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Abstract: Change detection using Remote Sensing (RS) techniques is valuable in numerous
applications, including environmental management and hazard monitoring. Synthetic Aperture
Radar (SAR) images have proven to be even more effective in this regard because of their all-weather,
day and night acquisition capabilities. In this study, a polarimetric index based on the ratio of span
(total power) values was introduced, in which neighbourhood information was considered. The role
of the central pixel and its neighbourhood was adjusted using a weight parameter. The proposed
index was applied to detect flooded areas in Dongting Lake, Hunan, China, and was then compared
with the Wishart Maximum Likelihood Ratio (MLR) test. Results demonstrated that although the
proposed index and the Wishart MLR test yielded similar accuracies (accuracy of 94% and 93%,
and Kappa Coefficients of 0.82 and 0.86, respectively), inclusion of neighbourhood information in the
proposed index not only increased the connectedness and decreased the noise associated with the
objects within the produced map, but also increased the consistency and confidence of the results.
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1. Introduction

Flooding is considered one of the major natural hazards in the world [1,2], and it is anticipated
to become even more frequent and severe in the near future [1,3,4]. Death and destruction resulting
from floods are very serious. For instance, it was reported that from 1986 to 2006, flooding caused
nearly 100 billion Euros in damages to Europe alone [1]. Therefore, stakeholders continually seek
an efficient way to map and monitor flooding in order to minimize damage [5]. To date, numerous
attempts have been made to model and predict flooding on large scales, mainly using hydrological
models. For example, high-resolution hydrological models that combine existing models have been
reported in [6,7]. Another efficient tool for flood monitoring is Remote Sensing (RS), which provides
valuable opportunities for mapping and monitoring flood events in a cost- and time-effective manner.
In fact, RS change detection techniques are quick and efficient ways for delineating the areas affected
by flooding.

Change detection in RS estimates the amount of change between two images acquired on different
dates over the same geographical area. RS change detection has been widely used for assessing
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the effect of natural hazards, tracking environmental contaminations, monitoring water resources,
crops and vegetation, as well as for other applications [8–11]. Change detection using SAR images is
advantageous because of its all-weather, day and night acquisition capability. Furthermore, with the
growth in the number of active SAR satellites, the use of multi-temporal images is facilitated. However,
SAR change detection demands specific techniques due to the presence of speckle in SAR images and
because SAR data contain very different types of information than optical data.

In general, SAR change detection algorithms can be divided into pre-classification and
post-classification methods. While post-classification methods are limited to comparing the accuracy
of two classified maps [12], in recent years a variety of pre-classification approaches have emerged.
Among these, many are applicable to single-channel SAR images. The most basic methods for
single-channel SAR change detection includes algebraic operations, such as computing the difference
and ratio of the images [13]. Ratio and log-ratio operations are popular for SAR images because they
reduce speckle and change the image distribution to Gaussian, respectively. For example, [14] fused
the complementary information in the mean-ratio and log-ratio images to generate a difference image
in which the changed areas were effectively highlighted. Moreover, Bazi et al. proposed an automatic
approach for thresholding the log-ratio image by analyzing a cost function [15]. Other approaches
that are also suitable for classifying single- or dual-channel SAR images include Principal Component
Analysis (PCA) and Change Vector Analysis (CVA). In Yousif and Ban’s work, for example, PCA was
used to reduce the dimension of a neighbourhood feature vector proposed by the authors in the context
of change detection [16]. Similarly, in Cheng et al.’s study, PCA was applied on non-overlapping
blocks of a difference image before they were projected on eigenvector space [17]. Furthermore,
Qi and Yeh combined CVA with a post-classification comparison to detect changes using RADARSAT-2
images [18].

At the same time, several change detection indices derived from the covariance matrix can be
utilized for polarimetric change detection. For instance, two indices of Contrast Ratio and Ellipticity
were compared with five other measures for a change detection study by Molinier and Rauste [19].
To derive these indices, eigen values of a matrix generated from the covariance matrices of the two dates
on which the images were acquired were extracted. Another successful method for polarimetric change
detection is the Wishart Maximum Likelihood Ratio (MLR) test proposed by Conradsen et al. [20].
In this method, a test was performed to assess the equality of two matrices with complex Wishart
distributions, from which an index was proposed. The index image was then thresholded to highlight
the changed areas.

