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Abstract: Information on crop seeding date is required in many applications such as crop management
and yield forecasting. This study presents a novel method to estimate crop seeding date at the
field level from time-series 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) data
and growing degree days (GDD; base 5 ◦C; ◦C-days). The start of growing season (SOS) was first
derived from time-series EVI2 (two-band Enhanced Vegetation Index) calculated from a MODIS 8-day
composite surface reflectance product (MOD09Q1; Collection 6). Based on GDD calculated from the
Daymet gridded estimates of daily weather parameters, a simple model was developed to establish a
linkage between the observed seeding date and the SOS. Calibration and validation of the model was
conducted on three major crops, spring wheat, canola and oats in the Province of Manitoba, Canada.
The estimated SOS had a strong linear correlation with the observed seeding date; with a deviation of
a few days depending on the year. The seeding date of the three crops can be calculated from the SOS
by adjusting the number of days needed to accumulate GDD (AGDD) for emergence. The overall
root-mean-square-difference (RMSD) of the estimated seeding date was less than 10 days. Validation
showed that the accuracy of the estimated seeding date was crop-type independent. The developed
method is useful for estimating the historical crop seeding date from remote sensing data in Canada
to support studies of the interactions among seeding date, crop management and crop yield under
climate change. It is anticipated that this method can be adapted to other crops in other locations
using the same or different satellite data.
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1. Introduction

Seeding date is an important factor influencing the development and productivity of field crops.
Planting crops within an optimal time window could avoid the negative impact of unfavorable
environmental conditions on crop development, and therefore maximize crop yield [1–4]. Seeding
date is also one of the most important parameters in modelling crop yield, and crop response to
agricultural management practices and climate variability [4–6]. Seeding date varies annually and
spatially depending on the variation in weather conditions and soil characteristics. Due to difficulties
in obtaining seeding-date information directly, various estimation methods have been developed and
reported in the literature [7,8].
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Remote sensing (RS) technology has the advantage of providing a synoptic view of crop
development over large areas [9–11]. Estimation of crop phenological metrics using RS data depends
largely on greenness information captured by optical satellite sensors. Studies have found that remotely
sensed crop phenological metrics, especially the start of growing season (SOS, green-up date), can
provide spatially explicit information on crop development stages, including the seeding date [7,12,13].
Crop phenological metrics are usually derived from time-series vegetation indices (VIs) through curve
fitting, and the indices are usually calculated from reflectance data in the visible and near-infrared
(NIR) bands. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index
(EVI), and the two-band EVI without a blue band (EVI2) [11,14,15] are common VIs. In general,
the SOS derived from optical satellite data is close to the earliest time of vegetation growth, such as
leaf emergence [11,16,17]. For example, the SOS is commonly defined as the date when VIs reach
a threshold level of about 10–20% of the seasonal maximum amplitude [15,16]. Methods using the
inflection point of a VI curve at the growing phase are also widely used for SOS estimation, as the
inflection point is found to correspond to the onset of rapid vegetative growth [11]. As a result,
the SOS responds to actual growth stages; however, the specific relationship varies with the methods
used [17–19].

To estimate seeding date based on SOS derived from time-series remote sensing data, a constant
number of days ranging from seven days to three weeks have been reported in the literature [13,20,21].
For instance, Lobell et al. [13] employed a fixed 3-week period to obtain spatially explicit seeding date
of wheat in India from SOS defined with a 10% threshold level of seasonal maximum NDVI. This fixed
value was determined using simulations of the CERES-Wheat model. Vyas et al. [21] also estimated
the seeding date of wheat in India by subtracting seven days from the date of the inflection point of
the NDVI time series at the vegetative phase. While using a constant number of days to estimate
seeding date from remotely sensed SOS has the benefit of simplicity, it could also induce bias. As the
duration between the seeding date and the emergence date depends on soil texture, temperature,
soil water, planting depth and their interactions [22–24], the time-lag could be longer in a cool year
than in normal years [22,25]. Thus, the duration between the seeding date and SOS can vary with
geographical location, crop management practices, climate variability, crop type, and cultivar of the
same crop type [8,24]. To address these uncertainties, more complex methods have been developed to
better capture the relationship between the remotely sensed SOS and seeding date. Manfron et al. [8]
proposed a rule-based method to estimate the inter-annual variability of seeding dates in winter
wheat in Camargue, France. This rule-based method was built on agronomist’s knowledge of the
temporal signatures of winter wheat, such as the seeding window and the time required reaching
the 3-leaf stage. In a global study by Kotsuki et al. [18], the threshold value of NDVI for estimating
the seeding date was calibrated using census data from three consecutive years for six crops. Their
results showed that the threshold NDVI value for determining SOS varied with crop type but not
with spatial location or year. Ortiz-Monasterio et al. [26] found that the seeding date of spring wheat
could be estimated well, with an error of 6.5 days, when the fraction of absorbed photosynthetically
active radiation (f APAR) estimated from two Landsat ETM+ images was assimilated into a wheat
growth model. This study demonstrated the potential of seeding-date estimation by assimilating time
series remotely sensed biophysical parameters (e.g., leaf area index (LAI) and f APAR) into crop growth
models. However, most crop growth models require data inputs that are difficult to obtain from either
ground measurements or satellite observations, making the method difficult to implement over large
areas. Similar to the agrometeorological approach to be discussed in the next section, all these methods
have highlighted that the length of the period from seeding date to a specific crop development stage
is affected by climate variability.

