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Abstract: The global coastal seascape offers a multitude of ecosystem functions and services to
the natural and human-induced ecosystems. However, the current anthropogenic global warming
above pre-industrial levels is inducing the degradation of seascape health with adverse impacts on
biodiversity, economy, and societies. Bathymetric knowledge empowers our scientific, financial,
and ecological understanding of the associated benefits, processes, and pressures to the coastal
seascape. Here we leverage two commercial high-resolution multispectral satellite images of the
Pleiades and two multibeam survey datasets to measure bathymetry in two zones (0–10 m and
10–30 m) in the tropical Anguilla and British Virgin Islands, northeast Caribbean. A methodological
framework featuring a combination of an empirical linear transformation, cloud masking, sun-glint
correction, and pseudo-invariant features allows spatially independent calibration and test of our
satellite-derived bathymetry approach. The best R2 and RMSE for training and validation vary
between 0.44–0.56 and 1.39–1.76 m, respectively, while minimum vertical errors are less than 1 m
in the depth ranges of 7.8–10 and 11.6–18.4 m for the two explored zones. Given available field
data, the present methodology could provide simple, time-efficient, and accurate spatio-temporal
satellite-derived bathymetry intelligence in scientific and commercial tasks i.e., navigation, coastal
habitat mapping and resource management, and reducing natural hazards.

Keywords: satellite-derived bathymetry; IHO; commercial satellite; Pleiades; empirical; tropical
environment; linear transformation; vertical error; sun-glint correction; pseudo-invariant features

1. Introduction

Extending over 1.6 million square kilometres of coastline [1], the global seascape (corals, seagrasses,
mangroves, tidal flats) is front and centre in supporting Earth’s interconnected natural and human
ecosystems. Over three billion people live near, and rely on, the coastal seascape for their food, energy,
water, protection, and livelihoods. Economic activities associated with the coastal environment totalled
to US$750 billion in 2010, which under a “business-as-usual scenario” is expected to nearly triple by
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2030 [2]. However, during the Anthropocene Epoch [3]—the era of significant human influence on
the Earth’s climate—a projected global warming of 1.5 ◦C, and more significantly of 2.0 ◦C, above
pre-industrial levels could induce detrimental and irreversible impacts on the health of the coastal
seascape. This would exacerbate the risks (e.g., extreme weather events, failure of climate-change
mitigation and adaptation, natural and human-made disasters, biodiversity loss and ecosystem collapse,
and water crises) across biodiversity, water, food, energy, and well-being [4,5].

Bathymetry is a fundamental property of the global coastal seascape. It provides insights into the
scientific, economic, and ecological processes and pressures acting upon coastal regions. Knowledge
of the seabed morphology is important for effective coastal resource management (i.e., coastline
conservation, maritime spatial planning, and blue economy), safe navigation, coastal development,
improved benthic habitat mapping and monitoring, and support in mitigation plans for natural
hazards. Historically, instruments and sensors have been mapping bathymetry by actively, or passively,
measuring sound (such as single beam (SBES) and multibeam echosounders (MBES)), or light (including
satellite-derived bathymetry (SDB), Light Detection and Ranging (LiDAR), and Satellite Altimetry) [6].

Focusing on the optical and passive domain of bathymetry estimation, SDB has been traditionally
a time and cost-efficient approach for calculating water depth with small processing requirements
in shallow, remote, and large regions. Emerging in the 1970s, SDB from multispectral satellite
images has featured mainly empirical methods which establish linear and log-transformed ratio-based
statistical relationships between visible wavelength bands and in situ depth values, over the optically
shallow benthos, most commonly the first 15 m of depth [7,8]. Whether the seafloor is optically
shallow or not depends on the physical environment and the satellite remote sensing technology.
The physical environment conditions concern the atmosphere (e.g., aerosols, clouds), water surface
(e.g., waves, sun-glint, sky-glint), and water column conditions (e.g., turbidity, suspended material),
at the time of image acquisition. The remote sensing technology relates to the satellite instrument per
se (e.g., signal-to-noise-ratio, satellite sensor pointing and geometry). Empirical relationships feature
three assumptions: (a) Field observations used to train and validate the resulting empirical models are
spatially independent of each other; (b) model residuals display a normal distribution and random
location; and (c) homogeneous and unvarying water column and seabed albedo.

In the last 20 years, in addition to empirical approaches, a plethora of new SDB methods has
been presented: Semi-analytical, analytical, and physics-based, following the model-driven spectral
optimisation technique of [9,10]; photogrammetric [11,12]; and hybrid [13]. The advantages of such
approaches over the aforementioned empirical methods are their higher accuracy and robustness to
variable water column optical conditions and bottom types, and their extrapolation ability beyond
the extent of the employed in situ data (i.e., not scene and/or site-specific). In contrast, physics-based,
photogrammetric, and hybrid SDB methods require greater computational power, in situ data
availability, and technical capacity.

