
remote sensing

Article

Comparing Deep Neural Networks, Ensemble
Classifiers, and Support Vector Machine Algorithms
for Object-Based Urban Land Use/Land
Cover Classification

Shahab Eddin Jozdani 1 , Brian Alan Johnson 2 and Dongmei Chen 1,*
1 Department of Geography and Planning, Queen’s University, Kingston, ON K7L 3N6, Canada
2 Natural Resources and Ecosystem Services Area, Institute for Global Environmental Strategies,

2108-1 Kamiyamaguchi, Hayama, Kanagawa 240-0115, Japan
* Correspondence: chendm@queensu.ca; Tel.: +1-613-533-6045

Received: 10 June 2019; Accepted: 16 July 2019; Published: 19 July 2019
����������
�������

Abstract: With the advent of high-spatial resolution (HSR) satellite imagery, urban land use/land
cover (LULC) mapping has become one of the most popular applications in remote sensing. Due to
the importance of context information (e.g., size/shape/texture) for classifying urban LULC features,
Geographic Object-Based Image Analysis (GEOBIA) techniques are commonly employed for mapping
urban areas. Regardless of adopting a pixel- or object-based framework, the selection of a suitable
classifier is of critical importance for urban mapping. The popularity of deep learning (DL) (or deep
neural networks (DNNs)) for image classification has recently skyrocketed, but it is still arguable
if, or to what extent, DL methods can outperform other state-of-the art ensemble and/or Support
Vector Machines (SVM) algorithms in the context of urban LULC classification using GEOBIA.
In this study, we carried out an experimental comparison among different architectures of DNNs
(i.e., regular deep multilayer perceptron (MLP), regular autoencoder (RAE), sparse, autoencoder
(SAE), variational autoencoder (AE), convolutional neural networks (CNN)), common ensemble
algorithms (Random Forests (RF), Bagging Trees (BT), Gradient Boosting Trees (GB), and Extreme
Gradient Boosting (XGB)), and SVM to investigate their potential for urban mapping using a GEOBIA
approach. We tested the classifiers on two RS images (with spatial resolutions of 30 cm and 50 cm).
Based on our experiments, we drew three main conclusions: First, we found that the MLP model
was the most accurate classifier. Second, unsupervised pretraining with the use of autoencoders led
to no improvement in the classification result. In addition, the small difference in the classification
accuracies of MLP from those of other models like SVM, GB, and XGB classifiers demonstrated that
other state-of-the-art machine learning classifiers are still versatile enough to handle mapping of
complex landscapes. Finally, the experiments showed that the integration of CNN and GEOBIA
could not lead to more accurate results than the other classifiers applied.

Keywords: remote sensing; high-spatial resolution imagery; deep learning; GEOBIA; land
use/cover classification

1. Introduction

1.1. High Spatial Resolution Urban Mapping

Since the launch of IKONOS—the first commercial high-spatial resolution (HSR) spaceborne
sensor—in 1999, much research has focused on developing new methods for analyzing HSR images
(spatial resolution < 4 m). Undoubtedly, one of the most common applications of HSR remote sensing

Remote Sens. 2019, 11, 1713; doi:10.3390/rs11141713 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3260-3952
https://orcid.org/0000-0003-1911-3585
https://orcid.org/0000-0001-5419-8735
http://www.mdpi.com/2072-4292/11/14/1713?type=check_update&version=1
http://dx.doi.org/10.3390/rs11141713
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 1713 2 of 24

(RS) data is urban land use/land cover (LULC) mapping. Due to rapid changes in urban areas,
maps must frequently be updated to support urban management and planning. Apart from the fine
resolution of HSR imagery, its ability to provide ongoing and ad hoc monitoring is also beneficial for
urban (change) mapping.

A major challenge in using HSR imagery for urban LULC mapping, however, is the high degree
of complexity of urban features, e.g., in terms of their spectral, spatial, and textural properties [1].
For instance, different types of urban LULC features may have very similar spectral properties (e.g.,
buildings and road). Moreover, some urban LULC features like buildings have spectral and spatial
properties that may vary widely even within a single urban area. Owing to these reasons, applying
traditional pixel-wise approaches to classify urban LULC often leads to unsatisfactory results [2,3]. In
fact, since a single pixel in an HSR image represents just a small part of an LULC object (e.g., building
rooftop or tree crown), pixel-wise classification cannot properly model the variability of different
LULC types. To put it differently, the lack of extra information (i.e., spectral, spatial, and textural)
hinders pixel-wise classification schemes from correctly assigning individual pixels to their real-world
land classes.

To overcome this problem, Geographic Object-Based Image Analysis (GEOBIA) was developed [4].
GEOBIA deals with the shortcomings of pixel-based approaches by including an additional step in the
classification phase, known as image segmentation. The objective of image segmentation is to group
pixels into semantically similar nonoverlapping regions from which additional spectral, spatial, and
textural features can be extracted and used for classification. In contrast to pixel-based techniques,
image segments (or image objects) are the smallest addressable element in the GEOBIA framework.
These image segments are typically desired to accurately represent real-world, meaningful entities
(although this can be difficult to achieve in practice). As shown in many previous studies, GEOBIA
often leads to more accurate classification results than pixel-based approaches, particularly for HSR
images [1,3,5,6].

1.2. Machine learning Classifiers for Object-Based Classification

Aside from the base units for classification (pixels or image segments), the selection of a suitable
classifier is also of critical importance for urban LULC mapping. The success of machine learning (ML)
algorithms in classification of highly complex data has substantially increased their applications for RS
analysis, and indeed they have been found to significantly outperform parametric methods in many
past RS studies [6,7].

A wide variety of ML classification techniques exist, with ensemble decision tree classifiers
(e.g., Random Forest (RF), Bagging Trees (BT), Boosted Trees, etc.) [8,9] and Support Vector Machine
(SVM) [10] being among the most commonly utilized for GEOBIA-based urban LULC classification [11].
More recently, algorithms employing deep learning (DL) (i.e., Deep Neural Networks (DNNs)) [12]
have also become very popular for LULC classification [13]. Recently, several powerful architectures
of DL models have been developed for the classification of RS images [14–16]. It is, however, still
arguable how well these DL algorithms perform against ensemble algorithms and SVM for the purpose
of urban LULC classification. This is particularly true in the case of LULC classification using a
GEOBIA approach, as it can be difficult to combine GEOBIA with some popular DL algorithms, e.g.,
convolutional neural networks (CNNs) [17,18].

Recently, a few studies have explicitly targeted the comparison of DL and other common ML
algorithms. In Liu, et al. [19], the aim was to show whether DL could outperform SVM for the
classification of hyperspectral data. In this regard, a deep sparse autoencoder (SAE) [20]—one of the
variants of DL algorithms—was applied against SVM. The authors concluded that SVM generally
performed better than SAE in their experiments. Moreover, as they outlined, the best accuracies
generated by SAE were close to those of SVM. In their study, however, the authors attributed the
unexpected performance of SAE in comparison with SVM to the insufficient number of labeled samples
in the hyperspectral data sets under consideration. İn a similar study, Zhang, et al. [21] implemented

Remote Sens. 2019, 11, 1713 3 of 24

an object-based framework to compare DL (i.e., SAE and stacked denoising autoencoders (DAE) [22])
and common ML classifiers (i.e., SVM, K-nearest neighbors, and Bayes) for fine-scale urban mapping.
They trained these algorithms on a 181-dimensioanl feature space (i.e., spectral features (including
“brightness”, “mean”, “standard deviation”, “max/min pixel values”, etc.), spatial features (including
“area”, “asymmetry”, “border index/length”, “compactness”, “elliptic fit”, etc.), and textural features
(including “GLCM” and “GLDV”) to assess the capability of each algorithm in urban mapping using
a high-dimensional data set. In contrast to the study conducted by Liu, et al. [19], Zhang, et al. [21]
concluded that the DNNs achieved higher accuracies than SVM (by 6%) for urban mapping. They
reported that their proposed DL framework was superior to the other classifiers evaluated. Fu, et
al. [17] compared CNN with RF and SVM for the classification of urban LULC types using a GEOBIA
approach, and found that CNN led to 5–10% increases in overall classification accuracy. However,
because CNN classification features were extracted for fixed-sized square image blocks rather than
segment boundaries (due to the limitations of CNNs in this regard), classification results tended to
be erroneous if segments had curved or elongated shapes. A similar approach was applied by Liu
and Abd-Elrahman [23]. The important difference in their approach was the use of multiview images
taken by UAVs. In that method, after extracting the object from each image acquired from a specific
angle, the image patch was incorporated into a CNN. The main advantage of this approach was that it
accounts for spectral difference of the image objects, so that less training data are needed. However,
this demands for multiview images and could be computationally intensive.