Predicting crop growth stages, such as leaf emergence, from seeding date based on
agrometeorological data has been the most commonly used method [27,28]. This approach
usually requires agrometeorological data such as air temperature and precipitation. In particular,
the accumulated daily temperature above a base temperature (the growing degree days, GDD, ◦C -days)
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needs to be integrated into crop growth models [5,22,23]. A specific crop development stage will
start when the accumulated GDD (AGDD) reaches a certain threshold window [22,23,29]. A linear
relationship between crop development stages and AGDD has been reported for various crops in
different regions [5,30,31]. For example, Mkhabela et al. [32] found that a simple GDD model performed
the best among three thermal time models (the North-Dakota GDD, the GDD with base temperature of
0 ◦C and the GDD with base temperature of 5 ◦C) for predicting spring wheat phenology in western
Canada. Saiyed et al. [31] reported that the thermal time models, including the GDD information and
biometeorological time scale (BMT, involving both temperature and photoperiod), were effective in
estimating the days required for spring wheat to reach anthesis and maturity from seeding date in
western Canada. Chang et al. [5] showed that the capability for simulating crop phenology and crop
carbon cycle was improved when a simple GDD-based phenology algorithm was integrated into the
Carbon and Nitrogen-Coupled Canadian Land Surface Scheme (CN-CLASS). Several global datasets
for major crop seeding dates, such as those highlighted in Sacks et al. [3] and Waha et al. [33], have
been developed based on an agrometeorological approach. All of these studies have highlighted the
importance of thermal-time variability to crop development. This agrometeorological approach is
highly dependent on the availability of nearby weather stations, while in reality station networks
tend to be quite sparse, and the estimation of crop development stages is poor over areas where there
are no nearby weather stations. In this case, the estimated crop development stage is insufficient for
field-scale crop modelling and management over large areas [12,34].

In light of the benefits of remote sensing and agrometeorology-based methods, seeding date could
be better estimated over large areas using a combination of these methods, rather than using a single
method alone. The usefulness of GDD has been demonstrated in a wide range of RS studies. The
accuracy of crop classification [35,36], crop yield estimation [37], and crop phenology extraction [19]
have all been shown to be effectively improved when the GDD information was used with RS data.
The overall objective of this study was to estimate crop seeding date from MODIS 250-m time-series
data products combined with GDD information. Specific objectives include: (1) estimating start of
growing season from 250-m MODIS data products; (2) investigating the relationship between remotely
sensed SOS and real seeding date for different crops and years; and (3) developing an approach to
estimate seeding date at the field level from remotely sensed SOS combined with GDD information.
The proposed approach was evaluated over agricultural regions in the Province of Manitoba, Canada,
and observed seeding dates for the years of 2006 and 2009, with large difference in meteorological
conditions between the two years, were used. In particular, suitability of the approach for different
years and for different crops is assessed.

2. Materials and Methods

2.1. Study Area

Manitoba has a relatively large agricultural area, mostly distributed in the southern portion of the
province bordering the United States (Figure 1). The region has a sub-humid continental climate and is
characterized by cold and windy winters and warm, moderately long summers. Soil type is dominated
by Black and Dark Gray Chernozems and Gray Luvisols [38]. Total rainfall and average daily mean
temperature during the crop growing season (May 1–September 30) is more than 300 mm and about
15 ◦C, respectively [39]. Canola, spring wheat, oats, barley and flaxseed, are the five major annual
crops of the province, comprising more than 90% of the cropped area (Manitoba Agriculture, Food and
Rural Initiatives, MAFRI, https://www.gov.mb.ca/agriculture). Single-season cropping is the primary
practice, with crops generally seeded from late April to mid-June and harvested starting in mid-August
(Seasonal Reports, MAFRI, https://www.gov.mb.ca/agriculture). This study was conducted using two
years of data (2006 and 2009) with varying weather conditions.

https://www.gov.mb.ca/agriculture
https://www.gov.mb.ca/agriculture
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Figure 1. The study area in the Province of Manitoba, Canada, and the distribution of annual 
cropland in 2009. The subset figure highlights the location of the study area within Canada. 

2.2. Air Temperature Data 

The minimum and maximum daily temperature from January 1 to December 31 of each year 
were derived from the Daymet Version 3 daily gridded data in the Oak Ridge National Laboratory 
(ORNL) Distributed Active Archive Center (DAAC) [40]. The main inputs of the Daymet model are 
surface observations from the Global Historical Climatology Network (GHCH)-Daily dataset 
distributed by the National Centers for Environmental Information (NCEI). The daily outputs of the 
Daymet model cover North America at a 1-km spatial resolution. The outputs include minimum and 
maximum temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, 
and day length. To match the spatial resolution and the projection system of the MODIS data, the 
temperature data was resampled to the same spatial resolution (250-m) of the MODIS data using a 
bilinear resampling method. The daily mean temperature in 2009, especially during the early season 
before July, was cooler than in 2006; therefore, the AGDD (base 5 °C) in 2006 was higher than in 2009 
(Figure 2). Crop growth and development in 2006 was therefore different from that in 2009.  

Figure 1. The study area in the Province of Manitoba, Canada, and the distribution of annual cropland
in 2009. The subset figure highlights the location of the study area within Canada.