In the last decade, technological advances in Earth observation, cloud-computing platforms,
artificial intelligence, and constellations of higher spatial, temporal, and radiometric resolution
satellite sensors, have enabled new methodological developments, as well as scientific, operational,
and commercial applications in the domain of SDB. From small-scale, single-image approaches in
specialised software and local servers [14–16], to large-scale multi-temporal practices, commonly
within cloud geospatial platforms [17–20], these applications have been unlocking the potential and
increasing the value of bathymetric estimations from space.

Independently of the remote sensing technology advances, suitable field bathymetric datasets
to calibrate and validate relevant SDB models and products have been integral to the scale and
accuracy of most SDB approaches since the 1970s. It is these elements that facilitate the future
scalability, democratisation, standardisation, and automation in this coastal remote sensing domain.
The calibration and validation observations have been collected and offered by acoustic and optical
means of various spatial resolutions and accuracies from SBES, MBES, and LiDAR [7,8,12,14–20].
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The problems of the currently available bathymetry datasets for small government departments
relate to a lack of spatial resolution, spatial coverage [21], and the temporal frequency of repeatable
surveys. SBES, MBES, and LiDAR models capture the spatial resolution required, but not always at the
spatial coverage needed and at reasonable costs. An SDB approach allows departments to utilise the
benefits of Earth observation imagery, extrapolating the accuracy from MBES data, potentially across
entire exclusive economic zones (EEZ). However, intersecting field observations are still required but are
not always available; a common problem for most small Caribbean island countries. The methodology
of [18], initially applied to Sentinel-2 in Google Earth Engine (GEE), allows for the application of SDB
from in situ data collected ~566 km away. If the method was transferrable to Caribbean waters, using
~2m resolution imagery and trained software staff, it would provide local government departments
access to much-needed bathymetry data for marine spatial planning (at a suitable spatial resolution,
spatial extent, and at relatively low cost), utilising in situ data collected from a more data-rich island.

Here, we leverage the commercial high-resolution (2 m) multispectral satellite imagery of the
Pleiades and multibeam field soundings to estimate bathymetry in two locations around the tropical
islands of Anguilla and the British Virgin Islands (BVI), in the northeast Caribbean. The aim of this
study is to explore the suitability of the combination of high-resolution satellite and multibeam data,
and the methodology of [18] for bathymetry extraction in a tropical benthic seascape. To achieve
this, we exploit two different MBES surveys, collected nearly simultaneously with two Pleiades
satellite images, to apply the designed methodology of [18] in a local-server and single-scene exercise.
In addition to a statistical assessment, we review the suitability of our SDB approach in a tropical
seascape environment, according to the International Hydrographic Organization’s (IHO) Category
Zones of Confidence (CATZOC) depth ranges—0–10 m and 10–30 m [22]—to keep in mind the potential
application of uses within navigation. Last but not least, we discuss what we consider as the three
most significant elements for repeatable planetary-scale SDB calculations.

2. Materials and Methods

2.1. Study Sites

Both of the study sites are United Kingdom Overseas Territories (UKOT), located as part of the
Leewards islands (Figure 1a), a group of islands in the northeast Caribbean that is the interface between
the Caribbean Sea and the Atlantic Ocean. The first study site covers the northern coast of Anguilla
(Figure 1c), focussing on Long Bay, Road Bay, around Sandy Island, and parts of Crocus Bay. There is a
mix of benthic habitats, including seagrasses, sandy substrates, soft coral reefs, and algae [23]. The
region selected is predominantly less than 30 m deep, but adjacent to a drop (>40 m deep) west of Sandy
Island. The second site forms part of BVI—an archipelago of 50 islands 167 km to the west of Anguilla.
The selected site is along the southern coast of the main island, Tortola, from Road Town (the capital)
east to bluff bay (Figure 1b). The marine habitats are a mixture of seagrasses (Syringodium filiforme and
Thalassia testudinum), sandy/rocky substrates, sponges, hard and soft coral reefs, and algae [24]. The
area experiences heavy marine traffic from the Road Town Ferry Terminal, Tortola Cruise Ship Pier
and private/commercial yachts in the harbours along the coast. There are also shallow (10–20 m) bank
reefs with very steep faces (up to 60◦ incline).
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Figure 1. Area of interest for the study sites; (a) the Leeward Islands of the Caribbean; (b) the British 
Virgin Islands, and (c) Anguilla. The bounding boxes indicate the geographic corners of the satellite 
imagery. The dotted extent represents the boundary of in situ data available. 