1.3. Objective

In spite of the novelty of the above-mentioned studies in comparing DL and other state-of-the-art
ML classifiers for urban LULC mapping, to our knowledge, no comprehensive comparison with
other commonly used ensemble learners (aside from RF) for fine-scale urban LULC mapping has
been performed to better judge the potential of different DL architectures in urban mapping in a
GEOBIA-based setup. There are several aspects that distinguish this study from other recent studies
on comparing ML algorithms. First, we aimed to compare different types of ML algorithms that are
reported to be mature in several studies [19,24–27]. Some of these algorithms, however, have not
been comprehensively compared with each other. For example, although it is argued that RF is the
most popular ensemble model for the classification of RS images [24], it has not been thoroughly
experimentally compared with other (state-of-the-art) tree ensemble approaches in the context of
LULC classification using the GEOBIA approach. Second, along with not applying other variants of
autoencoders, the efficacy of applying a deep regular multilayer perceptron (MLP) model without
performing any pretraining procedure or specific regularization has not been investigated. Moreover,
in previous studies, the potential of an object-based CNN model against other object-based DL models
was not evaluated to judge if the integration of CNN and GEOBIA can perform better than the
other types of GEOBIA-based DNNs. Finally, we used a multiscale GEOBIA classification in our
comparisons (except for the CNN). Notwithstanding that in several previous studies the importance of
multiscale mapping has been shown [3,6,28], almost all the similar studies chose to use a single-scale
comparison [19,25,27,29].

Taking into account these limitations, this study focused on the comparison of two popular
variants of stacked autoencoders (i.e., SAE and variational autoencoders (VAE)), MLP, and CNN for
GEOBIA LULC classification. In addition, the DNNs applied were compared with some of the most
powerful ensemble tree classifiers (i.e., RF, BT, GB [30], and XGB [31]) as well as SVM to provide a
comprehensive comparison.

Remote Sens. 2019, 11, 1713 4 of 24

2. Overview of Selected ML Classifiers

2.1. Ensemble Classifiers

A basic principle behind ensemble learning is that, by combining a series of classifiers that
perform slightly better than random guessing (known as weak learners), a single strong classifier
can be constructed. A decision tree (DT) classifier [32] is the epitome of a weak learner, and is
often incorporated into ensembles to establish a strong classifier. One popular type of ensemble tree
models is referred to as Bootstrap Aggregation, or Bagging Trees (BT) [33]. As with its other ensemble
counterparts, the BT model aims to address the problem of overfitting of DTs. The BT model involves
randomly selecting a subset of the training data (with replacement) to train each individual decision
tree model in the ensemble. The final classification result is obtained through majority voting of the
output (i.e., LULC class) of the individual DTs in the ensemble.

The RF classifier is similar to BT in that each DT in the ensemble is grown using a random subset
of the training data, but RF also randomly selects a subset of the classification variables for classifying
each DT [24]. The generated DTs thus have higher variance and lower bias. To train an RF model, two
hyperparameters need to be set: the number of randomly selected features (Mtry) used for splitting
each node and the number of trees (Ntree). Based on the experiments of Breiman [9], reasonable
accuracy was obtained on different data sets when Mtry was set to log2(M) + 1 where M is the number
of variables. In addition, Lawrence, et al. [34] reported that an Ntree of 500 or more produced unbiased
estimates of error.

Boosting algorithms are greedy techniques that are also popular in the context of RS [26]. Unlike
BT and RF, boosting models do not grow DTs in parallel. They instead sequentially train individual
DTs, each of which is an improved version of the previous one that resulted in smaller error rate. The
most commonly used type of boosting algorithms is perhaps Adaptive Boosting (AdaBoost) [35]. The
foundation of boosting was later improved by introducing a more generalized solution called gradient
boosting (GB) [36]. GB works based on minimizing a loss function through fitting an additive basis
function model sequentially to the gradient residual of the loss function. Another improved version
of the regular gradient tree boosting model recently proposed is XGB [31]. This type of ensemble
tree models has been recently reported to be a powerful ML algorithm for mapping purposes in
RS [37,38]. This algorithm is in fact a specific implementation of the concept of the regular GB. In
XGB, a regularization term (added to the loss function) is used to constrain the model, thereby helping
control the complexity of the model, better avoiding overfitting. To train an XGB model, three main
parameters should be set: Ntree, learning rate (eta), and the depth of each individual tree (depth).
Tuning these three free parameters helps improve the performance of the model in terms of both speed
and accuracy.

2.2. Support Vector Machines (SVM)

SVM is one of the most commonly used classifiers in the ML community that categorizes data
using an optimally separating hyperplane [10]. One key advantage of SVM for RS applications is its
ability to handle high dimensionality data using relatively few training samples [39]. However, in
cases where the number of features is much greater than the number of training samples, which is
the so-called curse of dimensionality, this classifier fails to generate acceptable results. In general, a
radial basis function (rbf) is used as the kernel for this classifier because it provides a trade-off between
time-efficiency and accuracy [40]. This classifier has two free parameters that need to be tuned, namely
C (penalty parameter of the error term) and ε (the margin of tolerance). These two parameters are
typically selected by cross-validation of the training samples and grid-search.

2.3. Deep Learning Architectures

The structure of an MLP, which is of the family of feedforward networks, can be schematically
seen in Appendix A (Figure A1). An MLP is composed of four main components: Input layer, neurons

Remote Sens. 2019, 11, 1713 5 of 24

(nodes), hidden layers, and output layer. To put it simply, an MLP can be defined as a series of layers
of neurons successively connected to each other by weights, which are iteratively adjusted through
an optimization process. The training procedure in feedforward neural networks is based on the
back-propagation algorithm. This algorithm propagates error from the output layer to the input layer.
Through this process, which usually employs stochastic gradient descent approach for optimizing the
loss function, the weights in each layer of the network are updated iteratively until network’s error
rate reaches a desired minimum state.

In the earlier forms of feedforward networks, adding more than one layer to the network did
not have any effect on the accuracy. In fact, the gradient update was not able to back-propagate the
error to the first layers, and thus no parameter update was applied to them; this phenomenon, known
as vanishing gradients, was one of the main barriers to applying DNNs. In one of the revolutionary
findings by Glorot and Bengio [41] in the field of neural networks, this problem was overcome using a
new strategy for weight initialization. This provided new insights into taking advantage of DNNs
to model complex patterns in different applications including object detection/recognition, semantic
segmentation, hand-written recognition, speech recognition, etc.

Although the number of hidden layers and neurons can affect the performance of a network, there
is not any solid rule for determining optimal values for them. It is also obvious that fitting more complex
models (by designing more complex DNNs) to the input data increases the possibility of overfitting.
To address this problem, these two hyperparameters can be set by performing cross-validation or
based on a user’s a priori knowledge. In addition, to overcome overfitting, regularization techniques,
including dropout, are normally applied to increase the generalizability of the model.

