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Abstract: Leaf area index (LAI) is a fundamental indicator of plant growth status in agronomic
and environmental studies. Due to rapid advances in unmanned aerial vehicle (UAV) and sensor
technologies, UAV-based remote sensing is emerging as a promising solution for monitoring crop LAI
with great flexibility and applicability. This study aimed to determine the feasibility of combining
color and texture information derived from UAV-based digital images for estimating LAI of rice
(Oryza sativa L.). Rice field trials were conducted at two sites using different nitrogen application
rates, varieties, and transplanting methods during 2016 to 2017. Digital images were collected using
a consumer-grade UAV after sampling at key growth stages of tillering, stem elongation, panicle
initiation and booting. Vegetation color indices (CIs) and grey level co-occurrence matrix-based
textures were extracted from mosaicked UAV ortho-images for each plot. As a solution of using
indices composed by two different textures, normalized difference texture indices (NDTIs) were
calculated by two randomly selected textures. The relationships between rice LAIs and each calculated
index were then compared using simple linear regression. Multivariate regression models with
different input sets were further used to test the potential of combining CIs with various textures
for rice LAI estimation. The results revealed that the visible atmospherically resistant index (VARI)
based on three visible bands and the NDTI based on the mean textures derived from the red and
green bands were the best for LAI retrieval in the CI and NDTI groups, respectively. Independent
accuracy assessment showed that random forest (RF) exhibited the best predictive performance when
combining CI and texture inputs (R2 = 0.84, RMSE = 0.87, MAE = 0.69). This study introduces a
promising solution of combining color indices and textures from UAV-based digital imagery for rice
LAI estimation. Future studies are needed on finding the best operation mode, suitable ground
resolution, and optimal predictive methods for practical applications.
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1. Introduction

Being a fundamental variable in agronomic and environmental studies, leaf area index (LAI)
is commonly used as a crucial biophysical indicator of vegetation [1] for plant photosynthesis [2],
productivity [3], and water utilization [4]. LAI is also a useful indicator for crop growth diagnosis,
biomass estimation and yield prediction in practical use of precision agriculture [5,6].
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Traditional manual field measurement for LAI is generally accompanied by various
time-consuming and labor intensive methods with potential personal errors [7,8]. Therefore,
extensive research has been carried out using remote sensing (RS) technology to quickly estimate LAI
non-destructively at different sensing scales. Multispectral or hyperspectral images from satellites or
airborne platforms have shown great capabilities to estimate forest and crop LAI based on vegetation
indices (VIs) or degree of biomass coverage at regional and global scales [9–11]. However, unfavorable
weather conditions, such as clouds or fog, may lead to the lack of applicable satellite data, consequently
limiting their applications for crop monitoring that requires high temporal and spatial resolutions. For
applications in small areas, many ground-based non-imaging sensors, such as GreenSeeker (Trimble
Navigation Limited, Sunnyvale, CA, USA) and Crop Circle series (Holland Scientific, Lincoln, NE, USA),
have also been used on canopy scale to estimate LAI, nitrogen status, and predict crop yield [12,13].
However, the overall cost of using these ground-based sensors needs to be evaluated due to the high
labor input and the inefficient use of these sensors [14].

The development of unmanned aerial vehicles (UAVs) and their applications to RS have made it a
promising technology in recent decades [15]. Especially, the use of UAV or drone as the RS platform has
shown great potential for crop growth monitoring [14,16], which enables a proper balance among image
quality, sensing efficiency, and operating cost. Spectral information and VIs derived from UAV-based
multispectral or hyperspectral data have now been widely tested for crop monitoring [17,18]. For
example, based on the active multispectral canopy sensor RapidSCAN CS-45, Li et al. [7] proposed a
novel method for rice LAI and nitrogen status estimation using UAV active sensing. The VIs consisting
of near-infrared and red edge bands performed well in the universal predictive models both for
UAV-based and handheld applications. Kanning et al. [19] demonstrated the reliable predictability of
wheat LAI and chlorophyll content using canopy spectra extracted from UAV-based hyperspectral
images and partial least-squares regression. However, the widespread use of professional multispectral
and hyperspectral cameras is limited by their high cost and the complexity of data processing.

Meanwhile, much attention has been paid to low-cost consumer-grade UAV systems consisting of
RGB digital cameras and light-weight drones for crop growth monitoring. Due to the affordability
and simplicity for operation and image processing, low-cost UAV systems have demonstrated high
potential for technology promotion and practical applications [20]. The ortho-rectified UAV RGB
images and UAV point cloud data of the crop canopy could be further used to extract color indices (CIs)
and crop surface models for estimating LAI and other growth indicators such as biomass and plant
height [21,22]. Lu et al. [20] found that the integrated approach consisting of both UAV RGB imagery
and point cloud data improved the predictive performance of wheat biomass. Nevertheless, the
construction of structural information (e.g., point cloud data and crop surface models) was laborious
and time-consuming. Previous studies suggested that using the spectral information derived from
UAV imagery is more efficient, but the inherent spatial information such as texture holds promise to be
fully used for crop monitoring [23].