2.2. In Situ and Satellite Data 

2.2.1. Multibeam Echosounder Surveys 

Between 29 August 2016 and 03 September 2016, the Centre for Environment, Fisheries and 
Aquaculture Science (Cefas) collected bathymetric survey data for Anguilla using a Kongsberg 3002 
multi-beam echo sounder, for the Darwin Plus project “DPLUS045: Mapping Anguilla’s ‘Blue Belt’ 
Ecosystem Services”. The UK Hydrographic Office (UKHO) and Cefas processed the raw data and 
gridded to 2 m by the using Caris Sips and Hips, and assessed with 99% agreement against IHO 
Standards for Hydrographic Surveys Order 1a and Special Order [25]. Depth data for BVI was 
surveyed using a “Teledyne-Reson T20-P multibeam echosounder, Applanix POS MV Wavemaster 
Inertial Motion Unit with Fugro GPS corrections, SAIV SD-204 CTD profiler, PDS2000 and Pos-Pac 
data acquisition software [26].” UKHO and MMT captured the data between 11 July 2014 and 03 
August, as part of the Darwin Plus project “DPLUS026: British Virgin Islands MPA and hydrographic 
survey capacity building”. UKHO processed the data using QPS FMGT.2.2.2. 

2.2.2. Pleiades Imagery 

This study obtained two Pleiades satellite imagery. The first, for Anguilla, was acquired as part 
of the Darwin Plus project “DPLUS045: Mapping Anguilla’s ‘Blue Belt’ Ecosystem Services”, 
undertaken by Cefas. The second, for BVI, was acquired as part of the Joint Nature Conservation 
Committee (JNCC) funded project “Using radar-based terrain mapping to model the vulnerability of 

Figure 1. Area of interest for the study sites; (a) the Leeward Islands of the Caribbean; (b) the British
Virgin Islands, and (c) Anguilla. The bounding boxes indicate the geographic corners of the satellite
imagery. The dotted extent represents the boundary of in situ data available.

2.2. In Situ and Satellite Data

2.2.1. Multibeam Echosounder Surveys

Between 29 August 2016 and 03 September 2016, the Centre for Environment, Fisheries and
Aquaculture Science (Cefas) collected bathymetric survey data for Anguilla using a Kongsberg 3002
multi-beam echo sounder, for the Darwin Plus project “DPLUS045: Mapping Anguilla’s ‘Blue Belt’
Ecosystem Services”. The UK Hydrographic Office (UKHO) and Cefas processed the raw data and
gridded to 2 m by the using Caris Sips and Hips, and assessed with 99% agreement against IHO
Standards for Hydrographic Surveys Order 1a and Special Order [25]. Depth data for BVI was
surveyed using a “Teledyne-Reson T20-P multibeam echosounder, Applanix POS MV Wavemaster
Inertial Motion Unit with Fugro GPS corrections, SAIV SD-204 CTD profiler, PDS2000 and Pos-Pac data
acquisition software [26].” UKHO and MMT captured the data between 11 July 2014 and 03 August,
as part of the Darwin Plus project “DPLUS026: British Virgin Islands MPA and hydrographic survey
capacity building”. UKHO processed the data using QPS FMGT.2.2.2.

2.2.2. Pleiades Imagery

This study obtained two Pleiades satellite imagery. The first, for Anguilla, was acquired as part of
the Darwin Plus project “DPLUS045: Mapping Anguilla’s ‘Blue Belt’ Ecosystem Services”, undertaken
by Cefas. The second, for BVI, was acquired as part of the Joint Nature Conservation Committee (JNCC)
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funded project “Using radar-based terrain mapping to model the vulnerability of 5 UK Overseas
Territories to natural hazards and the value of natural capital in mitigating impacts”, undertaken by
Environment Systems Ltd. The datasets for both study sites utilised 4-band multispectral products,
with blue, green, red and near-infrared bands, and at a ground resolution of 2.0 m. The design
specification for Pleiades imagery suggests a positional accuracy of 0.5 m CE90, with appropriate
ground control points and digital elevation models [27]. The dates of capture and sensor details are
available in Table 1.

Table 1. Overview of the Pleiades imagery capture.