2.2. Air Temperature Data

The minimum and maximum daily temperature from January 1 to December 31 of each year were
derived from the Daymet Version 3 daily gridded data in the Oak Ridge National Laboratory (ORNL)
Distributed Active Archive Center (DAAC) [40]. The main inputs of the Daymet model are surface
observations from the Global Historical Climatology Network (GHCH)-Daily dataset distributed by the
National Centers for Environmental Information (NCEI). The daily outputs of the Daymet model cover
North America at a 1-km spatial resolution. The outputs include minimum and maximum temperature,
precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length. To match
the spatial resolution and the projection system of the MODIS data, the temperature data was resampled
to the same spatial resolution (250-m) of the MODIS data using a bilinear resampling method. The
daily mean temperature in 2009, especially during the early season before July, was cooler than in
2006; therefore, the AGDD (base 5 ◦C) in 2006 was higher than in 2009 (Figure 2). Crop growth and
development in 2006 was therefore different from that in 2009.
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Figure 2. Variability of daily mean temperature (a) and accumulated growing degree days (AGDD, 
°C-days, base 5 °C) (b) for the years 2006 and 2009. 
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Time series EVI2 was used in deriving crop phenological metrics; compared with other VIs, 
EVI2 is less sensitive to the influence of canopy background reflectance at low LAI [41–43]. Previous 
studies have shown that the extraction of phenological metrics from EVI2 is more robust [14,44]. To 
derive EVI2 time series, the MOD09Q1 (Collection 6) data covering the agricultural region of 
Manitoba (MODIS titles: h12v03, h11v04 and h11v03) was downloaded from the Earth Science 
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Figure 2. Variability of daily mean temperature (a) and accumulated growing degree days (AGDD,
◦C-days, base 5 ◦C) (b) for the years 2006 and 2009.

2.3. Observed Seeding Date

Crop seeding date was obtained from the crop insurance data of Manitoba provided by the
Manitoba Agricultural Services Corporation. In this dataset, crops are recorded for “quarter section”,
a land surveying geographical boundary used in the Canadian Prairie provinces. A quarter section is
about 800 m × 800 m (640,000 m2), covering about 10 250-m MODIS pixels. The quarter section is a
part of the hierarchy of Dominion Land Survey in the Canadian Prairies. The geographical boundary
of many agricultural fields in Manitoba follows the outlines of the Dominion Land Survey units
(i.e., quarter sections, parts of quarter sections or a combination of multiple quarter sections). A large
number of quarter sections are seeded with a single crop. Seeding depth and rate of each crop are
conducted based on the guides of field crop management practices provided by the MAFRI. They
therefore are assumed to be uniform within field and between fields. Seeding date is generally between
May 1 and May 31 for spring wheat, May 1 and June 20 for canola, and May 1 and June 10 for oats
(Seasonal Reports, MAFRI, https://www.gov.mb.ca/agriculture). The seeding date for 2006 and 2009
were used in this study because of the large difference of daily mean air temperature in the two years.

2.4. MODIS Data

Time series EVI2 was used in deriving crop phenological metrics; compared with other VIs, EVI2
is less sensitive to the influence of canopy background reflectance at low LAI [41–43]. Previous studies
have shown that the extraction of phenological metrics from EVI2 is more robust [14,44]. To derive EVI2
time series, the MOD09Q1 (Collection 6) data covering the agricultural region of Manitoba (MODIS
titles: h12v03, h11v04 and h11v03) was downloaded from the Earth Science Discovery Tool of NASA
(https://search.earthdata.nasa.gov/). The MOD09Q1 provides 8-day composite surface reflectance in
the red and NIR bands. Each pixel value represents the best quality observation during the 8-day

https://www.gov.mb.ca/agriculture
https://search.earthdata.nasa.gov/
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period. The layers of the two bands and the QC (Quality Control) were extracted and re-projected to
UTM projection (Zone 14N) using the MODIS Reprojection Tool (MRT). The EVI2 (Equation (1)) was
then calculated from the reflectance of the two bands.

EVI2 =
2.5(NIR−RED)

(NIR + 2.4RED + 1.0)
. (1)

2.5. Extraction of SOS from EVI2

Two steps were involved in deriving the remotely sensed SOS. The first step was to reconstruct
daily EVI2. Low-quality observations caused by cloud, aerosol, snow cover and other factors were first
filtered out based on the QC (Quality Control) value provided by the MOD09Q1 product. The study
area has a long winter, and crop growing season is generally between May and September. EVI2 in the
winter season may be negative because of snow cover, thus, EVI2 between late March (DOY 90) and
late October (DOY 300) were selected. Observations below 0.05 among the remaining selections were
excluded as well. A time-series fitting model was then used to further de-noise and rebuild daily EVI2.
The Parametric Double Hyperbolic Tangent (PDHT) mathematic model was employed to fit the daily
EVI2 in order to derive phenological indicators. It has proven to be well suited for reconstruction of
daily f APAR in the Canadian Prairies [45]. The fitted daily EVI2 can be expressed as:

EVI2(t) = a0 +
a1

{
tanh[(t− a2)a3] + 1

}
2

+
a4

{
tanh[(t− a5)a6] + 1

}
2

− a4. (2)

where t is the day of year (DOY); a0 is the minimum EVI2 value corresponding to bare soil; a1 and
a4 define the amplitude of EVI2 for the vegetative and the reproductive phases, respectively; a2 and
a5 allow shifting the inflection points of the vegetative and reproductive phases along the time axis,
respectively; and a3 and a6 define the slopes of the vegetative and reproductive phases, respectively.
The optimal parameters of PDHT were achieved based on the Levenberg-Marquardt algorithm [46].
Based on the fitted daily EVI2, the threshold-based and inflection-based approaches, two broadly used
methods for phenological metrics extraction [15,47], were employed to estimate two sets of SOS.

i. For the threshold-based method, the SOS is defined as the time during vegetation growth
phase when EVI2 increases to a given threshold level [16,48,49]. In this study, the threshold level was
set to 20% of the seasonal EVI2 amplitude (SOS20, Figure A1), i.e., the difference of the maximum and
minimum EVI2 in a growing season [15,50].

ii. For the inflection-based method, Zhang et al. [11] defined the date of phenological stage
(e.g., SOS) as representing the transition of vegetation development from one approximately linear
growth stage to another. Therefore, phenological metrics can be extracted based on the change of
curvature (K) [11]. For the inflection-based method, the green-up date in this study (SOSinflection,
Figure A1) was considered as the inflection point corresponding to the first local maximum of the
first-order derivative of the curvature [11]. The K can be calculated using the following equation
(Equation (3)).

