the GOES LST, on 19 July 2013.
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As demonstrated in Figures 4–6 and 7a, there are a lot of gaps or missing values due to clouds in
the daily MODIS or GOES LST. Only a multi-day composite can get a clear LST map, so the current ESI
are updated weekly. Microwave observations can be used to fill the gaps due to clouds in the thermal
IR LST, since microwave sensor can penetrate clouds and observe the Earth surface. The microwave
observations are firstly calibrated to thermal IR (MODIS and GOES, here) LST, merged with the IR
observations to fill the gaps due to clouds in the IR LST, and then downscaled to the same spatial
resolution as the IR LST. With the integrated IR and MW LSTs, spatial continuously distributed LST
can be obtained on a daily basis, as shown in Figures 4–6 and 7d.

With the daily integrated IR and MW LST, a drought index, like the ESI, can be updated on daily
basis without gaps due to clouds. Figure 8 demonstrates an example. When compared with the current
ESI, which is updated weekly, and the USDM map, which provides weekly drought monitoring, in
general, the daily drought maps agree with the USDM drought classifications, and meanwhile can
catch the flash changes of drought conditions.
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Figure 7. (a) Cloud free GOES LST with 4 km resolution at 1.5 h after sunrise, (b) the AMSR-2
descending LST at 10 km resolution, (c) the merged GOES and AMSR-2 LST at 10 km resolution, and
(d) the integrated LST from GOES and AMSR-2 with the GWR-based method applied to fill the gaps
and also downscale to the same 4 km resolution as the GOES LST, on 27 September 2013.
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4. Discussion

Optical instruments, like MODIS and GOES, can provide high quality LST products under
clear sky conditions [18–26], however more than 60% of the areas in the MODIS LST products are
contaminated by weather effects, especially cloud cover [41].Passive microwave (e.g., AMSR-E and
AMSR-2) can penetrate non-rainy clouds, but usually with more coarse spatial resolution than optical
sensors. How to utilize multiple instruments’ advantages is an important approach in remote sensing.

Currently, the ESI, as well as the widely used USDM drought map, provides weekly drought
monitoring. While, recently, “flash” drought events frequently occurred in the central and eastern
United States, and suggest that the current weekly drought monitoring should enhance its temporal
resolution, thus daily LST is desired. In this study, a new five-channel algorithm is proposed to derive
LST from the microwave AMSR-E and AMSR-2 observations by calibrating to the thermal MODIS
and GOES LST products. A GWR-based method is further applied to fill the remaining gaps and to
downscale to the same spatial resolution as the thermal LST products. Nevertheless, the results will
mostly come from the interpolation if there are not enough valid thermal and/or MW observations
in the merged LST data, thus the accuracy shall be limited. For this kind of situation, a new super
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resolution technique is adopted for further improvement, and the details will be described in another
paper [56]. With this new technology, further improvements can help to fill the methodological and
data gaps. Nevertheless, the downscaling processes may be time consuming.

With the method proposed here, drought indices using LST as an input can be updated daily
without gaps. In general, the daily drought map agrees with the current ESI and the USDM drought
classifications, and meanwhile it can catch the fast changes of drought conditions and thus capture
the early signals of flash drought. The drought index that was derived with the integrated LST shall
be comprehensively compared with other methods, like the vegetation temperature condition index
(VTCI) [15,16], and the current ESI [3], etc. However, it is out of the scope of this study. The main
goal of this study is to develop new methods for daily LST derivation under all sky conditions by
integrating MW and thermal LST data. It is expected that daily LSTs that were obtained in this way
with continuous spatial distribution can help soil moisture, surface sensible and latent heat fluxes, ET,
and drought index, like the ESI, estimation on daily basis under nearly all sky conditions and benefit
future drought monitoring, and improve the urban heat island and environmental modeling studies.
The spatial continuous daily LST can also help in the calibration and evaluation where there is no
ground truth data to calibrate and compare.

More validations or evaluations to the integrated IR and MW LST will be conducted, and extensive
tests regarding its implementation to the ALEXI model shall be performed. The integrated LST shall
be implemented for future operational use if the results are promising and robust.

5. Summary

As clouds obscure thermal infrared LST observations, the microwave sensor can penetrate most
non-rainy clouds and observe the Earth surface. How to utilize the advantages of multi-sensor
observations to overcome each other’s shortcoming is still challenging in remote sensing. In this
study, a new five-channel algorithm is proposed to derive LST from the microwave AMSR-E and
AMSR-2 observations by calibrating to the thermal MODIS and GOES LST products. The proposed
new five-channel algorithm is compared with the previously published single channel algorithm
and four-channel algorithm, and it shows some improvements. Moreover, a supervised machine
learning technique, the regression tree (RT), was introduced to determine the stratification of the
regression coefficients under different conditions. The accuracies from the training with the RT were
compared with those using the traditional regression method. It was found that the RT method further
outperforms the traditional linear regression method.

The results indicate that, in general, LST from the thermal IR measurements, such as the MODIS
and GOES, have better performance than those from microwave sensors, such as the AMSR-E and
AMSR-2. Therefore, thermal IR data are still used for clear sky conditions, and microwave data are
only utilized to fill the gaps due to clouds in the thermal data. The thermal LST products can help to
fill some pass gaps of the microwave sensors in the merged LST data, but some gaps are still left. A
GWR-based method is further applied to fill the remaining gaps and to also downscale to the same
spatial resolution as the thermal LST products. In this way, with the newly proposed methodology,
daily clear LST can be obtained at the same spatial resolution as the thermal LST products.

Currently, the ESI is updated weekly because thermal infrared LST products are affected by clouds,
and only multi-day composite can get a clear LST map. Recently, the frequent “flash” drought events
that occurred in the central and eastern U.S. suggest that the current weekly drought monitoring should
enhance its temporal resolution, thus daily LST data is desired. In this study, microwave observations
are utilized to fill the gaps due to clouds in the thermal IR LST to generate daily LST map without gaps.
Microwave observations are firstly calibrated to thermal IR (MODIS and GOES here) LST with the new
developed five-channel algorithm, and then merged with the IR observations. The GWR method is
applied to further downscale the merged LST to the same spatial resolution as the IR LST. With the
integrated IR and MW LST obtained in this way, a drought index, like the ESI, can be updated daily
and make flash drought monitoring become possible.
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