Study Site Date of
Acquisition

Sensor
Azimuth

Sensor
Viewing Angle Solar Azimuth Solar

Elevation

Anguilla 15 August 2016 180.33 23.66 98.13 68.01
BVI 25 January 2016 179.99 2.51 147.75 46.49

Both images were selected, from the pool available within the separate projects, due to their
intersect with the available MBES data, cloud-cover, sea-surface conditions and relatively low sediment
load. Despite this, in the BVI image, we observe relatively high turbidity levels in the very shallow
waters of Road Harbour. Orthrectification of the data took place using ENVI 5.3, corrected for a position
in ArcGIS Desktop 10.0 against ESRI World Imagery, radiometrically corrected to top-of-atmosphere
reflectance (TOA) in ENVI 5.3, and projected with respect to EPSG:32620 (WGS 84/UTM Zone 20 N).

2.3. Satellite Data Preprocessing

To extract quantitative data from satellite imagery, the same pre-processing workflow must
be applied to all image datasets; from raw digital numbers to an atmospherically and water
column corrected image. This study amends the pre-processing workflow from [18] (hereafter
Traganos18), whereby multi-temporal Sentinel-2 images, in GEE, had been cloud and land masked,
and atmospherically corrected, before being converted to temporal composites for sun-glint correction,
radiometric normalisation and smoothing. The workflow allowed multiple sets of temporal composites
to radiometrically replicate a training composite using pseudo-invariant features (PIF), modelling the
reference atmospheric and water column conditions. This meant the same bathymetric algorithm
coefficients could be performed on all the validation composites. This study deviates from the original
by use of high-resolution imagery from Pleiades, and the use of commercially available software
(QGIS 3.4) instead of GEE. As such, some workflow processes were adapted or removed. The deviations
and adaptations of the processing steps from Traganos18 applied to the TOA Pleiades were as follows:

1. The cloud mask data that were supplied with the raw Pleiades imagery were not accurate or
precise enough for use. All clouds over marine environments were manually delineated and
masked in QGIS 3.4.

2. The Pleiades data lacks the shortwave-infrared of Sentinel-2 used within the classification and
regression tree (CART) classifier. A CART classifier using the Pleiades imagery was considered,
but did not reflect the existing boundaries used by the island GIS departments. To ensure
interoperability with existing departmental data, all terrestrial environments were masked using
OpenStreetMap boundary data in QGIS 3.4.

3. The modified dark pixel subtraction (DPS) method [28] was implemented in QGIS 3.4.
4. The temporal image composition [29] was outside the scope of this study and was not performed.
5. The sun-glint correction algorithm [30] was performed on the single scene Pleiades images, within

QGIS 3.4.
6. There was no deviation from how the PIF were extracted, modelled or applied [31], except for the

vegetation types used to represent dark features. In this study, shallow sand was used in all sites
as bright features. Thalassia testudinum (turtle grass) and Syringodium filiforme (manatee grass)
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were used as dark features for the Anguilla site and BVI site respectively. The location used to
extract the bright and dark featured are displayed in Figure 2.

7. The 3 × 3 low pass filter was applied in QGIS 3.4.
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Figure 2. Location of pseudo-invariant features (right column panels) for (a) Anguilla and (b) the
British Virgin Islands.

2.4. Empirical Satellite-Derived Bathymetries (SDB)

The majority of empirical SDB modelling using 4-band imagery, such as the Pleiades, utilises the
linear relationship between the spectral decay of the optical wavelengths against survey in situ data.
To remain consistent with the study from Traganos18, the blue and green bands were used to form the
predicted SDB output. Similarly, this study utilised the SDB algorithm developed by [7] (hereafter
Lyzenga85), which consistently demonstrated higher R2 and lower RMSE values than other examined
approaches in the study by Traganos18. The Lyzenga85 method relies on a relationship to be formed
between each band (subtracted by its mean signal over deep water), its respective linear spectral decay,
and in situ depth data, to form:

z = a + bi ln(x - xsi) + bj ln(xj - xsj), (1)

where z is the SDB prediction; a and b are the multiple linear regression intercept and slope coefficients
(respectively) for band i (blue) and j (green); x is the pre-processed radiance values for band i and j,
and xs is the mean deep-water values for band i and j.

The MBES rasters from both case study sites were resampled to 2.0 m, snapped to the intersecting
Pleiades imagery, and converted to point data. The Anguilla SDB models were trained from the MBES
at two depth ranges, 0–10 m and 10–30 m, representing the IHO’s CATZOC depth ranges. The resulting
multiple linear regression intercept, blue band slope, green band slope, R2 and RMSE values, for both
depth ranges, are given in Table 2.
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Table 2. Lyzenga85 multiple linear regression coefficients for each depth range.