Finally, there are several distance measures that can be used in change detection studies based
on the covariance or coherency matrix. As an example, the Wishart-Chernoff distance was utilized
in Daboor et al. [21] to investigate the potential of compact polarimetric SAR data for monitoring
wetlands. Moreover, Liu et al. introduced a new distance measure entitled Generalized Likelihood
Ratio Test (GLRT) distance for detecting changes in urban areas [22].

Most of the aforementioned methods are accurate in change detection studies using SAR images
and many of these metrics are actively applied in various environmental monitoring applications.
However, the results of change detection studies using SAR data are affected by noise due to the
presence of speckle in SAR images. This is a limitation to the operationality of change detection
techniques using SAR data. Therefore, to produce noise-free results and make correct managerial
decisions, it is crucial to provide change detection maps that are harmonious with real-world objects and
do not suffer from a noisy appearance. This goal can be facilitated by taking neighbourhood information
into account in the case of SAR images that are blemished by the effect of speckle. Although several
studies have considered neighbourhood information in SAR change detection [23–25], most ignore this
valuable information.

In this paper, a single channel change detection index based on neighbourhood information
was applied to Polarimetric SAR (PolSAR) data. This index used span (total power) values and
considered the ratio of the minimum to the maximum intensity values between two dates of image
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acquisition, such that the effect of backscatter variation among different classes, noises, and errors
were minimized. In this index, the role of the central pixel and its neighbourhood was adjusted using
a weight parameter. This index was then compared with the Wishart MLR index, both quantitatively
and qualitatively, in a flood event in Hunan, China. Therefore, the objective of this study was to first
extend a single-channel index to the full-polarimetric data, and second to apply this measure for flood
mapping and monitoring. To that end, the paper is organized as follows: In Section 2, the dataset and
study area as well as the methodology are explained. The results are represented in Section 3, and the
discussion is provided in Section 4 before the concluding remarks are given in Section 5.

2. Materials and Methods

2.1. Study Area and Dataset

Dongting Lake in the Hunan province of China, located at approximately 29◦19′N and 112◦57′W,
was selected as the study area in this research. This area is prone to flooding from July to September
each year, which makes it ideal for change detection studies. Figure 1 shows two Landsat 5 images
over the study area before and after a flooding event. As is observed, cloud cover is a common problem
of optical images that hinders change detection studies using these images. Full-polarimetric SAR
images used in this study are shown in Table 1 and their corresponding colour composite is depicted
in Figure 2. The reference image, obtained by visual analysis of the SAR images, is also illustrated in
Figure 2c.
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Figure 1. Two optical images over the study area, (a) before and (b) after a flood event.

Table 1. The characteristics of the images used in this study.

Acquisition Date Mode Polarization Type Incidence Angle Range
(degrees)

Nominal Range Resolution
(m)

06 June 2008
17 August 2008 FQ16 Quad-pol 35.4–37 8.6–9
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Figure 2. The color composite of the SAR images (a) before and (b) after the flooding event. Red, green,
and blue channels correspond to the HH, HV, and VV intensity images, respectively. (c) The reference image.

2.2. Method

In the first step, the scattering matrix of each full polarimetric SAR image was converted to the
covariance matrix to avoid distorting the absolute phase information during processing. Covariance
matrices were subsequently filtered by a 7-by-7 PolSAR Lee filter [26] and were terrain-corrected and
geocoded using the MapreadyTM toolkit, developed by the Alaska Satellite Facility (ASF). The span
image corresponding to each date was then calculated as follows:

Si =
∣∣∣SHH |

2
i + 2

∣∣∣SHV |
2
i +

∣∣∣SVV |
2
i i = {1, 2} (1)

where SPQ is the element of the scattering matrix recorded for the transmitting polarization of P and
receiving polarization of Q.