Texture analysis, an image processing technique that assesses variability in pixel values among
neighboring pixels for a defined analysis window, has been utilized with RS imagery in the fields
of image classification [24] and biomass estimation of forest [25]. Zheng et al. [23] used texture
information derived from a UAV-based multispectral camera to estimate rice biomass, and found
the normalized difference texture index (NDTI) based on the mean textures of images in 550 and
800 nm bands performed better than other texture variables and spectral indices. However, little is
known about crop LAI estimation using textural information of aerial images from consumer-grade
UAV-based RGB cameras.

Therefore, the objectives of this study were to compare predictive performance of UAV-based
color indices and texture features for rice LAI estimation and to explore the potential of improving rice
LAI estimation by incorporating both color indices and texture features into appropriate multivariate
regression modeling methods.
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2. Materials and Methods

2.1. Experimental Design and LAI Measurements

Two field experiments using different nitrogen fertilization rates, rice varieties, and methods of
transplantation were carried out at two different sites, Sihong (33.37◦N and 118.26◦E, in 2016) and
Lianyungang (34.56◦N and 119.32◦E, in 2017) situated in Jiangsu Province, China (Figure 1). This area
is a traditional rice farming area located in the transition zone of subtropical monsoon climate and
temperate monsoon climate.
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Figure 1. Locations and treatments of the experiments in this study.

Field trials covering different sites, nitrogen fertilization rates, rice varieties and growth stages,
methods of transplanting, and the largest range of LAI, were conducted. Experiment 1 (2016) was
conducted in Sihong, which included four nitrogen rates (0, 120, 240, 360 kg N ha−1) and three rice
varieties (Lianjing-7, Wuyunjing-24, and Ningjing-4), using manual transplanting. Experiment 2 was
conducted in Lianyungang (2017) with four nitrogen rates (0, 135, 270, 405 kg N ha−1), two rice varieties
(Lianjing-15 and Zhongdao-1), and two transplanting methods (pot-seedling and carpet-seedling
mechanical transplanting).

All field experiments were arranged in a randomized block design with three replicates (totally 36
plots in Experiment 1, and 48 plots in Experiment 2). The size of each plot was 48 m2 (6 × 8 m) for
Experiment 1 and 120 m2 (8 × 15 m) for Experiment 2. Nitrogen fertilizer in all field experiments was
applied in the form of granular urea as three splits: 50% before transplanting, 30% at the tillering stage
and 20% at the booting stage. For each plot, 127 kg P2O5 ha−1 was applied before transplanting, while
225 kg K2O ha−1 was used as two splits: 50% before transplanting and 50% at the stem elongation
stage following the recommendation of local agriculture department. Rice seedlings were prepared
in nursery and transplanted into the experimental fields based on the standard procedure of each
transplanting method.

Plant sampling were conducted at key growth stages of tillering, stem elongation, panicle initiation
and booting in both experiments (Table 1). Although the standard transplanting procedure and soil
preparation have partly generated homogeneous rice population in each plot, average hill number per
unit area and average tiller number per hill were further investigated from five one-square-meter areas
based on five-point survey method before sampling. Then, three hills were randomly harvested from
each plot on each sampling date according to the average tiller number. The separated leaves of the
sampled hills were scanned using Li-3000c (Li-Cor., Lincoln, NE, USA) to determine the LAI of rice
based on the average hill number per unit area in each plot.
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Table 1. Description of samplings in this study.

Experiment Year Location Samples Transplanting
Date

Sensing and
Sampling Date

Experiment 1 2016 Sihong 144 25 June

27 July (TI),
3 August (SE),
11 August (PI),
18 August (BT)

Experiment 2 2017 Lianyungang 192 19 June

27 July (TI),
3 August (SE),
10 August (PI),
20 August (BT)

TI: tillering; SE: stem elongation; PI: panicle initiation; and BT: booting.

2.2. UAV-Based Image Acquisition

A multi-rotor UAV named Phantom 3 Professional (DJI-Innovations Inc., Shenzhen, China) was
used to acquire high spatial-resolution images at the aforementioned four growth stages in this study
(Figure 2). The UAV was equipped with a 12.4 megapixel visible light (RGB) built-in camera. A
three-axis gimbal integrated with the inertial navigation system stabilized the camera during flight.
The RGB aerial images were acquired with a resolution of 4000 × 3000 pixels (ground resolution:
1.66 cm) at a sensing height of 30 m and were saved with GPS location information in .raw format.
The UAV images were collected under clear skies and low wind speed conditions between 10:30 a.m.
and 1:30 p.m. of local time. The UAV aviated automatically based on the preset flight waypoints,
leading to approximately 80% forward overlap and 60% side overlap controlled by the DJI GS Pro
ground station application. The ISO of the camera was set as 100 and a fixed exposure was used
according to the lighting conditions for each flight. Following the processing procedure of Lu et al. [20];
image alignment, georeferencing, mosaicking, dense point cloud construction, orthoimage generation,
and calibration were conducted using PhotoScan Professional software (Agisoft LLC, ST. Petersburg,
Russia) and ENVI/IDL software (Harris Geospatial Solutions, Inc., Broomfield, CO, USA) based on the
GPS location and camera internal parameters from each aerial image.
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2.3. Image Processing