Model Depth Intercept B1 Coefficient B2 Coefficient R-Squared
Value

RMSE Value,
Metres (m)

0–10 m 0.0 −9.06 7.72 0.94 1.74
10–30 m 0.0 −16.07 14.19 0.98 2.29

The multiple linear regression statistics, ANOVA results, statistical calculations and residual
outputs for the 0–10 m and 10–30 m models are available in Tables S1 and S2, respectively. The same
intercept, B1 coefficients, and B2 coefficients for each model depth in Anguilla, were used to model the
same depth range for the BVI SDB.

2.5. Accuracy and Error

Both the MBES data in Anguilla and BVI were used to validate the output SDBs. Table 3 offers
information on the number of training and validation points for each study site and model depth, after
accounting for cloud and other areas of NoData.

Table 3. Number of training and validation points used for each study site.

Study Site Model Training Points Validation Points

Anguilla 0–10 m
10–30 m

606
1840

607
1839

British Virgin Islands 0–10 m
10–30 m - 375

3260

Vertical accuracy for all the output models was calculated from the residuals of the SDB values
subtracted by the MBES, so that negative values indicated an underestimation of depth compared
to the MBES (i.e., the SDB was too shallow), and positive values representing overestimation. The
absolute values of error were used to calculate spatial datasets of the vertical accuracies.

3. Results

3.1. SDB Estimations and Accuracies

Figure 3 shows the pre-processed Pleiades imagery (Figure 3a,d) alongside their respective SDB
models for Anguilla and the British Virgin Islands. In Anguilla (Figure 3b,c), the maximum depth
was predicted to be 13.5 m for the 0–10 m model and 33.4 m in the 10–30 m model. The BVI models
(Figure 3e,f) predicted shallower maximum depths of 8.7 m for the 0–10 m model, and 16.0 m for the
10–30 m. On local cumulative cut statistical stretches between 2% and 98%, based on the image extents,
all four models visually represent the contours of the MBES surface.

Figure 4 illustrates the linear fit between the MBES survey data, and the SDB estimated bathymetry
models. The statistical results (Table 4) show that, for Anguilla, the 0–10 m model had the lowest
RMSE value of 1.76 m and accounted for 23% of the variance. This is in contrast to the 10–30 m SDB,
which had the highest R2 value of 0.56 and a relatively higher RMSE of 2.40 m. For the BVI models,
the 0–10 m model had the lowest RMSE value of 1.39 m and explained 44% of the variance, whilst the
10–30 m model had a 7.6 m greater RMSE error, but explained three-quarters of the variation with an
R2 value of 0.33.
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Figure 3. Pre-processed Pleiades imagery and satellite-derived bathymetry (SDB) outputs for Anguilla
(a–c) and the British Virgin Islands (d–f). The pre-processed Pleiades images, including cloud and
terrestrial masking, sun-glint correction, pseudo-invariant features, and low pass 3 × 3 filter (a,d);
the SDB outputs, trained on in situ data at depths of 0–10 m (b,e); the SDB outputs trained on in situ
data at depths of 10–30 m (c,f).
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Figure 4. Validation plots of in situ multibeam echosounders survey data (x-axis) and predicted depth
from the modelled satellite-derived bathymetry (y-axis) models in Anguilla (a,b) and the British Virgin
Islands (c,d) for: The depth ranges of 0–10 m (a,c) and 10–30 m (b,d).
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Table 4. Comparative statistical results between the two study sites and two depth ranges. Displayed
in bold are the highest R2 and lowest RMSE values for each study site.

Study Site Depth Range, Metres (m) R-Squared Value RMSE Value, Metres (m)

Anguilla 0–10 0.23 1.76
10–30 0.56 2.40

British Virgin Islands 0–10 0.44 1.39
10–30 0.33 8.99

The full validation results of the Anguilla-derived and BVI-derived 0–10 m and 10–30 m SDB
models, are available in Tables S3 and S4, respectively.

3.2. SDB Vertical Errors

Figure 5 illustrates the MBES survey data (Figure 5a,d) for both study sites; alongside the absolute
vertical residuals for both the 0–10 m and 10–30 m depth models (Figure 5b,c,e, respectively).
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Figure 5. In situ multibeam echosounder (MBES) survey data and vertical error of the satellite-derived
bathymetry (SDB) models for Anguilla (a–c) and the British Virgin Islands (d–f). The MBES survey
data, resampled to 2 m where necessary (a,d); the vertical accuracy of the SDB models trained to depths
of 0–10 m (b,e); the vertical accuracy of the SDB models trained to depths of 10–30 m (c,f). Note that
high error values indicate the positive difference between the SDB and the MBES, and therefore both
over- and under- estimation.