K =
y′′(

1 + (y′)2
) 3

2

. (3)

where y′ and y” are the first-order and second-order derivatives of the daily EVI2, respectively.

2.6. Model for Estimating Seeding Date from SOS

To reduce the influence of pixel-mixing and other factors on establishing models for estimating
seeding date from SOS, representative samples were selected firstly. Quarter sections with seeding
date observation satisfying the following two conditions were selected:
(1) They were fully covered by a single crop. This excludes the pixel-mixing effect within a
quarter section;



Remote Sens. 2019, 11, 1760 7 of 22

(2) Median SOS of the pixels within a quarter section was determined to represent SOS of the quarter
section. This can exclude quarter sections with relatively large difference of SOS for the MODIS pixels.
This is to obtain a more satisfactory curve fitting by excluding some of the low quality EVI2 data. Even
though a crop within a quarter section is generally seeded all on the same day, crop development early
in the season may not be uniform within a quarter section with large within-field variability in soil
properties, soil moisture or elevation [6,51,52].

After determining samples for each crop and year, the linear relationship between remotely sensed
SOS and crop seeding date was first considered in order to evaluate the potential of estimating crop
seeding date from SOS alone. Linear relationships were established separately for each crop type
and each year in order to investigate whether the relationship is universal across different crops and
through time.

Variability of number of days needed for emergence exists because the spatial variability of soil
temperature, soil water potential and seeding depth have considerable influence on the process of
seed dormancy, seed germination and seedling emergence. Temperature is one of the main factors
controlling the process of seedling emergence [28,53]. Crop emergence occurs when cumulative
thermal time from the seeding date reaches a given level. The remotely sensed SOS is close to the date
of leaf emergence or an early crop development stage [16,48]. Based on this assumption, seeding date
could be estimated from the SOS using the cumulative thermal time required from the seeding date to
the SOS. In this study, the cumulative thermal time from seeding date to remotely sensed SOS was
calculated for the selected samples. Daily GDD is calculated by subtracting a base temperature (Tbase)
from the daily mean air temperature (Td) (Equation (4)). In this study, GDD was calculated with the
widely adopted Tbase of 5 ◦C for cereal crops in Manitoba (MAFRI, https://www.gov.mb.ca/agriculture/).
To take into consideration low temperatures that could seriously influence crop development at early
growth stages, constraints were used for both daily minimum (Tmin) and maximum temperature (Tmax)
(Equation (4)) [22]. This is because very low temperatures could severely impact germination and
seedling emergence of spring cereal crops (e.g., spring wheat and canola) in the study site (Agriculture
Spring Frost Damage, https://www.gov.mb.ca/).

GDDd =

 0 i f ((Tmax + Tmin)/2 < Tbase or Tmin < T base )

max(0, (Tmax + Tmin)/2− Tbase)
. (4)

AGDDsos =
SOS∑

d=seeding date

GDDd. (5)

Seeding date = SOS− days(AGDDSOS). (6)

AGDD from seeding date to SOS (AGDDSOS) was then derived for each sample location, and
the distribution of AGDDSOS for all samples was then generated for each crop and year. The 95%
confidence interval, the average value (µ) and the standard deviation (σ) of the AGDDSOS were used
to characterize the distribution of AGDDSOS. The differences of AGDD among the three crops and
between the two years were explored to investigate whether the AGDD was crop- or year specific.

Seeding date can be estimated from remotely sensed SOS when AGDDSOS is well characterized
(Equation (6)). Even though AGDDSOS is generally used to determine seedling emergence, variability
of AGDDSOS may still exist. This is because cumulative thermal time required for crop emergence could
vary with geographic regions, where crop emergence in warmer regions may require less cumulative
thermal time than in cooler regions. In addition, uncertainties exist for the temperature data used, since
the temperature data of the Daymet dataset were developed from interpolation of surface observations
from sparsely distributed weather stations. Uncertainty also exists in the estimated SOS. Thus, large
errors could be induced in estimation of seeding date using a constant AGDDSOS from remotely sensed
SOS. To account for these uncertainties, seeding date was estimated within an AGDDSOS window
represented by the 95% confidence interval of the distribution of AGDDSOS (µ ± 1.96 σ).

https://www.gov.mb.ca/agriculture/
https://www.gov.mb.ca/
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Two steps were employed to take into consideration of an AGDDSOS window in the mothed.
Seeding date was initially estimated from the remotely sensed SOS by subtracting the number of days
corresponding to the average AGDDSOS (µ). We assume that the number of days required for a crop to
emerge generally does not exceed a given threshold, i.e., 28 days for the SOS20 and 21 days for the
SOSinflection (case 1). If the initially estimated seeding date did not meet this condition, it suggests
that the actual AGDDSOS might be smaller than the average AGDDSOS; hence, an adjustment was
made (case 2). To estimate seeding date in this case, 1000 AGDDSOS samples within the range between
µ-1.96σ and µ of the AGDDSOS distribution were randomly generated. The corresponding seeding
date for each generated AGDDSOS sample was then estimated, and the mean of the accepted 1000
estimations for the seeding date was finally taken as the optimum solution.