Autoencoders are a variant of neural networks that are structurally similar to MLPs. The main
application of an autoencoder is to find the features that best represent input data reconstructed,
helping prevent overfitting, especially in cases where sufficient labeled data are not available [42].
Therefore, they could be very useful in RS applications because of the difficulty in collecting labeled
data. As seen in Figure A2, an autoencoder has two main parts that distinguish it from an MLP, namely
the coding layer and decoding layer. In the coding layer, the network learns to map the data to a
lower-dimensional feature space, similar to what Principal Component Analysis (PCA) does.

The decoding layer is responsible for reconstructing the coded, dimensionally reduced data. To
put it differently, this layer approximates the input data using the coded data. It is therefore evident
that the number of neurons in the input layer must be the same as the number of neurons in the
output layer. To reconstruct complex data more accurately, it is possible to stack multiple autoencoders
together, resulting in a deep autoencoder or stacked autoencoder. The coding layers of a stacked
autoencoder can also be fed into a supervised learning model for classification purposes.

Explicitly reducing the number of neurons that our output from the encoding layer is not the
only solution to reduce dimensionality and to extract useful structures from the input data in an
unsupervised setup. Penalizing the neurons of a stacked autoencoder is another way to compress
feature space, which permits the same or more neurons in successive layers as their input features. In
this regard, one solution is to add a sparsity term to the loss function to establish SAE (Figure A3).
To put it simply, by adding this sparsity term during training process, some neurons in the coding
layer are deactivated to preclude the model from memorizing the pattern/structure of training data.
Sparsifying the network at each training iteration helps the network learn more useful features to
reconstruct the input data even when a larger number of neurons in the hidden layers are used. The
sparsity term commonly used is Kullback–Leibler (KL) divergence, which is a function for comparing
the similarity between two distributions. This extra term added to the loss function has two free
parameters: sparsity parameter and sparsity weight. The sparsity parameter controls the average
activation of hidden neurons (i.e., neurons in the hidden layer(s)). The sparsity weight is a scale value
that determines the magnitude of the sparsity term imposed.

Another powerful type of autoencoders is variational autoencoder (VAE) [43]. Unlike regular
autoencoders and SAEs, a VAE is a probabilistic model; that is, a VAE maps the input data to a

Remote Sens. 2019, 11, 1713 6 of 24

probability distribution (in the coding space or latent space) rather than to a fixed encoded vector.
Instead of learning a function to map a single data point in the feature space into an encoded single
value, a VAE learns the parameters (i.e., mean and standard deviation) of a probability distribution
(in a latent space) from the input data. From this probability distribution, which is typically chosen
(but not limited) to be Gaussian, a single data point is randomly sampled through an additional layer
called sampling layer. Finally, the samples are fed into the decoding layer to apply the reconstruction
process. A VAE also takes advantage of the KL divergence for comparing the distribution learned
with a normal distribution (with a mean of 0 and standard deviation of 1). In other words, the KL
divergence controls if the learned distribution is not significantly different from a normal distribution
(For more detailed information on VAEs, the reader is recommended to refer to Doersch [44]). As
implied from the above descriptions, VAEs are inherently generative models. Indeed, the capability of
VAEs in transforming input data to a probability distribution and then sampling from it helps them be
able to generate new instances from the probability distribution constructed. This feature is useful in
cases where sufficient labeled data are not available for classification so that the analyst can use a VAE
to synthesize new instances to improve the accuracy and generalizability of modeling.

Another variant of feedforward multilayer models is CNN, which is perhaps currently the most
popular DL model for object detection/identification. CNNs are very simplistic analogies of the
mammalian visual cortex. Unlike MLP and autoencoders, inputs into CNNs are image patches, not
vectorized data, which is very useful for extracting/learning spatial and contextual features. In a CNN
architecture, a fixed-size image patch is mapped to a vector of probabilities calculated for each of
the classes considered [42]. Another difference between an MLP and a CNN is that CNNs are not
fully connected (except their last layer), which means that each neuron is not connected to all other
neurons in the next layer. In fact, this is the main advantage of CNNs that helps them generate learned
features through applying sequentially convolutional filters to fixed-size inputs. In the first layers,
convolutional filters extract low-level features (e.g., edges). The last layers, on the other hand, are
responsible for extracting and learning high-level information (e.g., land features). When stacked
together, these convolutional layers can be very beneficial to detect/recognize objects of interest. To
improve the efficiency of CNNs, some convolutional layers are followed by a pooling/subsampling
layer to reduce output size of the convolutional layers. One of the problems with CNNs is that they only
accept fixed-size image patches. In RS mapping, this can negatively affect classification results because
LULC boundaries for geometrically distorted and for small LULCs can be ignored by the convolutional
filters used in the CNN, which causes unwanted uncertainty in the classification process [29]. One of
the solutions to address this problem is to integrate GEOBIA with a CNN to account for the boundaries
of land features to be classified.

3. Methods and Materials

3.1. Study Area and Data

To compare the classifiers in this study, we selected two HSR images. The first image was an aerial
HSR image of an urban area in Calhoun, Illinois, USA (Figure 1). This image had a spatial resolution of
30 cm and a radiometric resolution of 8 bits with four spectral channels (i.e., Red, Green, Blue, and
NIR). This HSR image is freely accessible through EarthExplorer. The urban area covered in this image
consists of heterogeneous and diverse LULC features, making it suitable for our analyses.

Remote Sens. 2019, 11, 1713 7 of 24
Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 24

Figure 1. 30 cm aerial image covering an urban area in Calhoun, Illinois, USA.

The other image used was a WorldView-2 image acquired in 2010 covering the city of Kingston,
Ontario, Canada (Figure 2). For this study, we used the RGB and NIR-1 bands. We also pansharpened
the image to take advantage of the 50 cm spatial resolution provided by the panchromatic band. As
in the first image, various complex urban LULCs were present in this image. However, this image
had a more heterogeneous structure than the other image did, which was useful to challenge different
classifiers utilized.

Figure 2. 50 cm WorldView-2 image covering a subregion the city of Kingston, Ontario, Canada.

Figure 1. 30 cm aerial image covering an urban area in Calhoun, Illinois, USA.

The other image used was a WorldView-2 image acquired in 2010 covering the city of Kingston,
Ontario, Canada (Figure 2). For this study, we used the RGB and NIR-1 bands. We also pansharpened
the image to take advantage of the 50 cm spatial resolution provided by the panchromatic band. As
in the first image, various complex urban LULCs were present in this image. However, this image
had a more heterogeneous structure than the other image did, which was useful to challenge different
classifiers utilized.

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 24

Figure 1. 30 cm aerial image covering an urban area in Calhoun, Illinois, USA.

The other image used was a WorldView-2 image acquired in 2010 covering the city of Kingston,
Ontario, Canada (Figure 2). For this study, we used the RGB and NIR-1 bands. We also pansharpened
the image to take advantage of the 50 cm spatial resolution provided by the panchromatic band. As
in the first image, various complex urban LULCs were present in this image. However, this image
had a more heterogeneous structure than the other image did, which was useful to challenge different
classifiers utilized.

Figure 2. 50 cm WorldView-2 image covering a subregion the city of Kingston, Ontario, Canada. Figure 2. 50 cm WorldView-2 image covering a subregion the city of Kingston, Ontario, Canada.

Remote Sens. 2019, 11, 1713 8 of 24

3.2. Image Segmentation and Feature Extraction

In this study, we used the multiresolution segmentation (MRS) algorithm proposed by Baatz
and Schäpe [45], which is one of the most commonly used segmentation algorithms for RS image
analysis. The MRS algorithm has three free parameters: scale parameter (SP), color/shape weights,
and smoothness/compactness weights. The SP is the most important parameter because it implicitly
governs the average size of image segments, and setting it appropriately is critical for achieving
accurate segmentation and classification results [46–48]. This parameter is conventionally set through
a time-consuming and subjective trial-and-error process. To overcome this problem, automatic
approaches are widely used to generate optimal segmentation results. In several studies, it has
been emphasized that different LULCs have their own inherent scales [6,28,49]. It is therefore often
better to segment an image using multiple SPs rather than a universal one to extract different LULCs
of interest [46]. In this regard, to extract buildings using the MRS algorithm, we segmented the
image using the SP derived from the degree-2 polynomial (DP) model proposed by Jozdani, et al. [6].
The polynomial model is only applicable for buildings, so for the remaining classes, we employed
Estimation of Scale Parameter (ESP) tool [5,28] (one of the most commonly used automatic approaches
to the estimation of SP). However, for the 50 cm image, the SP estimated by the ESP was very coarse
and did not lead to an acceptable segmentation. We instead estimated an appropriate SP for the other
classes using the supervised method F-measure [46].