For the Anguilla training site, the 0–10 m SDB underestimates the MBES by up to 8.8 m (at a depth
of 8.8 m) and overestimates up to 4.3 m (at a depth of 9.2 m). The 10–30 m SDB model underestimates
up to 9.5 m (at a depth of 29.2 m) and overestimates up to 16.1 m (at a depth of 17.4 m), compared to
the in situ MBES data. For the BVI validations, the 0–10 m SDB model underestimates the MBES up to
1.25 m (at a depth of 9.9 m) and overestimates by a maximum of 4.6 m (at a depth of 3.3 m). The 10–30 m
SDB model underestimates up to a maximum of 15.95 m (at a depth of 29.1 m), and overestimates by a
maximum of 5.89 m (at 11.2 m depth).

Figure 6 illustrates the absolute SDB vertical error for both study sites. There is no clear trend in
absolute error with depth in Anguilla, for either the 0–10 m or 10–30 m model residuals (R2 = 0.33
and 0.25 respectively). Here, the 0–10 m model has a lower mean absolute residual error of 1.3 m,
compared to the mean 1.8 m observed for the 10–30 m model. In BVI, both the 0–10 m and 10–30 m
residual errors do show clear linear trends (R2 = 0.92 and 0.98 respectively), suggesting an increase in
vertical error with depth.
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Comparing the SDB in BVI against the seabed classification data [24], in both depth models the
greatest errors occur in areas of Thalassia testudinum (turtle grass) and Xestopongia muta (giant barrel
sponge) within deep water (>25 m). Shallow waters containing shoal reefs, Xestopongia muta, Thalassia
testudinum and Syringodium filiforme, demonstrate absolute errors less than 5.0 m. However, an area of
shallow sand within Road Harbour has higher than expected error values for its depth, though the
Pleiades image for this region suggests a relatively high load of suspended sediment.

4. Discussion

4.1. Suitability of the Pleiades Imagery for High-Resolution SDB Estimations

The combination of two high-resolution (2 m) satellite images of Airbus’ Pleaides with two
independent in situ multibeam measurements allows us to calculate and validate bathymetry in two
depth zones—0–10 m and 10–30 m—in two tropical sites in the Caribbean Sea. The study focusses
on utilising the methodology of [18], developed with the use of cloud-based geospatial analysis and
multi-temporal image composites in a temperate region. The SDB model reaches the highest R-squared
value of 0.56 (10–30 m depth range) and the lowest RMSE of 1.76 m (0–10 m depth range) for the
training site of Anguilla; and a highest R-squared value of 0.44 and a lowest RMSE of 1.39 m for the
validation site of the BVI. Assessment of vertical errors in both areas indicates mean errors of 1.3 m
and 1.8 m in the depth ranges between 0–10 m, and 10–30 m, respectively, around Anguilla. In the BVI
region, we observe the greatest vertical accuracy, therefore, smallest over or underestimation, of less
than 1.0 m, on average, between 7.8–10.0 m, and between 11.6–18.4 m of water depth.

Beyond these depths, the signal in the Pleiades imagery becomes saturated, possibly because of
relatively (observed) adverse sea state conditions compared to the Anguillan training data including
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wind waves, swell, and turbidity. These conditions can obscure certain topographical features from
the Pleiades signal, such as the (up to) ~60◦ inclined bank reefs of BVI. Across this study area,
the topography of these reefs drops from a depth of 12 m to 30 m across a profile of only 40 m across,
whereas the Pleiades signal only reduces by ~2%, even after line-arising for spectral decay. This signal
saturation explains the deviation from x = y in the validation plots of BVI, as well as the clear trend in
increasing error with depth for the 10–30 m BVI SDB model, and highlights the importance of image
selection for practical applications.

According to the findings, Pleiades’ position accuracy, and the IHO’s CATZOC [22], the herein
calculated SDB information could potentially match Zone A2 of the CATZOC: ± 1.2 m in the depth
range of 0–10 m and ± 1.6 m in the depth range of 10–30 m. These zones assist in risk assessment for
navigation in specific geographic areas. A satisfied zone A2 means a “full area search undertaken with
significant seafloor detected and depths measured” (Seafloor Coverage) and “a controlled, systematic
survey achieving position and depth accuracy less than ZOC A1 using a modern survey echosounder
and a sonar or mechanical sweep system” (Typical Survey Characteristics) [22]. This categorisation
highlights the suitability of the high-resolution satellite image archive of the Pleiades for providing
SDB charts of high reliability for navigational purposes.