2.7. Performance Evaluation

The coefficient of determination (R2), the root-mean-square -difference (RMSD), the bias and
the Mean Absolute Error (MAE) were employed to assess the linear relationship between remotely
sensed SOS and crop seeding date, and the accuracy of the estimated seeding date. For the linear
relationship between remotely sensed SOS and crop seeding date, R2 is derived from the linear
regression, and RMSD and bias are calculated from the difference between SOS and seeding date.
For the assessment of seeding date estimation from the propose model, R2 is derived from the linear
regression between observed and estimated seeding date to show their correlation, while RMSD, bias
and MAE are calculated from the difference between observed and estimated seeding date. The RMSD,
bias and MAE can be calculated using Equations (7)–(9).

RMSD =

√√√
1
N

N∑
i=1

(Pi −Oi)
2. (7)

Bias =
1
N

N∑
i=1

(Pi −Oi). (8)

MAE =
1
N

N∑
i=1

|Pi −Oi| (9)

where Pi is the estimated seeding date or the remotely sensed SOS, Oi is the observed seeding date.

3. Results and Analysis

3.1. Statistical Characteristics of Observed Seeding Date and Estimated SOS

Table 1 shows the summary statistics of the observed seeding date and the estimated SOS using
the two approaches for the selected quarter sections and crops. The seeding window generally ranged
from DOY (day of year) 110 to 175. In a same year, the difference of the average seeding date among
the three crops was not large. Crops were seeded later in 2009 than in 2006 by one to two weeks.
For SOS estimated using the two methods, the variability among the three crops and between the two
years are similar to that of the observed seeding date. The standard deviation for the two remotely
sensed SOS indictors for different crops and years was generally around 6 days, which is close to that
of the observed seeding date. This suggests that inter-field variability of the remotely sensed SOS is in
parallel with that of seeding date. The SOSinflection was smaller (closer to the seeding date) than the
SOS20.
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Table 1. Statistical analysis of the observed seeding date and estimated Start-Of-Season; µ and σ are the
mean and the standard deviation of the samples, respectively; DOY is the day of year.

Year
Crop
Types

Sample
Number

Seeding Date (DOY) SOS20 (DOY) SOSinflection (DOY)

Range µ ± σ Range µ ± σ Range µ ± σ

2006

Spring
wheat 3918 110–166 132 ± 8.1 130–175 151 ± 5.8 117–171 145 ± 5.9

Canola 2205 112–164 137 ± 7.3 137–178 154 ± 5.1 125–173 148 ± 5.3
Oats 700 110–168 132 ± 9.7 124–169 149 ± 6.6 119–163 143 ± 6.7

2009

Spring
wheat 3130 117–172 139 ± 10.1 146–194 162 ± 5.8 135–189 156 ± 5.9

Canola 3696 119–172 147 ± 8.5 139–196 167 ± 5.7 125–185 160 ± 6.1
Oats 288 125–171 147 ± 11.7 153–196 168 ± 8.0 141–191 160 ± 8.4

3.2. Relationships between Observed Seeding Date and SOS

For both 2006 and 2009 (Figure 3 and Table 2), the observed seeding dates correlate well with
the remotely sensed SOS derived using the two methods (SOS20 and the SOSinflection). The linear
correlation between the seeding date and SOS20 was generally stronger than that between the seeding
date and the SOSinflection. The slopes of the regression lines between the seeding date and remotely
sensed SOS for both years were generally smaller than 1.0 with a positive bias, indicating that the earlier
the seeding date, the longer the gap between seeding date and remotely sensed SOS. This is reasonable
because air temperature normally increases during the seeding time in spring, hence the number of
days needed for seed to accumulate enough AGDD to emerge decreases with time (Figure 2). As the
inflection point used for SOSinflection extraction is much closer to the point at the 10% of vegetation
growth amplitude [15], the slopes of the regression lines between the seeding date and SOS20 were
generally higher than that between the seeding date and SOSinflection. The RMSD between SOS20 and
the observed seeding date was generally around 20 days, while the RMSD between the SOSinflection

and the observed seeding date was about 14 days (Table 2). Based on the Chow test [54], the difference
of linear regression between 2006 and 2009 for each crop is significant (p< 0.001), indicating that
relationship between seeding date and remotely sensed SOS is year-specific.
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Figure 3. Scatter plot of observed seeding date and remotely sensed Start-Of-Season (SOS) for spring
wheat (a,d), canola (b,e), and oats (c,f) in 2006 and 2009; DOY is the day of year. The dashed black,
the long dashed black and the solid black line denote the 1:1 line, the linear regression between observed
seeding date and SOS in 2006 and 2009, respectively.

Table 2. Linear regression between observed seeding date (x-axis) and Start-Of-Season (SOS; y-axis);
R2, RMSD (days) and Bias (days) are the coefficient of determination, the root-mean-square -difference,
and the bias, respectively. Both RMSD and Bias are derived from the difference between observed
seeding date and SOS.