To take advantage of the multiscale power of GEOBIA, the two segmentation levels were then
overlaid, and the spectral/spatial/texture features computed for the coarser level (i.e., the superobjects)
were assigned to the segments they contained in the finer segmentation level (i.e., the subobjects).
Utilizing this type of multiscale approach was found to improve classification accuracy in past GEOBIA
studies utilizing ML classifiers [3,50,51].

We aimed to use a high-dimensional data set in our experiments because one of the main goals
of this study was to evaluate the potential of each model to handle high-dimensional data, and to
analyze the performance and efficacy of autoencoder models in comparison with the other models for
urban LULC mapping. For this purpose, in addition to the features recommended Ma, et al. [51], we
calculated some other useful features for the image segments generated. The features calculated were
as follows (overall, 33 features).

• Spectral features: “brightness”, “mean”, “standard deviation”, “skewness”.
• Spatial features: “area”, “asymmetry”, “border index”, “border length”, “compactness”, “main

direction”, “roundness”, “shape index”, “length”.
• Textural features: “GLCM” features (homogeneity, contrast, dissimilarity, entropy, Ang. 2nd

moment, mean, standard deviation, correlation).
• Vegetation index: “NDVI”.

Each of the computed features was then standardized (to have a mean of 0 and a standard
deviation of 1).

In recent years, there have been a few studies on the integration of GEOBIA and CNN [17,25,27,29].
In this study, we integrated a 50-layer ResNet model [52] with the image segments generated by
MRS. In this approach, the first step was to prepare the inputs (image patches) that should be fed
into the network. The size of the image patches in this CNN model is 224 × 224 with three channels,
although data sets having more channels can be used through a simple modification of the model.
To incorporate GEOBIA into CNN, we followed a similar approach proposed by Fu, et al. [17] and
Zhang, et al. [27] to first extract image patches corresponding to the image objects generated by the
segmentation. In this approach, we computed the smallest oriented bounding box (with minimum
areas) of each image segment. Then, we extracted the bounding boxes enclosing image segments, and
resized them to 224 × 224. Finally, to keep the aspect ratio fixed, we used zero padding while resizing
the image patches. The final image patches therefore had a size of 224 × 224 with four channels (RGB
and NIR). When integrating CNN and GEOBIA, the segments themselves are not generally extracted

Remote Sens. 2019, 11, 1713 9 of 24

and resized to be directly used as inputs into a CNN because it eliminates the context information, and
thus affecting the performance of the CNN to extract concrete features. There are generally two ways
of taking advantage of CNNs (and generally DNNs); the first way is to use a pretrained model that can
be retrained on a new data set. The other way is to train the model from scratch. The advantage of the
first approach is that the model can be trained and could lead to satisfying results even if a limited
number of data are used. This approach known as transfer learning, however, requires using the same
size and number of channels (i.e., in most cases, only RGB) for the new data set. Since we intended to
use four channels, we chose the second approach and trained the model from scratch.

In this study, from the 30 cm image, we gathered statistically independent and nonadjacent LULC
training and testing data (training/testing segments) using a simple random sampling (SRS) approach
to make sure the analyses and results are not biased [53]. Overall, 5571 image segments, representing
six different LULC types (buildings (1559 samples), road (908 samples), trees (1181 samples), grass
(1084 samples), water (107 samples), shadow (732)), were collected for the training set, and 1248 pixels
for the testing set to evaluate the performance of the classification models established. From the 50 cm
image, 1030 samples for buildings, 764 samples for road, 352 samples for shadow, 684 samples for
grass, 415 samples for trees, and 355 samples for water were extracted. A total of 1432 pixels were also
randomly selected as the test set for this image. It should be also noted that no training/test samples
from the cloud-contaminated parts of the 50 cm image were collected, because the underlying LULC
types were not apparent in those areas. Since the training data gathered for both the images were
imbalanced, we applied the Synthetic Minority Oversampling Technique (SMOTE) [54] to artificially
balance the training set, as this was found beneficial in past studies using imbalanced data [55,56] and
machine learning classifiers [57].

3.3. Implementation of Classifiers

We implemented all the classification models in this study using Python programming language.
To implement the DL classifiers, we used the “TensorFlow” framework which is an open source library
developed by “Google Brain” [58]. TensorFlow allows the implementation of a DL network on either
CPU or GPU, provided that the GPU is supported by the framework. In this study, we implemented the
networks on an Nvidia GeForce GTX 1080 Ti GPU. It is generally recommended to implement DNNs
on a supported powerful GPU because it significantly reduces the execution time during training
and inference. The RF, GB, BT, and SVM classifiers were applied using the open source “scikit-learn”
module [59], which is the most commonly used ML module in Python. For the XGB classifier, we
applied the “XGBoost” module in Python. As a trade-off between fast convergence and less execution
time, a learning rate of 0.1 was chosen for the XGB and GB models. The hyperparameters of the SVM
model were selected using a 5-fold cross-validation (C = 100, ε = 0.01).

As already stated, autoencoders are unsupervised ML algorithms that are typically used as a
pretraining step. Therefore, for supervised classification, they should be combined with a supervised
classifier. In other words, the supervised classifier applies the features generated by the autoencoder to
perform classification. In this study, after training the autoencoder models, we used their lower-level
layers in an MLP model to establish a new classifier using these pretrained layers. We also performed
fine-tuning to the model through applying back-propagation algorithm to the encoder layers.

When training a neural network model, choosing a stopping criterion is important because it helps
preclude overfitting, especially when (very) deep networks are utilized. One of the most commonly
used stopping criteria is to terminate training process after a certain number of iterations. In this
study, we trained the autoencoder models for 200 iterations and then recorded their encoder layers
for supervised classification. The MLP and CNN models were trained for 2000, and 300 iterations,
respectively. For all the DL models, we used Adam optimizer to minimize the loss function, a learning
rate of 0.001 in the optimization process, and Rectified Linear Unit (ReLU) as the activation function.
For the MLP and all the autoencoders in the supervised setup, we applied the l2 regularizer and a
dropout of 0.25 to reduce overfitting during classification. For the SAE model, the sparsity parameter

Remote Sens. 2019, 11, 1713 10 of 24

and the sparsity weight were both set to 0.1. The remaining parameter settings of the four neural
networks applied are presented in Table 1.

Table 1. Layer configurations of deep learning (DL) models applied.

Model # of Hidden Layers # of Neurons in
Each Hidden Layer

Total # of Trainable
Parameters

MLP 3 100-100-100 34,306
RAE 3 100-30-100 12,863
SAE 2 100-100 16,833
VAE 3 100-20-100 8213

CNN (ResNet) 50 Refer to He, et al. [52] 23,537,728

4. Results and Discussion

4.1. Comparison of Classifiers

Based on Table 2, the best accuracies were achieved by the MLP model for the 30 cm image.
The other DNNs led to > 2% worse accuracy than the MLP. Of the ensemble classifiers, the BT (the
simplest ensemble classifier tested) achieved the worst overall accuracy, and this can likely be ascribed
to the fact that it was unable to handle the high dimensionality of the data. As elaborated earlier,
BT uses the entire feature set for training the DTs in the ensemble. Thus, when features are highly
correlated, the corresponding individual DTs are also highly correlated, and the BT model suffers
from overfitting [26]. The RF model reduces the correlation between the DTs in the ensemble through
random sampling of features, which led to an increase in classification accuracy in our experiment. The
GB and XGB models led to further improvement in classification accuracy in our experiments. From
this, it can be shown that even using tree stumps as a base classifier GB can generate accurate results
because the ensemble is composed in such a way that each tree generated is an improved version of
the previous one. Although XGB performed slightly worse than GB, it is much faster thanks to its
highly parallelized implementation/concept. This advantage is specifically valuable when working
with very large data sets (e.g., classification of time series RS images). As the data set become larger,
it can also be speculated that XGB starts performing better than GB in terms of accuracy due to its
regulation term that helps increase the generalizability of the algorithm.