2.3.1. Color Index (CI) Calculation

After all essential image processing, digital number (DN) values of R, G and B channels for each
plot were extracted from each image using the region of interest (ROI) tool in ENVI/IDL. The DN values
of RGB channels in remotely sensed RGB images can quantitatively reflect the radiance and reflectance
characteristics in visible spectrum of crop canopy [26]. Normalized DNs (r, g and b, Equations (1)–(3))
were reported to have superior capacity for vegetation estimation compared to original RGB DN
values [27]. As shown in Table 2, 12 types of CIs were selected and evaluated in this study.

r = R/(R + G + B), (1)
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g = G/(R + G + B), (2)

b = B/(R + G + B), (3)

where R, G, and B are the DNs of the red, green, and blue bands of the ROIs of each plot in the
UAV-based images, respectively.

Table 2. Summary of the spectral color indices (CIs) used in this study for LAI estimation.

CI Name Formula Reference

VARI Visible Atmospherically
Resistant Index (g − r)/(g + r − b) Gitelson et al. [28]

ExG Excess Green Vegetation Index 2g − r − b Woebbecke et al. [29]
ExR Excess Red Vegetation Index 1.4r − g Meyer et al. [30]
ExB Excess Blue Vegetation Index 1.4b − g Mao et al. [31]

ExGR Excess Green minus Excess Red
Vegetation Index E × G − E × R Neto et al. [32]

NGRDI Normalized Green-Red
Difference Index (g − r)/(g + r) Tucker [33]

MGRVI Modified Green Red Vegetation Index (g2
− r2)/(g2 + r2) Tucker [33]

WI Woebbecke Index (g − b)/(r − g) Woebbecke et al. [29]
IKAW Kawashima Index (r − b)/(r + b) Kawashima et al. [34]
GLA Green Leaf Algorithm (2g − r − b)/(2g + r + b) Louhaichi et al. [35]

RGBVI Red Green Blue Vegetation Index (g2
− b * r)/(g2 + b * r) Bendig et al. [36]

VEG Vegetativen g/(rab(1−a)), a = 0.667 Hague et al. [37]

2.3.2. Texture Measurements

The grey level co-occurrence matrix (GLCM) [24]—one of the commonly used texture
algorithms—was chosen to test the feasibility of using texture information from UAV-based RGB
images for rice LAI estimation. A GLCM contains information about the positions of pixels that have
similar grey level values, from which texture features representing the spatial arrangements of image
colors or intensities can be computed. Eight GLCM-based textures, including mean (mea), variance
(var), homogeneity (hom), contrast (con), dissimilarity (dis), entropy (ent), second moment (sem), and
correlation (cor) were calculated using the ENVI/IDL software for each plot and each band of the digital
images, respectively. Notably, entropy measures the disorder or randomness of color distribution and
the second moment indicates textural uniformity of an image by measuring the angular relationship
between neighboring pixels. The smallest window size (3 × 3 pixels) was used in the calculations of
these textures. Moreover, in order to combine two different textures, the NDTI was calculated in this
study based on Equation (4) [23]. Next, the calculated NDTIs were evaluated for rice LAI estimation
and were further compared with traditional CIs.

NDTI (T1, T2) = (T1 − T2)/(T1 + T2), (4)

where T1 and T2 represent two different randomly selected textures.

2.4. Regression Modeling Methods

2.4.1. Simple Linear Regression (LR)

Correlation analysis was conducted based on simple linear regression (LR) between rice LAI and
each CI, texture, and NDTI, respectively. Due to their simple and understandable model structure, LR
models have great applicability for practical use. The predictive performance of each single variable
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was also evaluated and compared based on LR models for rice LAI estimation. The LR models were
built using the basic function shown in Equation (5).

LAI = bX + a, (5)

where LAI represents the rice leaf area index, X represents the single input predictor variable, b and a
represent the slope and intercept of the fitted line of the LR model, respectively.

2.4.2. Multiple Linear Regression (MLR)

Different multivariate regression modeling methods, as introduced in Sections 2.4.2–2.4.5, were
used to test the potential of combining various color indices with textures for rice LAI estimation.

Multiple linear regression (MLR) is the most common form of linear regression which takes
practical utilization of multivariate inputs. MLR has a relatively simple model form, shown as
Equation (6), with great interpretability.

LAI = β0 + β1X1 + β2X2 + β3X3 + . . .+ βnXn, (6)

where X1, X2, . . . , Xn represent the input predictor variables of MLR, and β0, β1, β2, . . . , Xn represent
the parameters of each variable, respectively.

2.4.3. Principal Component Regression (PCR) and Partial Least Squares Regression (PLS)

Input predictor variables for practical predictive modeling can be correlated and contain similar
predictive information. The high correlation among each predictors would cause high variability
and potential instability of the ordinary multiple linear regression [38]. Therefore, in order to reduce
the dimension of the predictor space and improve the estimation performance of the model, this
study adopted two solutions: (1) preprocessing based on principal component analysis (PCA); and
(2) simultaneously conducting dimensionality reduction and regression by partial least squares.