Linear Regression Model Crops Regression R2 RMSD (days) Bias (days)

2006

SOSinflection

Spring
Wheat y = 0.48x + 81.82 0.44 14.9 13.6

Canola y = 0.49x + 80.87 0.46 12.0 9.9
Oats y = 0.49x + 79.15 0.50 13.2 11.3

All crops y = 0.49x + 80.15 0.48 13.9 12.2

SOS20

Spring
wheat y = 0.51x + 84.46 0.51 20.2 19.4

Canola y = 0.50x + 85.48 0.50 17.1 15.4
Oats y = 0.54x + 78.84 0.61 18.4 17.4

All crops y = 0.51x + 83.83 0.55 19.1 17.9

2009

SOSinflection

Spring
wheat y = 0.40x + 100.18 0.47 17.9 16.3

Canola y = 0.34x + 109.50 0.19 15.0 12.6
Oats y = 0.56x + 78.65 0.60 15.1 13.1

All crops y = 0.41x + 99.49 0.38 16.4 14.3

SOS20

Spring
wheat y = 0.44x + 101.76 0.58 24.0 23.0

Canola y = 0.39x + 110.37 0.27 21.0 19.6
Oats y = 0.58x + 82.57 0.73 21.7 20.7

All crops y = 0.45x + 100.94 0.48 22.4 21.1

Within the same year, the linear relationship between observed seeding date and SOS for the
three crops was similar, and the RMSD between SOS and the observed seeding date was generally
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similar (Figure 4 and Table 2). Coefficients for the linear regression (the regression and intercept
coefficient) among the three crops was small, and a general linear regression for the three crops can
be developed. However, for inter-annual comparison, the RMSD was generally larger in 2009 than
in 2006. SOSinflection and the observed seeding date was about 23 days in 2009 and 19 days in 2006,
showing a better correlation between seeding date and SOS in 2006 (Figure 2). The linear regression of
each crop was different in different years (Figure 3); therefore, the seeding date of Manitoba in different
years cannot be directly estimated from the remotely sensed SOS.
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Figure 4. Scatter plot of observed seeding date and remotely sensed SOS for different years: 2006 (a,c)
and 2009 (b,d); DOY is the day of year, and the dashed black line denotes the 1:1 lines.

3.3. Accumulated Growing Degree Days

The cumulative GDD (AGDD) from the observed seeding date to remotely sensed SOS was
calculated for each sample location. The histogram of both the AGDDSOS for the SOSinflection

(AGDDSOS,inflection ) and the SOS20 (AGDDSOS,20) were derived for each of the three selected crops
(Figure 5 and Table 3). The AGDDsos for different crops and years follow a normal distribution. The
AGDDSOS,inflection was in general smaller than the AGDDSOS,20 by about 50 ◦C-days (Table 3), which
means that SOSinflection was earlier than SOS20. Based on the two years under study, crop growth
required about 95 ◦C-days from seeding date to SOSinflection (AGDDSOS,inflection), and 150 ◦C–days from
seeding date to SOS20 (AGDDSOS,20) (Table 3). The results in Figure 5 also show that the distributions
of AGDDSOS (AGDDSOS,20 or AGDDSOS,inflection) for the same crop type are different between the
two years, however, the differences were relatively small. There are about 10 ◦C-days difference
for the average value of AGDDSOS,20 or AGDDSOS,inflection (Table 3). This suggests that AGDDSOS

might be treated as non-year-specific. More importantly, AGDDSOS within a year was not different
for different crops (Figure 6). For instance, the mean and standard deviation value of AGDDSOS,20 in
2006 for each crop are around 150 ◦C-days and 43 ◦C-days, respectively (Table 3). Unlike the linear
regression between seeding date and remotely sensed SOS, the AGDDSOS was more uniform among
crops and years. The results also reveal that the values of both AGDDSOS,20 and AGDDSOS,inflection

are relatively stable between the two years with different weather conditions. Therefore, a general
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AGDDSOS window (Table 3) can be determined for seeding-date estimation of different years and crops
from remotely sensed SOS.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 22 
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Figure 5. Histogram of AGDD from seeding date to the remotely sensed SOS using the inflection-based
(SOSinflection) and the threshold-based method (SOS20) for spring wheat (a,d), canola (b,e), and oats
(c,f) in 2006 and 2009, respectively.

Table 3. Summary of the distribution of accumulative growing degree days (AGDD) from observed
seeding date to remotely sensed SOS (AGDDSOS) for different crops and years; µ and σ are the average
value and the standard deviation value of AGDDSOS, respectively.

Year. Crops

AGDDSOS, 20 (◦C-days) AGDDSOS, inflection (◦C-days)

µ ± σ
95%

Confidence
Intervals

µ ± σ
95%

Confidence
Intervals

2006

Spring wheat 158.1 ± 42.7 74.4–241.8 106.0 ± 37.3 32.8–179.1
Canola 156.1 ± 43.0 71.8–240.4 100.1 ± 37.1 27.5–172.8

Oats 147.0 ± 47.6 53.7–240.3 95.0 ± 40.7 15.3–174.6
All crops 156.3 ± 43.4 71.2–241.5 103.0 ± 37.8 28.9–177.0

2009

Spring wheat 130.2 ± 41.6 48.7–211.7 91.3 ± 33.9 24.8–157.9
Canola 142.3 ± 55.9 32.7–252.0 89.5 ± 40.9 9.3–170.0

Oats 159.7 ± 55.3 51.2–268.1 93.4 ± 43.2 8.7–178.2
All crops 137.6 ± 50.6 38.4–236.9 90.5 ± 38.1 15.9–165.1
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Figure 6. Histogram of AGDD from seeding date to the remotely sensed SOS using the
inflection-based (SOSinflection) and that using the threshold-based method (SOS20) for 2006 (a,c)
and 2009 (b,d), respectively.