Table 2. Accuracy measures derived from the models applied on the 30 cm image.

Classifier (30 cm) Overall Accuracy Kappa F1-Score

RF 94.47 0.931 0.945
GB 95.99 0.950 0.960

XGB 95.91 0.949 0.959
BT 94.31 0.929 0.944

SVM 95.43 0.943 0.954
MLP 96.55 0.957 0.965
RAE 94.39 0.930 0.945
SAE 93.67 0.921 0.938
VAE 94.31 0.929 0.945
CNN 94.63 0.930 0.944

To realize if the difference between the XGB and GB classifiers was statistically significant, we
applied a McNemar’s test. The null hypothesis of this test is that there is no difference between the
two results. Applying this test led to a large p-value (> 0.05) indicating that the two classifiers were
not statistically different from each other. After these two classifiers, the SVM model was the most
accurate one, with a small difference from the XGB.

Remote Sens. 2019, 11, 1713 11 of 24

Of the models applied, the SAE model had the worst performance. This shows that applying
pretraining in a GEOBIA setup could not result in any accuracy improvement, though a high dimensional
data set was applied. In fact, squeezing the feature space did not add any useful information to the
classification construct to obtain a more accurate result in the 30 cm image.

In Appendix B (Figures A4–A7), the confusion matrices for the MLP, GB, SVM, and CNN
classification results (i.e., the most accurate classifiers from each category in our study) can be seen.
From these confusion matrices, the greatest difficulty for all the models was differentiating between
grass and tree. This was mainly due to the high degree of spectral similarity between some of the
samples in the two LULC classes. Moreover, none of the spatial and/or textural features computed
were capable of significantly differentiating between them. Another common source of classification
error was the spectral similarity between the building and road classes. Buildings in particular were
highly heterogeneous in terms of their spectral and structural (spatial) properties, and mapping them is
perhaps one of the most challenging parts in urban classification using RS. One of the greatest virtues
of the MLP applied was its higher accuracy in the classification of building samples. As our results
showed, the smallest number of misclassified building samples was obtained by the MLP model.

Besides providing the entire map generated by MLP (as the most accurate classifier for this 30 cm
image) in Appendix C (Figure A12), a subset of the classification map generated by each of the MLP,
GB, SVM, and CNN models for visual comparison is illustrated in Figure 3.

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 24

In Appendix B (Figures A4–A7), the confusion matrices for the MLP, GB, SVM, and CNN
classification results (i.e., the most accurate classifiers from each category in our study) can be seen.
From these confusion matrices, the greatest difficulty for all the models was differentiating between
grass and tree. This was mainly due to the high degree of spectral similarity between some of the
samples in the two LULC classes. Moreover, none of the spatial and/or textural features computed
were capable of significantly differentiating between them. Another common source of classification
error was the spectral similarity between the building and road classes. Buildings in particular were
highly heterogeneous in terms of their spectral and structural (spatial) properties, and mapping them
is perhaps one of the most challenging parts in urban classification using RS. One of the greatest
virtues of the MLP applied was its higher accuracy in the classification of building samples. As our
results showed, the smallest number of misclassified building samples was obtained by the MLP
model.

Besides providing the entire map generated by MLP (as the most accurate classifier for this 30
cm image) in Appendix C (Figure A12), a subset of the classification map generated by each of the
MLP, GB, SVM, and CNN models for visual comparison is illustrated in Figure 3.

According to Table 3, the experiments on the 50 cm image led to similar conclusions. The MLP
classifier again produced the most accurate result. In contrast to the 30 cm image, the XGB model
resulted in a slightly better result than the GB. Again, this difference was not statistically significant.
Of the ensemble classifiers, the BT model led to the worst accuracies. This, however, should be noted
that the accuracy difference between this classifier and the other ensemble ones was more significant
than the one generated for the 30 cm image.

Figure 3. Subsets of classification maps generated by the regular deep multilayer perceptron (MLP),
Gradient Boosting Trees (GB), convolutional neural network (CNN), and support vector machines
(SVM) models generated for the 30 cm image.

Figure 3. Subsets of classification maps generated by the regular deep multilayer perceptron (MLP),
Gradient Boosting Trees (GB), convolutional neural network (CNN), and support vector machines
(SVM) models generated for the 30 cm image.

Remote Sens. 2019, 11, 1713 12 of 24

According to Table 3, the experiments on the 50 cm image led to similar conclusions. The MLP
classifier again produced the most accurate result. In contrast to the 30 cm image, the XGB model
resulted in a slightly better result than the GB. Again, this difference was not statistically significant.
Of the ensemble classifiers, the BT model led to the worst accuracies. This, however, should be noted
that the accuracy difference between this classifier and the other ensemble ones was more significant
than the one generated for the 30 cm image.

Table 3. Accuracy measures derived from the models applied on the 50 cm image.

Classifier (50 cm) Overall Accuracy Kappa F1-Score

RF 92.04 0.904 0.921
GB 92.87 0.914 0.929

XGB 92.94 0.915 0.930
BT 90.78 0.889 0.908

SVM 92.45 0.909 0.925
MLP 93.64 0.923 0.937
RAE 92.45 0.909 0.925
SAE 91.89 0.902 0.919
VAE 92.73 0.913 0.928
CNN 91.41 0.896 0.913

As with the previous results for the 30 cm image, the CNN model failed to produce more accurate
results than the other DL models did. According to these experiments, although it was hypothesized
that integrating a CNN model and GEOBIA could better help model object boundaries; this integration
was highly dependent on the object’s shape and size. If the object is elongated, the bounding box
enclosing it may largely contain other LULC types. Or if the segment is very small, the model may not
be able to extract and learn useful features. These two problems are exacerbated when it comes to
extremely resizing image patches (i.e., bounding boxes which are either very small or very large) to
correspond the input size of the network. This therefore misleads the classifier which causes a high
rate of misclassification.

The confusion matrices (Figures A8–A11) computed for the four classifiers on the 50 cm image
echoed the same problem of the classifiers with the building and road and grass and tree classes.
In addition to this problem, the results of this image showed that some samples of the shadow and
building classes were misclassified. This misclassification was generally caused by the fact that some
shadow samples in both the training and test sets were not pure and/or were composed of some parts
of the buildings. In other words, the texture of some shadow samples was not very homogeneous to
be correctly classified. As a result, the classifiers failed to correctly classify some of the samples of
these two classes to their true ones.

Besides providing the entire map generated by MLP (as the most accurate classifier for this 50 cm
image) in Figure A13, a subset of the 50 cm image along with the generated maps by MLP, XGB, CNN,
and SVM classifiers is illustrated in Figure 4.

As the classification maps produced for the 50 cm image depict, the CNN resulted in the noisiest
result, though it produced a more homogenous map for the 30 cm image. Another important strength
of the MLP in the 50 cm image was correctly classifying elongated features, especially roads. According
to Figure 4, the MLP classified roads much more accurate than the other classifiers.

Remote Sens. 2019, 11, 1713 13 of 24
Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 24

Figure 4. Subsets of classification maps generated by the MLP, XGB, CNN, and SVM models for the
50 cm image.