4.2. Thematic, Geographical and Methodological Comparisons

We can draw comparisons to the existing literature of spaceborne SDB endeavours, thematically,
geographically, and methodologically. Albeit a sparse current application of the Pleiades data for
bathymetry estimations, a recent photogrammetric approach [32], also within a tropical setting (this
of Moorea in French Polynesia), extracted topobathymetry between −20 m and 12.07 m of elevation,
implementing atmospherically corrected Pleiades triplet imagery and the ratio transformation of [8]
(in contrast to the linear transformation of [7] here). Comparison to a LiDAR-derived bathymetric
digital surface model showed an RMSE of 0.83 m, two-fold lower than the RMSE of 1.76 m in Anguilla
and the 1.39 m in BVI in the 0–10 m range of the present study. It is noteworthy that the SDB results of
both levels 0 and 1 of radiometric corrections of [32] are also higher than our found metrics, RMSE
of 1.06 m for level 0 (Digital Number) and RMSE of 1.17 m for level 1 (Top-of-Atmosphere). These
differences may arise from the less complex underwater environment of Moorea (in contrast to the
herein Caribbean sites) and/or the clearer atmospheric, water surface and water column conditions at
the time of acquisition of the Pleiades imagery in [32].

In a geographical comparison, a recent SDB approach [33] in Puerto Rico, following an
Adaptive-Geographically Weighted Regression model with coarser satellite data (Landsat-8 and
RapidEye), estimated bathymetry in depths between 0–20 m with an R2 of 0.95 and 0.99, and RMSE of
1.14 m and 0.4 m for Landsat-8 and RapidEye, respectively. We could attribute the better performance
of the weighted regression-based SDB effort in similar coastal environments, to its more sophisticated
treatment of the heterogeneity of water column properties and bottom types, and additionally, its use
of bands for estimation and correction in the red and NIR wavelengths. Another adaptive-based
SDB study [34], in the south-eastern coast of the Dominican Republic, employed Planet’s 3.7 m
resolution Doves, and mapped bathymetry up to 15 m with R2 and RMSE in the ranges of 0.70–0.91
and 1.37–1.98 m, correspondingly. While the RMSE values calculated within this study fall within the
observed range of [34], the coefficients of determinations explain at best 20% less variation; we could
interpret this difference on the basis of the more optical impediments observed in our study sites,
related to high sediment loads and considerable grounds of seagrasses.

Finally, in a methodological comparison with the first showcase of the herein utilised
methodology [18], which used multi-temporal composites of the coarser 10 m Sentinel-2 imagery in a
cloud environment to extract bathymetry in the temperate waters of Greece, a lower RMSE is examined,
but also R2 in the present study (for similar depth ranges). We speculate that this discrepancy is due
to the exploitation of the multi-temporal imagery in [18], which addresses better (in contrast to our
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single-image approach here) intra and inter-image interferences associated to atmospheric, water
surface and water quality conditions.

4.3. The Pros and Cons of the Current SDB Approach

We exploit this section to concisely cite the pros and cons of our applied SDB framework:
Pros:

1. High-spatial-resolution and accurate SDB calculations of 2 m in a tropical environment which
could fit into Zone A2 of CATZOC and be used for navigation purposes.

2. Efficient in time, technical capacity, and computation (in comparison to state-of-the-art
physics-based, photogrammetric, and adaptive-based methods).

3. Minimization of statistical bias of neighbouring observations according to the first law of
geography [35] by implementing two geographically independent (distance of ~147 km)
MBES-derived datasets.

4. Reduction of radiometric differences between the Pleiades images employed in SDB training
and validation (through the use of pseudo-invariant features) which could have inflicted greater
vertical errors otherwise.

Cons:

1. Two-year difference between the used Pleiades imagery for SDB calibration and validation and
the in situ data from the site of BVI. However, while this temporal difference should theoretically
impose quantitative disagreements, in this case, due to the broader absence of river runoffs in the
northeast Caribbean Sea, we do not expect it to have influenced the SDB estimations.

2. Empirical SDB methods like [7,8] assume homogeneous and unique water column conditions
and bottom types. Here, the Anguilla and BVI benthos feature a mixture of seagrasses, sand,
rocks, sponges, corals, and algae; and in conjunction with increased sedimentation in the satellite
image from BVI, they violate the aforementioned empirical assumption and might have affected
our observations.

3. The cost of the herein in situ information by MBES survey data might be expensive and elusive
for other SDB-related projects, applications, and studies. Nevertheless, the initial development
and application of the current SDB processing chain have exhibited accurate results with the use
of low-cost bathymetric systems and data.