In the next step, a neighbourhood was considered for each pixel in the SAR image. In this work,
a 7-by-7 window was considered for this purpose, but this could change depending on the level of
noise in the image. Then, the difference image proposed in [23] could be heuristically extended to the
Polarimetric Difference Image (PDI) as follows:

PDI(x) = δs ×
min

{
S1(x), S2(x)

}
max

{
S1(x), S2(x)

} + (1− δs) ×

∑
i∈Ωx∧i,x min

{
S1(i), S2(i)

}∑
i∈Ωx∧i,x max

{
S1(i), S2(i)

} δs =
σs(x)
µs(x)

(2)
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where Si(x) is the span image for the pixel x in the ith image, Ωx is the neighbourhood of the pixel,
and σs(x) and µs(x) are the standard deviation and the average of the span image neighbourhood,
respectively. δs is a weight measure that determines the effect of the pixel and its neighbourhood
in the measure. When δs is large, the area is heterogeneous and the role of the central pixel is more
important than its neighbourhood. When δs is small, however, the area is homogeneous and the
neighbourhood effect is more significant [23]. Moreover, since the ratio of the minimum to maximum
intensity was present in both parts of Equation (2), the effect of the variation of intensity among
different classes, the level of noise, and the presence of errors on the change detection map was
minimized. After computing the PDI measure, an image was obtained in which the magnitude of
each pixel demonstrated the level of similarity between two images. If the change of a specific class
is of interest, the image can be thresholded to highlight those changes. The aim of this work was
to detect flooded areas and therefore the histogram of the PDI image was thresholded using Otsu’s
method [27]. In Otsu’s method, the threshold(s) of the histogram is determined by maximizing between
class variance or minimizing within class variance [27].

The proposed measure was compared to the Wishart MLR test [20], as it is a well-known,
full-polarimetric measure for SAR change detection studies:

Q =
(n + m)p(n+m)

npmmpm
|X|n|Y|m

|X + Y|n+m (3)

where X and Y are the first and second covariance matrices, respectively, n and m demonstrate the
number of looks in the first and second image, respectively, |.| denotes the determinant of a matrix,
and P is the size of the matrix, which is 3 in this study. When m = n, which is the case in our work,
lnQ can be defined as follows:

lnQ = n (2p ln2 + ln|X|+ ln|Y| − 2 ln|X + Y|) (4)

As with maps produced by PDI, the lnQ image can also be thresholded using Otsu’s method to
emphasize the areas of interest. Then, the measures are compared both quantitatively and qualitatively.
For quantitative comparison, the number of False Negatives (FNs), False Positives (FP s), True Negatives
(TNs), and True Positives (TP s) were computed. Then, the Overall Error (OE) and the Percentage of
Correct Classification (PCC) were obtained by:

OE = FN + FP (5)

and
PCC = (TN + TP)/(TN + TP + FN + FP) (6)

Moreover, if we consider a confusion matrix with the two classes of change and no change,
the Kappa coefficient can be calculated as follows [28]:

κ =
P
∑

k xkk −
∑

k xk+x+k

P2 −
∑

k xk+x+k
(7)

where P is the total number of elements in the confusion matrix, xi j is the element in the ith row and jth
column, xi+ is the summation of the elements in the ith row, and x j+ is the summation of the elements
in the jth column. Kappa is another measure of the accuracy assessment that considers values in the
range of [0, 1]. A Kappa value of 0 indicates there is no agreement between the produced map and the
reference data, while a value of 1 demonstrates the complete agreement between the generated map
and the reference data.
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3. Results

As mentioned in the previous section, PDI is a ratio index in which the role of the ratio of the
central pixels versus the ratio of their neighbourhood is determined with heterogeneity or homogeneity
of their neighbourhood. LnQ, however, was obtained by conducting a statistical equality test of two
covariance matrices for the SAR images of the same area acquired on two different dates. Figure 3
demonstrates the PDI and lnQ maps of Dongting Lake produced in this study. It can be observed
that both measures delineated the flooded areas effectively and could be used to accurately locate
and estimate flooded regions. However, the quantization of the changes in the PDI image is clearly
more detailed than in the lnQ image. For example, the top left of the lnQ image provides a rather
homogeneous area that fails to detect minor changes, whereas the same area in the PDI image effectively
quantizes different amounts of change. A more important feature of the PDI map is that it provides
less speckled objects because it considers neighbourhood information. Conversely, some of the objects
within the lnQ map had a noisy appearance. The range of data for the lnQ and PDI images was
[−1461, 0] and [0, 1], respectively. The thresholds selected for binarizing the images were −160 for the
lnQ image and 0.118 for the PDI image. A detailed qualitative and quantitative assessment of the
results has been provided in the Discussion section.
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Figure 3. Change detection maps obtained by (a) lnQ and (b) Polarimetric Difference Image (PDI) measures.