Principal component regression (PCR) is a regression method that preprocesses predictors through
PCA before performing regression [39]. The input predictor variables in PCA are converted into
unrelated variable components through linear changes. Then, the transformed principal components
are sorted according to the variability. The relationship between the predictor and response variables
are characterized by the direction of the maximum variation. Finally, the regression models are built
based on these PCA components, which contain most of the information of the input predictor variables.
PCR is an unsupervised dimension reduction method and the tuning parameter that needs to be
optimized is the number of principal components (PCR #Components).

PLS can convert several highly correlated predictors into a small number of uncorrelated variables,
reducing the collinearities among them [40,41]. The PLS is originated with the nonlinear iterative
partial least squares (NUPALS) algorithm provided by Herman Wold [41], which can be used to
interactively determine the potential relationship between the highly correlated predictor variables
and the response variable [38]. PLS takes both the response and predictor variables into consideration
while balancing the predictive performance and dimensionality reduction in the process. Unlike the
PCR method, PLS can be seen as a supervised dimension reduction method, and the components (PLS
#Components) is a critical tuning parameter in its modeling.

2.4.4. Random Forest (RF)

Random Forest (RF) is a powerful machine learning algorithm, which has attracted wide attention.
It is a nonlinear integrated modeling method based on multiple decision tree, and is composed of
Breiman Leo’s autonomous resampling method (Bootstrap) [42] and the random subspace method
introduced by Tin Kam Hom [43]. RF can be used for classification, regression, and clustering. It
shows a promising capability to address the issue of overfitting as it can evaluate the importance of
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component predictor variables and can partly handle the multicollinearity among these variables
while showing great tolerance to outliers and noises. Two tuning parameters are required in the RF
process: the number of randomly selected predictors at each segmentation point (mtry) and the number
of regression trees (ntree). Using a large number of regression trees to establish forests would not
adversely affect the model’s predictive performance as introduced by Breiman et al. [42]. Therefore,
the ntree was fixed at 1000 and only the mtry was adjusted to optimize the RF models in this study.

2.4.5. Support Vector Machine (SVM)

Support vector machine (SVM) proposed by Cortes and Vapnik [44] is a powerful machine learning
method that can be used for pattern recognition and non-linear regression. The SVM regression was
originally developed in the framework of a classification model, and its main idea was to establish
a classification hyperplane as the decision boundary to maximize the distance between the decision
boundary and the closest training point as well as to approximately minimize the structural risk [38].
SVM shows good potential for its versatility, robustness, and validity. A radial basis function (RBF)
was selected in this study as the kernel function for SVM modeling. The tuning parameters of this SVM
regression model are the scale parameter of RBF (σ) and the cost parameter (Cost). The cost parameter
is the main tool for adjusting the complexity of the model, and it shows great flexibility compared
to other parameters [38,45]. In this study, a fixed σ value for each specific type of input variables of
each SVM models was automatically estimated based on the kernel-based machine learning method
provided by the ksvm function in R package ‘kernlab’ [46]. Cost was further tuned to optimize the
predictive performance of the SVM models.

2.5. Statistical Analysis

The procedure of statistical analysis after data collection is summarized by the flowchart in Figure 3.
All the samples (n = 336) were pooled and randomly split into three parts to cover most characteristics
of different experimental treatments and establish eurytopic models for rice LAI monitoring, and each
split part covered all the possible treatments in Experiments 1 and 2. Two parts of the samples were
selected as the training dataset (n = 224) while the remaining part was used as the test dataset (n = 112).
Using a repeated resampling method of 10-fold cross-validation, the training set was used not only to
tune and estimate the models, but also to evaluate their initial predictive performance. Cross-validated
coefficient of determination (R2, Equation (7)) and root mean square error (RMSE, Equation (8)) were
calculated to indicate the training and resampling results. LR models were established using inputs of
each selected CI and NDTI. The correlations between rice LAIs and each texture and texture index
were also analyzed based on the performance of the LR models, respectively. MLR, PCR, PLS, RF, and
SVM regression models were constructed and adjusted using the training set with inputs of all the
CIs, all the textures, or the combined CIs and textures, respectively. The accuracies of these regression
models were assessed using the test data samples by measuring the R2, RMSE, and MAE Equation
(9) between the predicted LAIs and the observed LAIs. Both RMSE and MAE indicate the average
prediction error. However, the RMSE is more sensitive to large errors due to its quadratic scoring rule,
while the MAE measures the absolute differences between prediction and actual observation. All the
statistical analysis was performed using R software (v. 3.4.4., R Development Core Team, 2018).

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1

(
yi − yi

)2 , (7)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (8)
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MAE =
1
n

n∑
i=1

|yi − ŷi|, (9)

where yi and ŷi are the observed and predicted values of LAI, respectively; n is the number of samples.
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3. Results

3.1. Variability of Rice Leaf Area Index

The LAIs of rice varied greatly, as expected, in terms of nitrogen rate, crop variety, growth stage,
site, treatment, and year (Table 3). An increasing trend of LAI was shown in both the training set and
test set at the four growth stages covering most of the growing cycle of rice. The LAI values across
the growth stages ranged from 0.25 to 10.35 in the training set and from 0.29 to 10.05 in the test set.
Besides, the large LAI variability at and across different growth stages was supposed to cover most of
the possible situations, which also made it conceivable to test the capacity of using the UAV remotely
sensed data for rice LAI estimation.