4.4. Back to the Future: The Three Actors for Global SDB Coverage

There are three main actors to perform accurate and repeatable SDB estimations on a global
scale. The first is the sensors; current and near-future deployment of single and flocks of commercial
and space-agency-funded satellite sensors are providing, and will continue to provide, the necessary
global observations for new methodological developments, scientific and operational applications,
and innovative breakthroughs in the domain of SDB. Sensors that fit the above description and hence
worth mentioning here are:

1. Planet’s Doves—a commercial constellation of 120+ shoebox-size multispectral, satellites offering
daily VNIR collections globally at 3 m spatial resolution since 2013 [19,36];

2. NASA’s GEDI (Global Ecosystem Dynamics Investigation)—a two-year, high-resolution
spaceborne LiDAR mission deployed on the International Space Station on 5 December 2018 [37];

3. NASA’s ICESat-2 (Ice, Cloud and Land Elevation Satellite-2)—a three-year, satellite-based LiDAR
mission equipped with its ATLAS (Advanced Topographic Laser Altimeter System) sensor,
launched on September 15 2018, whose suitability for SDB extractions in different natural
environments has been already explored [38,39];

4. DLR’s EnMAP (Environmental Analysis and Mapping Program) —an envisaged five-year
spaceborne imaging spectroscopy mission. Expected for launch in 2020, EnMAP will offer VNIR
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+ SWIR hyperspectral data of 30 m spatial sampling and four-day temporal revisit. This will
unlock new SDB mapping and monitoring ventures with a minimum spectral sampling distance
of 7.5 nm and a signal-to-noise ratio of 400:1 in the VNIR wavelength range [40].

While the aforesaid satellite missions were engineered for terrestrial applications predominantly,
their imaging sensor characteristics match the ones proposed by the coastal and inland remote
sensing community for accurate and effective global spatial and temporal seabed monitoring [41];
and accordingly, their satellite data could be potentially exploited solely and/or synergistically for
SDB estimations.

The second actor is the reference data; building upon the sixth paragraph of the Introduction,
large-scale SDB methods, applications, and operations require the availability of suitable large-scale
calibration and validation depth data. Naturally, for such SDB tasks at a global scale, multibeam-based
information is neither the most affordable nor practical source nor the solution. A combination of existing
and near-future acquisitions of low-cost citizen-derived/crowdsourced SBES, and high-resolution
MBES and LiDAR inventories of higher cost and accuracy is required to accomplish calibration and
validation of models and products, from local to universal scopes.

The third actor for planetary SDB coverage is the Cloud computing infrastructures, such as
Google Earth Engine [42], Microsoft Azure [43], Amazon AWS [44], and Copernicus DIAS [45]. These
can, and will, host the storage, processing, analysis, and leveraging of both commercial and public
satellite data, relevant field observations, and their produced SDB intelligence, from regional to global
scales [18]. We envisage that only by developing and adopting interoperability between the different
cloud platforms and spaceborne data, can we realise highly accurate standardised and automated ARD
(Analysis Ready Data)-based methodological approaches for spatial and temporal scalability. It is this
approach that will democratise the calculation of bathymetry globally, and will guide strengthened
solutions to our current natural, economic and societal challenges.

5. Conclusions

In the present study, we applied the methodological framework of [18], which combines simple
and well-established (in the context of coastal aquatic remote sensing) empirical radiometric corrections
and algorithms. We examine the suitability of leveraging the high-resolution multispectral satellite
imagery of the Pleiades and MBES survey data for SDB estimations in two tropical islands of the
northeast Caribbean. Our results extend the application of the SDB mapping approach of [18] in
tropical regions (in addition to temperate ones); and showcase its potential for navigation purposes
(based on IHO’S CATZOC), coastal aquatic habitat mapping of corals and seagrasses, and coastal
resource management, more broadly.

In its present single-scene application, the methodology is constrained by the presence of clouds,
correct selection of bright and dark features for the implementation of pseudo-invariant features,
and suitable satellite imagery with optimum water surface and water column conditions (i.e., clear of
waves and turbidity). It can evidently offer high-resolution, accurate, rapid SDB extractions without
large demands in technical capacity and computation in a plethora of coastal environments. The
transferability of [18] to the Leeward Islands of the Caribbean, but applied using high-resolution
imagery, allows for the regions data-poor government departments to leverage the high-cost of in situ
data from other data-rich island countries.

In the near future, we aim to amalgamate the herein implemented methodological approach,
advances in new multispectral, hyperspectral, and LiDAR satellite sensors, and open and public
satellite datasets (e.g., Sentinel-2 and Landsat series), existing and newly acquired in situ depth survey
data, and cloud computing platforms to scale up SDB estimations in space and time.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/15/1830/s1,
Table S1: Pike_etal_2019_RemoteSensing_SDB_SupplementaryMaterial.xlsx.

http://www.mdpi.com/2072-4292/11/15/1830/s1
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