The histogram of the lnQ and PDI maps have been demonstrated in Figure 4a,b. Although both
maps provided similar accuracies as presented in the Discussion section, their corresponding histograms
were very different from each other. LnQ image has a unimodal histogram, which is difficult to be
divided to more than two classes. The histogram corresponding to the PDI image, however, can be
easily segmented to several parts, which makes it possible to divide the entire area into several classes
of change. This is another advantage that the proposed method provides. The fact that there are
more quantizations in the PDI image than the lnQ image is also clear from their histograms as well.
Figure 4c,d demonstrates the binarized lnQ and PDI images. At first, both images look similar; however,
the objects produced by the lnQ map appeared more speckled and disconnected compared to those in
the PDI map. For example, the top left part of the lnQ image between the two large regions is slightly
speckled, while this is not the case for the binarized PDI image. A detailed qualitative and quantitative
assessment of the results is provided in the Discussion section.
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and Polarimetric Difference Image measures (b,d, respectively).

4. Discussion

To examine the maps more closely, several subsets of the images were selected and the zoomed
areas of the lnQ and PDI images, along with their corresponding binary maps, are depicted in Figure 5.
While the zoomed regions in the lnQ map (Figure 5i–l) are slightly speckled, disparate, and unconnected,
the corresponding regions in the PDI map (Figure 5m–p) are more homogeneous and linked. This has
caused the thresholded lnQ map to contain more discrete and noisy objects (Figure 5q–t), while the
binary PDI map provides clean and connected regions (Figure 5u–x).

For a quantitative assessment of both maps, the binarized maps were compared with the reference
image (see Table 2). It is clear that both the lnQ and PDI methods generated a highly accurate map,
with PCCs of 93% and 94% and Kappa coefficients of 0.82 and 0.86, respectively. However, the accuracies
of the PDI map were slightly greater because neighbourhood information was considered. Interestingly,
the number of FNs was high in the lnQ map, while the number of FPs was high in the PDI image.
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This showed that the lnQ index overestimated, while the PDI index underestimated the amount
of change.
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Table 2. Accuracy assessment of the change detection maps obtained by both methods.

Measures lnQ PDI

FN 556,122 11,057
FP 13,325 464,162
TN 5,364,371 4,913,534
TP 1,822,370 2,367,435
OE 569,447 475,219
PCC 0.927 0.938
Kappa 0.816 0.863

As observed in this research, including neighbourhood information in change detection studies
significantly improves performance, particularly when polarimetric data are used. Therefore, including
neighbourhood information in all change detection studies is recommended to produce results that can
be adopted for operational purposes. This goal can be achieved for post-classification change detection
methods if the classification for both acquisition dates is conducted within an object-based manner,
which, in turn, makes the change detection map object-based as well. For pre-classification methods,
however, innovative techniques that include neighbourhood information are required. Although such
methods increase the computational complexity compared to the metrics in which only the statistics
of the individual pixels are considered, this is not detrimental given that change detection is not
a real time application and it is the accuracy of the output rather than computational efficiency of the
method that is more important. Recently, several state-of-the-art SAR change detection techniques,
for example based on the coherency image [29], autoencoders [30], or deep learning techniques [31]
have been introduced, which have a superior performance over the traditional methods. Regardless
of the applied techniques, including neighborhood information in the SAR change detection process
can increase the accuracy of the measure. Therefore, it is recommended to include neighbourhood
information in the state-of-the-art SAR techniques, to further improve their performance.

5. Conclusions

In this study, a polarimetric index for change detection was introduced based on the ratio of span
(total power), which exploits neighbourhood information in PolSAR images. The index was applied to
a flooding event in Dongting Lake, Hunan, China, and was then compared with the Wishart MLR
test, another measure for polarimetric change detection. The results demonstrated that although both
measures produced change detection maps with comparably high accuracies, the objects produced by
the proposed change detection measure were more homogeneous and less noisy. Additionally, the lnQ
map overestimated the amount of change, while underestimation occurred in the PDI map. The result
of this research demonstrates the importance of including neighbourhood information in change
detection analyses. This not only produces more connected and less noisy objects, but also increases
the consistency and confidence in the results, which in turn facilitates making managerial decisions.
The method applied in this paper could also be extended to other well-known change detection metrics
to improve their performance. Overall, the index applied in this paper is a quick, effective, and accurate
method for delineating areas affected by flood, which could be utilized operationally to minimize the
consequences of flooding while facilitating immediate action following such events.
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