4.2. General Discussion

Although our experiments showed the superiority of MLP over the other state-of-the-art ML
classifiers in terms of classification accuracy, there are some important considerations regarding its
efficiency that need to be further discussed. In general, DL models tend to be more complex than
ensemble models and SVM. This means that they need more parameter tuning in the training stage.
As stated earlier, parameter tuning and optimization are often performed using cross-validation for
ML algorithms. However, in some cases, DL models could have millions of weights to be optimized
in each iteration [42]. Therefore, training such models is itself time consuming, and thus manual
tuning or rules of thumb are preferred over cross-validation, which could potentially have a negative
impact on the accuracy of the network. An obvious solution is to implement the entire model on a
GPU to significantly decrease training time. This, as a result, allows the user to test different
parameter settings that better meet the requirements of the application for which the DL model is to
be used. Another popular strategy is to take advantage of transfer learning [60]. In this respect,
instead of training a model from scratch, pretrained models are retrained on the user’s classes of
interest. Transfer learning has two important advantages: (1) it does not typically need many new
training data and (2) the weights of the model can be optimized on the new data set in a much fewer
number of iterations. Novelli, et al. [61] conducted an experiment to analyze two main scenarios (i.e.,
fine-tuning the model and using the pretrained model as a feature extractor) for retraining a
pretrained model. In that study, it was shown that fine-tuning of pretrained models led to better
accuracy. The deep models that are widely used in the literature, however, may not always be useful
to be generalized to all domains. For example, they may not have been designed to accept inputs with

Figure 4. Subsets of classification maps generated by the MLP, XGB, CNN, and SVM models for the
50 cm image.

4.2. General Discussion

Although our experiments showed the superiority of MLP over the other state-of-the-art ML
classifiers in terms of classification accuracy, there are some important considerations regarding its
efficiency that need to be further discussed. In general, DL models tend to be more complex than
ensemble models and SVM. This means that they need more parameter tuning in the training stage.
As stated earlier, parameter tuning and optimization are often performed using cross-validation for
ML algorithms. However, in some cases, DL models could have millions of weights to be optimized in
each iteration [42]. Therefore, training such models is itself time consuming, and thus manual tuning
or rules of thumb are preferred over cross-validation, which could potentially have a negative impact
on the accuracy of the network. An obvious solution is to implement the entire model on a GPU to
significantly decrease training time. This, as a result, allows the user to test different parameter settings
that better meet the requirements of the application for which the DL model is to be used. Another
popular strategy is to take advantage of transfer learning [60]. In this respect, instead of training a
model from scratch, pretrained models are retrained on the user’s classes of interest. Transfer learning
has two important advantages: (1) it does not typically need many new training data and (2) the
weights of the model can be optimized on the new data set in a much fewer number of iterations.
Novelli, et al. [61] conducted an experiment to analyze two main scenarios (i.e., fine-tuning the model
and using the pretrained model as a feature extractor) for retraining a pretrained model. In that study,
it was shown that fine-tuning of pretrained models led to better accuracy. The deep models that are
widely used in the literature, however, may not always be useful to be generalized to all domains.

Remote Sens. 2019, 11, 1713 14 of 24

For example, they may not have been designed to accept inputs with more than three channels (i.e.,
RGB), which may not be favorable for RS applications where images usually have extra channels [17].
Therefore, these models should be redesigned and trained from scratch, which is computationally
inefficient and needs sufficient training data [61].

Moreover, DNNs is that their performance depends greatly on the number of labeled training
samples; that is, DNNs generally perform better if they are fed with a large number of labeled
samples [25]. In many RS applications, collecting a large number of labeled samples for each class of
interest is difficult and error prone. For example, over some urban areas, there might not be a sufficient
number of water bodies or green spaces to use for training the model. Moreover, in some cases, the
complexity of the urban landscape may require the analyst to conduct field surveys to gather ground
truth data, which is costly and time consuming. Considering the above-mentioned factors, it may still
be more efficient to use non-DL algorithms, especially GB/XGB and SVM that can perform well even
using limited training samples, for urban mapping within a GEOBIA framework, which have been
widely reported to be very accurate [19,26].

Aside from selecting a good classifier, the features extracted from the image are also of importance.
In a traditional GEOBIA approach, the analyst needs to use hand-crafted features in the classification
phase. Undoubtedly, the number and the choice of the features both affect the final classification
accuracy. Despite few studies on appropriate image (object) features for LULC mapping (like [51]),
the previously recommended features could be highly domain specific, and could not be properly
generalized to other LULC types and study areas. In contrast to hand-engineered features, the
features in a CNN are learned automatically from the input data during training. These distinctive,
machine-learned features are learned by the CNN based on classes spectral, contextual, and spatial
properties, and thus increasing their generalizability capabilities.

5. Conclusions

In this paper, we evaluated the potential of several object-based DL models (i.e., MLP, RAE, SAE,
VAE, and CNN) in comparison with other state-of-the-art ML classifiers (i.e., SVM, RF, BT, GB, and
XGB) for object-based urban LULC mapping over a complex landscape. We applied our experiments on
two HSR RS images (one of which an aerial image with 30 cm resolution, and the other a pansharpened
WorldView-2 image with 50 cm resolution). As the experiments indicated, MLP model led to the most
accurate classification results. However, it is also important to note that GB/XGB and SVM produced
highly accurate classification results as well, demonstrating the versatility of these ML algorithms.
This should be highlighted that while there is hype towards DL, other ML classifiers may still produce
very close results to those of DNNs. This is particularly important because the complexity of tuning
a DNNs can be time consuming and sometimes confusing, so simpler classifiers like SVM may be
preferable in some cases (e.g., when training data is sparse).

In this study, one of our hypotheses was that the use of autoencoders as pretraining procedure
would improve the classification results. Although autoencoders are often reported to be useful as
a proxy for addressing the limited number of training data, our experiments showed that the use of
autoencoders for unsupervised pretraining not only did not improve the supervised classification
accuracy, but also degraded the accuracy. In fact, applying an MLP alone without any pretraining
resulted in more accurate results.

The McNemar’s test also showed that the XGB and GB and RAE and SAE classifiers trained for
the 30 cm image were not statistically different from each other, respectively. For the 50 cm image, the
McNemar’s test indicated that the XGB and GB; SVM and RAE; and SAE and RF classifiers were not
statistically different, respectively.

The last lesson drawn from this study was that integration of CNN with GEOBIA is not yet mature
enough. According to the experiments in this study, we found that this integration did not add any
improvement to the classification of the two images applied, and thus led to lower accuracies than the
other DNNs employed. This as a result demands for more in-depth research in the future on the ways

Remote Sens. 2019, 11, 1713 15 of 24

these two approaches can more optimally take advantage of each other’s strengths for supervised
classification of RS images.

Author Contributions: S.E.J conceptualized the methodology, performed the analyses, and wrote the manuscript
with B.A.J., D.C supervised the research and improved the methodology and analyses, and edited the
final manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council of Canada (NSERC)
grant number RGPIN-2019-05773 awarded to D.C.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Schematic structures of MLP and autoencoders can be seen in this appendix.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 24

Author Contributions: S.E.J conceptualized the methodology, performed the analyses, and wrote the
manuscript with B.A.J. D.C supervised the research and improved the methodology and analyses, and edited
the final manuscript.

Funding:

This research was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) grant
number RGPIN-2019-05773 awarded to D.C.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Schematic structures of MLP and autoencoders can be seen in this appendix.

Figure A1. Graphical representation of an MLP model with two hidden layers.

Figure A2. Graphical representation of a regular autoencoder model with a hidden layer.

Figure A1. Graphical representation of an MLP model with two hidden layers.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 24

Author Contributions: S.E.J conceptualized the methodology, performed the analyses, and wrote the
manuscript with B.A.J. D.C supervised the research and improved the methodology and analyses, and edited
the final manuscript.

Funding:

This research was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) grant
number RGPIN-2019-05773 awarded to D.C.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Schematic structures of MLP and autoencoders can be seen in this appendix.