3.2. Simple Linear Regression Modeling for LAI Estimation

Figure 4 shows the performance (estimated by R2 and RMSE) of the LAI predictive models based
on each of the 12 CIs using 10-fold cross-validation. The VARI and IKAW presented strong LR accuracy
with rice LAI at and across all four stages compared to other CIs. Most of the CI-based LR models for
LAI estimation showed relatively higher R2 and lower RMSE at the tillering stage than those of the
subsequent three growth stages. The VARI-based LR model exhibited the best predictability for rice
LAI across all the growth stages (R2 = 0.74, RMSE = 1.13).
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Table 3. Descriptive statistics of leaf area (LAI) in different growth stages for each dataset.

Stages Samples LAI

Min Max Mean SD CV

Training dataset

TI 56 0.25 4.36 1.93 0.99 51.26%
SE 56 0.41 6.85 3.36 1.57 46.76%
PI 56 0.82 8.67 4.05 2.00 49.27%
BT 56 0.93 10.34 5.08 2.29 45.08%

All stages 224 0.25 10.34 3.60 2.11 58.48%

Test dataset

TI 28 0.29 3.98 1.94 0.97 50.28%
SE 28 0.40 5.17 3.06 1.50 48.90%
PI 28 0.81 8.07 3.92 2.03 51.82%
BT 28 1.15 10.05 4.99 2.28 45.58%

All stages 112 0.29 10.05 3.48 2.07 59.69%

TI: tillering; SE: stem elongation; PI: panicle initiation; and BT: booting.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 22 
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The linear relationships between rice LAI and the textures of R (Figure 5a,b), G (Figure 5c,d) and
B (Figure 5e,f) channels varied greatly at different growth stages and textures. Most single textures
showed poor predictive performance for LAI estimation across the growth stages except for the
correlation (Rcor, Gcor, Bcor) and mean (Rmea, Gmea, Bmea) textures. As shown in Figure 5, similar
cross-validated R2 and RMSE values were exhibited for the models based on the same textures of
different color bands. This is because texture measurements highlight the spatial arrangement or
relationship of pixel values in a neighborhood and similar spatial patterns appeared in the three color
bands in this study. Across all the growth stages, the texture-based LR models for LAI estimation
were not satisfactory with the best single texture of Rcor (R2 = 0.52, RMSE = 1.48). Therefore, it seems
critical to combine different texture features for predictive purpose.

Utilization of NDTI is one of the promising solutions of combining two different textures for LAI
estimation. Figure 6 shows the cross-validated R2 of LR models based on the NDTI with randomly
selected T1 and T2 at and across different growth stages. The R2 values of these models varied notably
among four growth stages. Unlike the CI-based ones, most NDTI-based LR models performed better
during the booting stage (Figure 6d) as compared to other three stages. However, most NDTIs showed
poor associations with rice LAI across all four growth stages except for NDTI (Rmea, Bmea), NDTI
(Rmea, Gmea) and NDTI (Rcor, Bcor) (Figure 6e), indicating the importance of texture selection when
using NDTI-based models for different stages.
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Table 4 lists the top CI-based and NDTI-based LR models sorted by the cross-validated R2 and
RMSE. VARI ranked the first (R2 = 0.74, RMSE = 1.13) among CIs followed by IKAW (R2 = 0.71,
RMSE = 1.16) and NGRDI (R2 = 0.68, RMSE = 1.24) whereas NDTI (Rmea, Gmea) (R2 = 0.72, RMSE =

1.15), NDTI (Rmea, Bmea) (R2 = 0.71, RMSE = 1.17), and NDTI (Rcor, Bcor) (R2 = 0.58, RMSE = 1.38)
were the top three NDTI-based training models. Therefore, these six LR models were chosen as the
representative LR models and their accuracies were further evaluated using individual test dataset in
Section 3.4.

Table 4. Performance of the top-three CI and the top-three NDTI-based simple linear regression models
across all four growth stages based on cross-validation with the training datasets.

Index Variable Model Equation R2 RMSE

CI
VARI LAI = 14.836 * VARI − 0.6889 0.74 1.13
IKAW LAI = −32.687 * IKAW + 4.2477 0.71 1.16

NGRDI LAI = 23.922 * NGRDI − 0.5704 0.68 1.24

NDTI
NDTI (Rmea, Gmea) LAI = −23.123 * NDTI(Rmea, Gmea) − 0.5719 0.72 1.15
NDTI (Rmea, Bmea) LAI = −29.595 * NDTI(Rmea, Bmea) + 4.3718 0.71 1.17

NDTI (Rcor, Bcor) LAI = −22.009 * NDTI(Rcor, Bcor) + 4.548 0.58 1.38

3.3. Multivariate Regression Modeling

Without feature selection or data dimension reduction, the MLR models exhibited the
cross-validated RMSE values of 0.92, 0.99, and 0.86 for the three input sets (CIs, textures, and
Cis + Textures), respectively. However, some of the predictors within CIs or textures are highly
correlated (Figure 7), indicating the potential issue of overfitting by simply using all the CIs or textures
together for MLR modeling.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 22 
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Figure 7. Pearson’s correlation coefficient (r) between UAV RGB image-derived color indices
and textures.