3.4. Accuracy of Estimated Seeding Date

Based on the AGDDSOS window, the estimated seeding dates in both 2006 and 2009 using either
the SOS20 or SOSinflection show good agreement with the observed seeding dates (Figures 7 and 8).
The statistical criteria (R2, RMSD, bias and MAE) for evaluating the performance are also given in
Table 4. The samples are generally distributed along the 1:1 line. The RMSD values are generally less
than 10 days, and the bias mostly ranges from -2 to 2 days (Table 4). More importantly, there are no
large differences in the errors for different crops and years. For instance, the RMSD of seeding date
estimation using SOS20 for the three crops was around 7.0 days in 2006, and 8.0 days in 2009. Using
SOS20, the RMSD and the MAE of the estimated seeding date of spring wheat were 7.4 and 5.9 days
in 2006, and 7.4 and 5.8 in 2009, respectively. The performances of the two methods (inflection and
threshold) were comparable. Similar results were also observed for canola and oats. These results
suggest that a general range of AGDD for the SOS20 or SOSinflection (Table 3), independent of crop types
and years, can be made. Thus, it is anticipated that the proposed model (Equations (4) and (5)) using
AGDDSOS,20 or AGDDSOS, inflection is generic, and crop seeding date can be accurately estimated for
other years without model re-parameterization.
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Figure 7. Comparison between observed and estimated seeding date using the inflection based
approach (SOSinflection); the dashed gray lines mark is the 10-day confidence interval, and the dashed
black line denotes the 1:1 lines.
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Figure 8. Comparison between observed and estimated seeding date using the threshold based
approach (SOS20); the dashed gray lines mark the 10-day confidence interval, and the dashed black line
denotes the 1:1 line.

Table 4 also reveals that the overall accuracy of estimated seeding date using SOSinflection is
comparable with that of using SOS20, as assessed using RMSD. However, the amount of variability in
seeding date accounted for by SOS20 was generally larger than that using SOSinflection, as reflected by
R2 (Table 4). The slope of the linear regression between observed and estimated seeding date using
SOS20 was closer to 1.0 compared with that using SOSinflection (Figures 7 and 8). Thus, the estimated
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seeding date using SOS20 is considered better for characterizing the temporal and spatial variability of
seeding date in Manitoba than that of using SOSinflection.

Table 4. Accuracy assessment of the estimated seeding date from remotely sensed SOS using R2, RMSD,
bias and Mean Absolute Error (MAE).

Model Crops Overall

R2 RMSD (days) Bias MAE (days)

2006

SOSinflection

Spring wheat 0.41 7.2 1.2 5.6
Canola 0.42 6.2 0.0 4.5

Oats 0.46 7.7 -1.5 5.6
All crops 0.46 6.9 0.6 5.3

SOS20

Spring wheat 0.50 7.4 1.3 5.9
Canola 0.43 6.9 0.9 5.2

Oats 0.59 7.5 -0.8 5.8
All crops 0.52 7.3 1.0 5.7

2009

SOSinflection

Spring wheat 0.39 8.2 -0.2 6.5
Canola 0.19 9.0 -1.9 6.7

Oats 0.60 7.9 -1.1 5.7
All crops 0.36 8.7 -0.8 6.6

SOS20

Spring wheat 0.54 7.4 -0.1 5.8
Canola 0.34 9.0 -0.8 7.0

Oats 0.71 8.2 2.1 6.5
All crops 0.50 8.3 -0.4 6.5

4. Discussion

4.1. Benefit of the Proposed Method

This study proposed a method for improved estimation of crop seeding date by incorporating
remotely sensed SOS and GDD using two years’ of test data collected in Manitoba, Canada. Firstly, the
study examined the dynamic ranges of AGDD between crop seeding date and the remotely sensed
SOS (SOS20 and SOSinflection) for three crops, spring wheat, canola and oats. The estimated AGDDSOS

(base 5 ◦C) for canola was within the range reported by Miller et al. [22] and the North Dakota
Agricultural Weather Network for canola growth in North American (https://ndawn.ndsu.nodak.edu/).
The estimated AGDD for the SOSinflection (AGDDSOS,inflection, around 100 ◦C-days, base 5 ◦C) corresponds
to the AGDD (< 142 ◦C-days, base 5 ◦C) required from crop seeding to crop emergence, and the
estimated AGDD for the SOS20 (AGDDSOS,20, around 150 ◦C-days, base 5 ◦C) corresponds to the
AGDD from seeding date to the stage with two/three leaves unfolded (143–220 ◦C-days, base 5 ◦C).
For spring wheat, AGDDSOS,20 around 150 ◦C-days (base 5 ◦C) is consistent with the AGDD (base
5 ◦C) observation from seeding date to the 2.5 Haun stage (two fully extended leaves and half of
fully extended for the third leaf) in western Canada that was reported by Mkhabela et al. [32]. This
suggests that the derived phenological metric SOS from remote sensing is physically related to a
specific development stage of a crop.

The study also confirmed that the AGDDSOS of a specific crop is relatively stable among
years [27,29,35]. This is different from the number of days between the observed seeding date and
remotely sensed SOS which vary with years because of varying weather conditions (Table 2 and
Figure 3). Hence, reparametrizing the regression between the observed seeding date and remotely
sensed SOS is often required if the crop seeding date is to be estimated using remotely sensed SOS
alone. The seeding date of the three crops was not substantially different in 2006 or 2009 (Table 1),
and the profiles of EVI2 time series during the vegetative stage were close to each other for the three
crops (Figure 9). This resulted in small differences of estimated SOS among the three crops within
a year (Table 2). By incorporating the AGDDSOS to account for climate variation from year to year,

https://ndawn.ndsu.nodak.edu/
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a model can be established to estimate crop seeding date from remotely sensed SOS without the need
for model recalibration.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 22 
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Figure 9. Time-series EVI2 for the three crops (spring wheat, canola and oats) in two different years
(2006 (a) and 2009 (b)). The two grey vertical lines highlight the period of vegetative stage.