Figure A1. Graphical representation of an MLP model with two hidden layers.

Figure A2. Graphical representation of a regular autoencoder model with a hidden layer. Figure A2. Graphical representation of a regular autoencoder model with a hidden layer.

Remote Sens. 2019, 11, 1713 16 of 24Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 24

Figure A3. Graphical representation of an SAE model with three hidden layers. Note: Gray-colored
circles are neurons deactivated using the regularization term.

Appendix B

The confusion matrices calculated for the classifiers trained on the 30 cm and 50 cm test images

Figure A4. Confusion matrix derived from the MLP model for 30 cm image.

Figure A3. Graphical representation of an SAE model with three hidden layers. Note: Gray-colored
circles are neurons deactivated using the regularization term.

Appendix B

The confusion matrices calculated for the classifiers trained on the 30 cm and 50 cm test images

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 24

Figure A3. Graphical representation of an SAE model with three hidden layers. Note: Gray-colored
circles are neurons deactivated using the regularization term.

Appendix B

The confusion matrices calculated for the classifiers trained on the 30 cm and 50 cm test images

Figure A4. Confusion matrix derived from the MLP model for 30 cm image. Figure A4. Confusion matrix derived from the MLP model for 30 cm image.

Remote Sens. 2019, 11, 1713 17 of 24Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 24

Figure A5. Confusion matrix derived from the GB model for 30 cm image.

Figure A6. Confusion matrix of the SVM for 30 cm image.

Figure A5. Confusion matrix derived from the GB model for 30 cm image.

Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 24

Figure A5. Confusion matrix derived from the GB model for 30 cm image.

Figure A6. Confusion matrix of the SVM for 30 cm image. Figure A6. Confusion matrix of the SVM for 30 cm image.

Remote Sens. 2019, 11, 1713 18 of 24Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 24

Figure A7. Confusion matrix of the CNN model for 30 cm image.

Figure A8. Confusion matrix of the MLP model for 50 cm image.

Figure A7. Confusion matrix of the CNN model for 30 cm image.

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 24

Figure A7. Confusion matrix of the CNN model for 30 cm image.

Figure A8. Confusion matrix of the MLP model for 50 cm image. Figure A8. Confusion matrix of the MLP model for 50 cm image.

Remote Sens. 2019, 11, 1713 19 of 24
Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 24

Figure A9. Confusion matrix of the XGB model for 50 cm image.

Figure A10. Confusion matrix of the SVM model for 50 cm image.

Figure A9. Confusion matrix of the XGB model for 50 cm image.

Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 24

Figure A9. Confusion matrix of the XGB model for 50 cm image.

Figure A10. Confusion matrix of the SVM model for 50 cm image. Figure A10. Confusion matrix of the SVM model for 50 cm image.

Remote Sens. 2019, 11, 1713 20 of 24
Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 24

Figure A11. Confusion matrix of the CNN model for 50 cm image.

Appendix C

The final classification maps produced by the most accurate classifiers (MLPs) for the 30 cm and
50 cm images, respectively.

Figure A12. Classification map generated by combining classification maps of the MLP model for the
30 cm image.

Figure A11. Confusion matrix of the CNN model for 50 cm image.

Appendix C

The final classification maps produced by the most accurate classifiers (MLPs) for the 30 cm and
50 cm images, respectively.

Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 24

Figure A11. Confusion matrix of the CNN model for 50 cm image.

Appendix C

The final classification maps produced by the most accurate classifiers (MLPs) for the 30 cm and
50 cm images, respectively.

Figure A12. Classification map generated by combining classification maps of the MLP model for the
30 cm image.

Figure A12. Classification map generated by combining classification maps of the MLP model for the
30 cm image.

Remote Sens. 2019, 11, 1713 21 of 24
Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 24

Figure A13. Classification map generated by combining classification maps of the MLP model for the
50 cm image.

References

1. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65,
2–16, doi:10.1016/j.isprsjprs.2009.06.004.

2. Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification
of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115,
1145–1161, doi:10.1016/j.rse.2010.12.017.

3. Johnson, B.; Xie, Z. Classifying a high resolution image of an urban area using super-object information.
ISPRS J. Photogramm. Remote Sens. 2013, 83, 40–49, doi:10.1016/j.isprsjprs.2013.05.008.

4. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.;
van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new
paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191, doi:10.1016/j.isprsjprs.2013.09.014.

5. Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image
segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871,
doi:10.1080/13658810903174803.

6. Jozdani, S.E.; Momeni, M.; Johnson, B.A.; Sattari, M. A regression modelling approach for optimizing
segmentation scale parameters to extract buildings of different sizes. Int. J. Remote Sens. 2018, 39, 684–703,
doi:10.1080/01431161.2017.1390273.

Figure A13. Classification map generated by combining classification maps of the MLP model for the
50 cm image.

References

1. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65,
2–16. [CrossRef]

2. Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of
urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161.
[CrossRef]

3. Johnson, B.; Xie, Z. Classifying a high resolution image of an urban area using super-object information.
ISPRS J. Photogramm. Remote Sens. 2013, 83, 40–49. [CrossRef]

4. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van
der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm.
ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [CrossRef] [PubMed]

5. Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image
segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [CrossRef]

6. Jozdani, S.E.; Momeni, M.; Johnson, B.A.; Sattari, M. A regression modelling approach for optimizing
segmentation scale parameters to extract buildings of different sizes. Int. J. Remote Sens. 2018, 39, 684–703.
[CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1016/j.rse.2010.12.017
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.008
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://www.ncbi.nlm.nih.gov/pubmed/24623958
http://dx.doi.org/10.1080/13658810903174803
http://dx.doi.org/10.1080/01431161.2017.1390273

Remote Sens. 2019, 11, 1713 22 of 24

7. Yu, L.; Liang, L.; Wang, J.; Zhao, Y.; Cheng, Q.; Hu, L.; Liu, S.; Yu, L.; Wang, X.; Zhu, P.; et al. Meta-discoveries
from a synthesis of satellite-based land-cover mapping research. Int. J. Remote Sens. 2014, 35, 4573–4588.
[CrossRef]

8. Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision
Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [CrossRef]

9. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
10. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
11. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image

classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]
12. Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18,

1527–1554. [CrossRef] [PubMed]
13. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A

Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]
14. Boualleg, Y.; Farah, M.; Farah, I.R. Remote Sensing Scene Classification Using Convolutional Features and

Deep Forest Classifier. IEEE Geosci. Remote Sens. Lett. 2019, 1–5. [CrossRef]
15. Lv, X.; Ming, D.; Chen, Y.; Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN

and scale effect analysis for superpixel CNN classification. Int. J. Remote Sens. 2019, 40, 506–531. [CrossRef]
16. Zhao, J.; Yu, L.; Xu, Y.; Ren, H.; Huang, X.; Gong, P. Exploring the addition of Landsat 8 thermal band in

land-cover mapping. Int. J. Remote Sens. 2019, 40, 4544–4559. [CrossRef]
17. Fu, T.; Ma, L.; Li, M.; Johnson, B.A. Using convolutional neural network to identify irregular segmentation

objects from very high-resolution remote sensing imagery. J. Appl. Remote Sens. 2018, 12, 21. [CrossRef]
18. Liu, S.; Qi, Z.; Li, X.; Yeh, G.A. Integration of Convolutional Neural Networks and Object-Based

Post-Classification Refinement for Land Use and Land Cover Mapping with Optical and SAR Data.
Remote Sens. 2019, 11, 690. [CrossRef]

19. Liu, P.; Choo, K.-K.R.; Wang, L.; Huang, F. SVM or deep learning? A comparative study on remote sensing
image classification. Soft Comput. 2017, 21, 7053–7065. [CrossRef]

20. Ng, A. Sparse Autoencoder. 2010. Available online: https://web.Stanf.Edu/Cl./Cs294a/Sparseautoencoder.pdf
(accessed on 10 August 2017).