Figure 8 demonstrates the tuning process of PCR and PLS models with the three input sets,
respectively. When the number of PCR and PLS components increased, the cross-validated RMSE
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decreased sharply first and then remained relatively stable. Using all the CIs as input variables, the
PLS model achieved a minimum RMSE of 0.91 with six components, while the PCR attained the same
minimum RMSE with seven components. Using all the textures as inputs, both the PCR and PLS
obtained the same minimum RMSE (0.96) with 15 components. When combining all the CIs and
textures as inputs, a minimum RMSE (0.84) was achieved by the PLS model with 25 components and
PCR model with 23 components, respectively.
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With a fixed tree number of 1000, RF models were trained and tuned by adjusting the mtry value,
the number of randomly selected predictors (Figure 9). For the RF models using all the CIs as inputs,
the cross-validated RMSE varied a lot, with the minimum value (0.97) achieved when mtry was set to 4.
In contrast, for the texture-based RF models, the RMSE decreased steadily when the mtry value was
increased from 2 to around 15, and then remained roughly stable. The minimum RMSE (0.93) was
achieved when mtry was set to 21. The RF models based on the combined inputs of CIs and textures
reached a minimum RMSE (0.90) when mtry value was 7.
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and combined CIs and textures (c), respectively (number of trees was set as 1000).

The SVM regression modeling in this study was conducted using the kernel function of RBF. After
automatically estimating the parameter σ of RBF, the cost parameter Cost was tuned for each SVM
model to find the minimum RMSE. A similar concave upward trend was shown in all three cases: the
cross-validated RMSE decreased first to reach the minimum value and then increased steadily when
using a larger Cost (Figure 10). For the CI-based SVM models, the minimum RMSE (1.06) was reached
when σ = 0.4511 and Cost = 8 (Figure 10a), while for the texture-based SVM model, the minimum
RMSE (0.92) occurred when σ = 0.2146 and Cost = 8 (Figure 10b). For the case of using combined CI
and texture inputs, the minimum RMSE (0.89) presented when σ = 0.7941 and Cost = 4 (Figure 10c).
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The training results of different multivariate regression modeling methods are summarized in
Table 5, which demonstrated that combining the CIs and textures provided better predictive models than
using CIs or textures alone. Comparatively, the two improved multivariate linear regression methods
PCR and PLS provided slightly better performance (cross-validated R2 = 0.86 and RMSE = 0.84).

Table 5. Performance of the multivariate modeling methods across all four growth stages based on
cross-validation with the training datasets.

Method
CI Textures Cis + Textures

R2 RMSE R2 RMSE R2 RMSE

MLR 0.82 0.92 0.81 0.99 0.85 0.86
PLS 0.83 0.91 0.82 0.96 0.86 0.84
PCR 0.83 0.91 0.82 0.96 0.86 0.84
RF 0.80 0.97 0.79 0.93 0.84 0.90

SVM 0.76 1.06 0.83 0.92 0.85 0.89

3.4. Accuracy Assessment of the Predicted LAIs

Table 6 shows the predictive accuracy of the top-three CI-based and top-three NDTI-based LR
models. Compared to other CIs, the VARI-based model showed the best performance with the least
errors (R2 = 0.70, RMSE = 1.14, and MAE = 0.94) between the predicted and observed LAIs in the test
dataset. The NDTI (Rmea, Gmea) based model had higher value of R2 (0.65) and smaller values of
RMSE (1.23), and MAE (0.98) than the models based on other NDTIs. In general, the CI-based LR
models performed slightly better than the NDTI-based ones.

Table 6. Predictive accuracy assessment of the top-three CI-based and the top-three NDTI-based simple
linear regression models based on test dataset.

Index Variable R2 RMSE MAE

CI
VARI 0.70 1.14 0.94
IKAW 0.65 1.31 1.06

NGRDI 0.66 1.22 0.98

NDTI
NDTI (Rmea, Gmea) 0.65 1.23 0.98
NDTI (Rmea, Bmea) 0.65 1.30 1.02

NDTI (Rcor, Bcor) 0.41 1.72 1.33

The scatter diagrams in Figure 11 reveal the accuracy assessment results of the multivariate
regression models for cross-stage LAI estimation based on the independent test dataset. Overall, the
predicted LAIs by all five multivariate methods showed moderately high accuracies when compared
to the observed LAIs, with RMSE varying from 0.87 to 1.25 and MAE ranging from 0.69 to 1.03. As
shown in Figure 11a–i, for the three linear regression methods (MLR, PCR, and PLS), the texture or CIs
+ Textures based models did not show better results than the ones only using CIs as inputs. Conversely,



Remote Sens. 2019, 11, 1763 14 of 21

the RF and SVM models based on Cis + Textures performed better than the ones using CIs or textures
only (Figure 11j–o).Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 22 
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The RMSE values of the single LR and multivariate regression models were further evaluated and
compared in Figure 12. The multivariate linear regression models with more inputs demonstrated
better capability for practical LAI estimation than the single variable based LR models. In particular, the
RF models had the lowest RMSEs or highest accuracies in all treatments of input variables (CIs-based
RF: R2 = 0.81, RMSE = 0.98, and MAE = 0.77; textures-based RF: R2 = 0.79, RMSE = 0.97, and MAE =