Using the method developed in this study, error of the estimated seeding date was generally below
10 days, as evaluated using the RMSD (Table 4). Our study provides an improved estimation of seeding
date compared with studies in the literature [8,13,18,21]. For instance, Manfron et al. [8] developed
a rule-based approach to estimate seeding date of winter wheat in Camargue, France, using 250-m
MODIS EVI product and obtained an estimated accuracy of RMSD = 22.05 days and MAE = 16.5 days.
In contrast to many studies reported in the literature [7,13,21], we conducted the estimation and
evaluation of seeding date at field level. The proposed method in our study could be extended to other
crops and to other regions in Canada. This method could be used for seeding date estimation before
the reproductive phases as SOS can be well extracted from time-series remotely sensed observations
(e.g., VIs and biophysical variables) acquired before the reproductive phase [11,50].

4.2. Limitations of the Study

Given the promising results of this study, there is still room for improvement. For instance, the
uncertainties in remotely sensed SOS extraction can lead to errors in seeding date estimation, as remotely
sensed SOS could not be accurately estimated if time series EVI2 is considerably contaminated by noise
and cannot be well reconstructed in some cases [47,55,56]. This is largely due to the quality of the EVI2
observations and the selected mathematical functions for curve fitting. In particular, Manitoba has
a long winter season, and snow cover may have strong influence on parameter optimization of the
selected mathematical functions, especially the minimum EVI2 [57–59]. The threshold-based method
depends highly on the accuracies of the reconstructed maximum and minimum EVI2. However,
the peak EVI2 of a growing season cannot be accurately estimated as retrieving the optimal parameters
of the mathematical function (e.g., logistic and PDHT function) is highly dependent on the quality
and number of the EVI2 observations [58]. Shang et al. [15] reported that remotely sensed SOS cannot
be accurately extracted using the inflection-based method if the profile of the EVI2 time series does
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not follow a logistic function well. This is also true for the PDHT function. This would be the main
reason that very small or large gaps between seeding date and remotely sensed SOS existed in some of
the samples (Figure 3). According to the study by Chen et al. [55], the PDHT function or the logistic
function integrated with other reconstruction approaches, such as the locally adjusted cubic-spline
capping (LACC) [55] and the adaptive local iterative logistic fitting method [50], might help in reducing
the error of the remotely sensed SOS. Developing an approach to retrieve VI corresponding to bare soil
(minimum VI) from historical VI records [57,58], or improving a VI to be resistant to the influence of
snow cover (e.g., Normalized Difference Phenology Index (NDPI) [60]) will also improve the extraction
of SOS and other phenological metrics in the study area. Furthermore, harmonizing multi-sources
data, such as fusing MODIS with other high spatial optical data (e.g., Sentinel-2) and SAR data
(e.g., Sentinel-1 and RADARSAT-2) [61–63], is likely to improve the quality of phenology extraction
and seeding date estimation, particularly for the heterogeneous area with mixed crops.

In addition to air temperature, other factors such as soil moisture, soil temperature, seeding rate
and seeding depth can also impact crop emergence [23,64]. In this study, only air temperature was
considered; taking into consideration of other factors in the estimation process could further improve
the accuracy of seeding date estimation from remote sensing data.

The proposed method was evaluated based on the two years of data with different climatic
variability. However, more data are required to evaluate the stability of the model for different years,
locations and crops.

5. Conclusions

In this study, a method was developed for crop seeding-date estimation, and the results were
evaluated using data collected in 2006 and 2009 in Manitoba, Canada. The method uses GDD to
convert SOS derived from time-series MODIS data to crop seeding date. The test results show that the
seeding dates of three major crops (spring wheat, canola, and oats) could be accurately estimated at the
field level. On average, the estimation error based on RMSD was within 10 days of observed values.

The study also revealed that the linear regression between the observed seeding date and remotely
sensed SOS varies with years. Subtracting a constant number of days from the remotely sensed SOS
to estimate crop seeding date over large areas and across different years could therefore result in
large errors. By integrating the calibrated AGDDSOS, seeding date could be better estimated from
SOS for different crops in different years. We observed that SOS derived using a threshold-based
approach (SOS20) was more stable and accurate for seeding date estimation than SOS derived using an
approach (SOSinflection) based on the inflection point of a vegetation index curve. The SOS20 is therefore
recommended for seeding date estimation over large areas and different years. It is anticipated that
this method can be adapted to other crops at other locations using the same or different satellite data.

In future studies, the method will be further evaluated among different crops in the Canadian
Prairies. Time-series of seeding date for different crops based on historical remote sensing data
(e.g. AVHRR and MODIS) will be derived for assessing the crop production in response to climate change.
In addition, other information (e.g., soil moisture and soil temperature) derived from multi-source
remote sensing data (e.g., Sentinel-1 and RADARSAT-2) will be considered to further improve the
stability of the proposed model, and data assimilation will be incorporated in seeding-date estimation.
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Figure A1. An example showing the extraction of SOS20 and SOSinflection from the fitted curve of EVI2.
The K’ is the first-order derivative of the curvature of the fitted EVI2 curve (Equation (3)).
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