21. Zhang, X.; Chen, G.; Wang, W.; Wang, Q.; Dai, F. Object-Based Land-Cover Supervised Classification for
Very-High-Resolution UAV Images Using Stacked Denoising Autoencoders. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2017, 10, 3373–3385. [CrossRef]

22. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked Denoising Autoencoders: Learning
Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11,
3371–3408.

23. Liu, T.; Abd-Elrahman, A. Deep convolutional neural network training enrichment using multi-view
object-based analysis of Unmanned Aerial systems imagery for wetlands classification. ISPRS J. Photogramm.
Remote Sens. 2018, 139, 154–170. [CrossRef]

24. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.
ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]

25. Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest,
support vector machine, and patch-based deep convolutional neural networks for object-based wetland
mapping using images from small unmanned aircraft system. GIScience Remote Sens. 2018, 55, 243–264.
[CrossRef]

26. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing:
An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]

27. Zhang, X.; Wang, Q.; Chen, G.; Dai, F.; Zhu, K.; Gong, Y.; Xie, Y. An object-based supervised classification
framework for very-high-resolution remote sensing images using convolutional neural networks. Remote
Sens. Lett. 2018, 9, 373–382. [CrossRef]

28. Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation
on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [CrossRef]

29. Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An object-based convolutional
neural network (OCNN) for urban land use classification. Remote Sens. Environ. 2018, 216, 57–70. [CrossRef]

http://dx.doi.org/10.1080/01431161.2014.930206
http://dx.doi.org/10.1023/A:1007607513941
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.1109/LGRS.2019.2911855
http://dx.doi.org/10.1080/01431161.2018.1513666
http://dx.doi.org/10.1080/01431161.2019.1569281
http://dx.doi.org/10.1117/1.JRS.12.025010
http://dx.doi.org/10.3390/rs11060690
http://dx.doi.org/10.1007/s00500-016-2247-2
https://web.Stanf.Edu/Cl./Cs294a/Sparseautoencoder.pdf
http://dx.doi.org/10.1109/JSTARS.2017.2672736
http://dx.doi.org/10.1016/j.isprsjprs.2018.03.006
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1080/15481603.2018.1426091
http://dx.doi.org/10.1080/01431161.2018.1433343
http://dx.doi.org/10.1080/2150704X.2017.1422873
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.018
http://dx.doi.org/10.1016/j.rse.2018.06.034

Remote Sens. 2019, 11, 1713 23 of 24

30. Mason, L.; Baxter, J.; Bartlett, P.; Frean, M. Boosting algorithms as gradient descent. In Proceedings of the
12th International Conference on Neural Information, Denver, CO, USA, 29 November–4 December 1999.

31. Chen, T.; Guestrin, C. XGBoost: Reliable Large-scale Tree Boosting System. arXiv 2016. [CrossRef]
32. Breiman, L. Classification and Regression Trees; Wadsworth Statistics Series; Chapman and Hall: London, UK,

1984; Volume 19, p. 368.
33. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
34. Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman

Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100, 356–362. [CrossRef]
35. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to

Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [CrossRef]
36. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.

[CrossRef]
37. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more:

Optimizing classification performance through feature selection in a very-high-resolution remote sensing
object-based urban application. GIScience Remote Sens. 2018, 55, 221–242. [CrossRef]

38. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very High Resolution
Object-Based Land Use–Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 607–611. [CrossRef]

39. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]

40. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm.
Remote Sens. 2011, 66, 247–259. [CrossRef]

41. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy,
13–15 May 2010; pp. 249–256.

42. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
43. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.
44. Doersch, C. Tutorial on Variational Autoencoders. arXiv 2016, arXiv:1606.05908.
45. Baatz, M.; Schäpe, A. Multiresolution Segmentation: An optimization approach for high quality multi-scale

image segmentation. In Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-Symposium
Salzburg 2000; Herbert Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23.

46. Johnson, A.B.; Bragais, M.; Endo, I.; Magcale-Macandog, B.D.; Macandog, B.P. Image Segmentation Parameter
Optimization Considering Within- and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case
for Mapping Residential Areas Using Landsat Imagery. ISPRS Int. J. Geo-Inf. 2015, 4, 2292–2305. [CrossRef]

47. Grybas, H.; Melendy, L.; Congalton, R.G. A comparison of unsupervised segmentation parameter optimization
approaches using moderate- and high-resolution imagery. GIScience Remote Sens. 2017, 54, 515–533. [CrossRef]

48. Georganos, S.; Lennert, M.; Grippa, T.; Vanhuysse, S.; Johnson, B.; Wolff, E. Normalization in Unsupervised
Segmentation Parameter Optimization: A Solution Based on Local Regression Trend Analysis. Remote Sens.
2018, 10, 222. [CrossRef]

49. Johnson, A.B.; Jozdani, E.S. Identifying Generalizable Image Segmentation Parameters for Urban Land Cover
Mapping through Meta-Analysis and Regression Tree Modeling. Remote Sens. 2018, 10, 73. [CrossRef]

50. Gholoobi, M.; Kumar, L. Using object-based hierarchical classification to extract land use land cover classes
from high-resolution satellite imagery in a complex urban area. J. Appl. Remote Sens. 2015, 9. [CrossRef]

51. Ma, L.; Cheng, L.; Li, M.; Liu, Y.; Ma, X. Training set size, scale, and features in Geographic Object-Based
Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens.
2015, 102, 14–27. [CrossRef]

52. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 770–778.

53. Johnson, A.B. Scale Issues Related to the Accuracy Assessment of Land Use/Land Cover Maps Produced
Using Multi-Resolution Data: Comments on “The Improvement of Land Cover Classification by Thermal
Remote Sensing”. Remote Sens. 2015, 7, 8368–8390. [CrossRef]

http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1016/j.rse.2005.10.014
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1080/15481603.2017.1408892
http://dx.doi.org/10.1109/LGRS.2018.2803259
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3390/ijgi4042292
http://dx.doi.org/10.1080/15481603.2017.1287238
http://dx.doi.org/10.3390/rs10020222
http://dx.doi.org/10.3390/rs10010073
http://dx.doi.org/10.1117/1.JRS.9.096052
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.026
http://dx.doi.org/10.3390/rs71013436

Remote Sens. 2019, 11, 1713 24 of 24

54. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16. [CrossRef]

55. Bogner, C.; Seo, B.; Rohner, D.; Reineking, B. Classification of rare land cover types: Distinguishing annual
and perennial crops in an agricultural catchment in South Korea. PLoS ONE 2018, 13, e0190476. [CrossRef]

56. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional
neural networks. Neural Netw. 2018, 106, 249–259. [CrossRef]

57. Johnson, B.A.; Tateishi, R.; Hoan, N.T. A hybrid pansharpening approach and multiscale object-based image
analysis for mapping diseased pine and oak trees. Int. J. Remote Sens. 2013, 34, 6969–6982. [CrossRef]

58. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv
2016, arXiv:1603.04467.

59. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830. [CrossRef]

60. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A
meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

61. Novelli, A.; Aguilar, A.M.; Aguilar, J.F.; Nemmaoui, A.; Tarantino, E. AssesSeg—A Command Line Tool to
Quantify Image Segmentation Quality: A Test Carried Out in Southern Spain from Satellite Imagery. Remote
Sens. 2017, 9, 40. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1371/journal.pone.0190476
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://dx.doi.org/10.1080/01431161.2013.810825
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
http://dx.doi.org/10.3390/rs9010040
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	High Spatial Resolution Urban Mapping
	Machine learning Classifiers for Object-Based Classification
	Objective

	Overview of Selected ML Classifiers
	Ensemble Classifiers
	Support Vector Machines (SVM)
	Deep Learning Architectures

	Methods and Materials
	Study Area and Data
	Image Segmentation and Feature Extraction
	Implementation of Classifiers

	Results and Discussion
	Comparison of Classifiers
	General Discussion

	Conclusions
	
	
	
	References