0.71; CIs + Textures based RF: R2 = 0.84, RMSE = 0.87 and, MAE = 0.69). Therefore, the RF based on
both color indices and textures was proven to be the optimal predictive method for rice LAI estimation
using UAV-based digital imagery in this study.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 22 
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4. Discussion

4.1. Combination of Color and Texture Information for Crop LAI Estimation

To test the applicability of using UAV imagery for LAI monitoring, 12 commonly used CIs were
selected to build LR models. The results showed that visible atmospherically resistant index (VARI)
had the best performance compared to other CIs in both training (R2 = 0.74) and test datasets (RMSE
= 1.14, MAE = 0.94). Calculated from DN values of all three color channels (R, G, and B), the VARI
has demonstrated excellent feasibility for crop biomass estimation [47] and yield prediction [48] in
previous studies. VARI-based LR model has a simple and explicable structure, which is convenient for
technical implementation and practical application.

Texture as a key spatial feature can be derived from UAV-based images and contains the canopy
surface information for crop phenotypic research [24,49]. The normalized difference texture index
(NDTI) proposed by Zheng et al. [23] follows the same structure of NDVI, but using two randomly
selected GLCM-based textures instead. Their study demonstrated that the NDTI based on the mean
textures of images in 800 and 550 nm wavebands from UAV-based multispectral imagery was superior
to other VIs and NDTIs for estimating winter wheat aboveground biomass. NDTIs in this study were
calculated with randomly selected GLCM-based textures from UAV-based RGB images. NDTI (Rmea,
Gmea), NDTI (Rmea, Bmea), and NDTI (Rcor, Bcor) were the top-three NDTIs which showed great
capability to estimate rice LAI with LR models. Textures represent spatial arrangements of image
colors or intensities—rather than image pixel values. However, plant LAI is more directly associated
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with color information rather than the spatial arrangements of colors, even though texture features
may add extra information for LAI estimation. In addition, the VARI makes use of color indices from
three visible bands, whereas the NDTI only uses two textures. Therefore, this may leads to the better
performance of the VARI compared to the NDTI.

Various multivariate regression modeling methods are promising for UAV-based applications
in precision agriculture. Improved estimation of wheat biomass based on UAV sensing and RF
modeling has been previously reported [20]. MLR has also been used to combine VIs and textures from
UAV-based multispectral images for rice biomass monitoring in order to provide better prediction [23].
In this study, the RF model coupled with CIs and textures showed better estimation performance than
traditional CI-based models.

4.2. Comparison of Different Multivariate Regression Methods

Compared to traditional MLR model, PCR and PLS represent two modified multiple linear
regression methods that implement supervised and unsupervised process to reduce dimensions of
input variables, respectively [38]. The superiority of dimension reduction was partly shown by the
improved training performance of PCR and PLS (larger R2 values and smaller RMSEs than MLR) in
Table 5. Through the pre-processing of PCA, PCR converts the input variables into several unrelated
variable components, which cover the variability present throughout the predictor space. Unlike PCR,
PLS reduces the dimension while maintaining the relationship between LAI and variable components.
By reducing the complexity of the predictor space and model structure, PCR and PLS led to a relatively
better cross-validated training result than traditional MLR.

However, MLR, PLS, and PCR showed some performance deterioration in Figure 11 when
comparing the accuracy assessment results with the cross-validated training outcomes (Table 5). This
performance deterioration could be attributed to the fact that the predictor components might not have
a causal relationship with rice LAI, and despite the dimension reduction processes of PCR and PLS,
multicollinearity might still exist in the CIs and textures (Figure 7)—leading to overfitting and poor
predictive ability of these models. Therefore, pre-selection of input variables based on pre-analysis of
the correlations among input predictors and utilization of indicators such as variance inflation factor
(VIF) have been suggested to resolve the aforementioned issue in future studies [50,51]. However,
the existence of nonlinear relationships between LAI and the input predictors (CI or texture) cannot
be overlooked, which is difficult to estimate by linear regression-based models. This indicates the
potential applicability of some other predictive modeling methods with nonlinear structures.

RF and SVM are two powerful predictive modeling techniques that can theoretically solve the
issue of multicollinearity of the predictor variables. However, in this study, the CI-based SVM model
did not exhibit better predictive performance than other modeling methods including RF (Figure 12).
This may be caused by the defective parameter setting of Cost and σ. Considering the 12 CIs used
for SVM modeling, the large number of Cost (8) may lead to a complex model structure and the
potential risk of overfitting and poor predictive ability [44]. This issue needs to be further analyzed by
considering factors such as detailed model structure, kernel function selection, and superior approaches
for parameter setting.

With the smallest RMSE values, RF models achieved the best predictive results in all input
treatments (Figure 12). In fact, contrary to the accuracy assessment results, the RF model did not show
superior performance in the training process as compared to PLS and PCR models. Breiman [42]
showed that RF can improve error rates by selecting many powerful, independent, and complex
learners who exhibit low bias in the process of variance reduction. Since each learner is independent
from all other learners, RF can be more robust to noises contained in the response variables and may
overcome overfitting—resulting in exceptional predictive performance.
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4.3. Potential of Consumer-Grade UAV-Based Digital Imagery for Crop Monitoring

Previous research has revealed significant differences in the results of UAV RS-based crop growth
monitoring due to the use of different sensors [14]. With the exception of a few studies using Lidar [52]
and non-imaging active or passive canopy sensors [7,53], most of the UAV-based studies have used
imaging spectrometers or multispectral [16,48] and hyperspectral cameras [19]. However, professional
imaging sensors, UAV systems, and their supporting software may lead to a high total cost for ordinary
consumers and cause challenges for technical promotion.

On the contrary, consumer-grade UAVs and their built-in digital cameras offer obvious advantages
of low cost (totally US $1200 for hardware cost in this study) and multiple uses. Besides, the
large consumer-grade UAV market has not only attracted plentiful agricultural studies, but also
accelerated the integration of more cutting-edge artificial intelligence (AI) and the internet of things
(IoT) technologies into applications [54]. The rapid development of hardware and software for
consumer-level UAVs has partly reshaped the industry of UAV-based precision agriculture, lowering
application barriers and promoting technical expansion. For example, more mobile applications, such
as Skippy Scout (DroneAg, Alnwick, UK), can provide integrated and automated solutions of UAV
flight planning, operating, imagery capturing, and data analysis for crop scouting [55]. Therefore, A
consumer-grade UAV with a digital camera can serve as a cheap and easy-to-use UAV RS solution for
crop growth monitoring and precision agriculture [20,56].

Considering remotely sensed variables, traditional spectral indices such as VIs or CIs have been
widely used in UAV RS-based crop biomass estimation [57], flower count [58], vegetation detection [59],
yield prediction [19,48], and other applications of precision agriculture [60]. On the other hand, other
studies have also used spatial information derived from UAV-based imagery, such as digital crop
surface models (CSMs) [36], degree of canopy cover [61], plant height [36], and textures [49] for crop
growth monitoring. It has been noted that the digital images collected by consumer-grade UAVs can
take advantages of both sides to provide spectral and spatial information such as CIs [20], CSMs [62]
and textures [49]. Moreover, proper multivariate regression methods can also improve the utilization
of various UAV image-derived variables, as demonstrated by this and previous studies [20,63].

Apart from aforementioned advantages of consumer-grade UAV sensing, some further
considerations regarding the practical use of this system are necessary. The first issue is the impact
caused by the ground or spatial resolution of the UAV imagery. The canopy information contained in a
single pixel could vary significantly at different ground resolution settings. In this study, an ultra-high
ground resolution of 1.66 cm was used for image capture and texture calculations. This resolution
setting comes from the consideration that high spatial-resolution images contain more pure pixels of
crop leaves, crop shadows and background than low-resolution images [64]. Yue et al. [49] evaluated
the impact of UAV image’s ground resolution (1-, 2-, 5-, 10-, 15-, 20-, 25-, 30-cm) on GLCM-based
textures and their capabilities for wheat biomass estimation. They found that textures derived from 1
cm ground resolution images were highly related to biomass, because the high-frequency information
in most pure pixels of ultra-high-resolution images represents the scale of flourishing crops. Image
ground resolution determines the contents in mixed pixels, which are further influenced by the canopy
size and background information such as row spacing. Therefore, future studies are still needed to
analyze the performance of textures at various ground resolutions, different stages with varying crop
canopy sizes, and different background conditions controlled by farming operations.

In addition, the modeling methods and the extracted features still need to be improved. Although
outstanding performance was achieved by combining CIs with textures in the RF model, the importance
of each input variable for LAI estimation is still unclear. More promising modeling methods such as
Bayesian linear regression [18], mixed-effect model [65,66], or deep learning [67] need to be tested
with the most critical predictor features. Besides, the crop growth process is usually affected by
various environmental factors such as temperature or sunshine duration. Accordingly, the spectral and
texture features of the crop may vary nonlinearly with the growth process and growing environment.
Therefore, it is important not only to summarize ideal indices consisting of sensitive spectral and
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texture features based on their underlying mechanism, but also to incorporate environmental variables
from multiple times during the crop phenological cycle in the predictive models, in order to provide
powerful and suitable models for practical uses.

5. Conclusions

This study showed the feasibility of using color indices and textures derived from images collected
by a consumer-grade UAV to estimate rice LAI based on field measurements and comprehensive
predictive modeling approaches. VARI and NDTI (Rmea, Gmea) showed the best performance in
CI-based and NDTI-based LR models, respectively. Multivariate regression modeling methods (MLR,
PLS, PCR, RF, and SVM) were further evaluated and compared using different input variable sets. RF
showed the best ability to combine CIs and textures for rice LAI estimation (R2 = 0.84, RMSE = 0.87,
and MAE = 0.69). Future investigations are necessary to consider the effects of UAV image resolution,
feature extraction methods, and the underlying mechanisms of textures. Additionally, automated
workflow for image acquisition, feature extraction, and better LAI estimation strategy is yet to be
developed for practical uses of this sensing mode in the future.
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