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Abstract: Drought, as an extreme climate event, affects the ecological environment for vegetation and
agricultural production. Studies of the vegetative response to drought are paramount to providing
scientific information for drought risk mitigation. In this paper, the spatial-temporal pattern of
drought and the response lag of vegetation in Nebraska were analyzed from 2000 to 2015. Based on
the long-term Daymet data set, the standard precipitation index (SPI) was computed to identify
precipitation anomalies, and the Gaussian function was applied to obtain temperature anomalies.
Vegetation anomaly was identified by dynamic time warping technique using a remote sensing
Normalized Difference Vegetation Index (NDVI) time series. Finally, multilayer correlation analysis
was applied to obtain the response lag of different vegetation types. The results show that Nebraska
suffered severe drought events in 2002 and 2012. The response lag of vegetation to drought typically
ranged from 30 to 45 days varying for different vegetation types and human activities (water use and
management). Grasslands had the shortest response lag (~35 days), while forests had the longest lag
period (~48 days). For specific crop types, the response lag of winter wheat varied among different
regions of Nebraska (35–45 days), while soybeans, corn and alfalfa had similar response lag times of
approximately 40 days.

Keywords: drought monitoring; drought response lag; DTW; lag correlation coefficient

1. Introduction

Drought is one of the world’s most costly and widespread natural hazards, impacting water
resources, agricultural production, ecosystems, human health, and the global economy [1–4]. Drought
events are projected to be more intense and frequent for many regions of the world under global warming,
placing further pressure on agricultural systems and natural resources, due to increasing demands
from an ever-increasing global population [5]. Semiarid regions such as Australia’s Murray-Darling
River Basin, South Africa, and the America’s Middle West with vegetation cover face a greater threat
from drought, especially agricultural regions because of insufficient rainfall, water management, and
vulnerable vegetation [6–8]. Throughout global history, extreme droughts have wreaked havoc on
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the agricultural systems in these semi-arid regions. Hence, understanding the vegetative response to
drought in drought-prone, semiarid regions has drawn attention from meteorologists, ecologists, and
agricultural scientists [9,10].

Droughts are often considered to have four major types: Meteorological, agricultural, hydrological
and socioeconomic drought [11]. The key that differentiates these different types of drought is time
scale of dryness: Meteorological drought comes first with water deficits caused by high temperatures
and low precipitation. After continuous meteorological drought, crops suffer from water deficits, and
agricultural drought occurs. Among the four types of drought, agriculture is affected most directly and
seriously by meteorological drought, and it is more difficult to understand than the others, because
of the complication of interaction between vegetation and climate. To better understand drought
effects, the construction of a drought monitoring index is the first step. Over the past decades, much
effort has been devoted to drought monitoring, and a series of drought indices have been developed,
such as water balance-based indices (Palmer Drought Severity Index (PDSI), Standardized Precipitation
Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI)) [12–14], blended indices
(U.S. Drought Monitor Index (USDM), Vegetation Drought Response Index (VegDRI)) [15], indices
constructed by joint distribution models (Joint Drought Index (JDI), Multivariate Standardized Drought
Index (MSDI) [16,17] and other vegetation drought indices (Normalized Difference Drought Index
(NDDI)) [18,19]. However, there is no single drought index that can reflect the situation across different
regions and time scales, because the mechanism of drought and its effects vary considerably [20]. To date,
as a simple calculation using commonly available precipitation data, the traditional Standardized
Precipitation Index (SPI) is widely used as a drought indicator, since it can be calculated at multiple
time scales and adapted to different climates and drought types [21–23].

To analyze the impact of drought on vegetation ecosystems, capturing the anomaly state of
vegetation is of great significance. Many vegetation indices (VIs) have been developed to monitor
vegetation conditions over large spatial ranges, such as the Normalized Difference Vegetation Index
(NDVI) [24], enhanced vegetation index (EVI) [25], and ratio vegetation index (RVI) [26]. NDVI has
been proven useful for meaningful comparisons of seasonal and interannual changes in vegetation
growth and activity, and it has been widely used in related studies to reflect the vegetation response to
drought [27–34]. However, anomalies of growing seasons highlighted by the NDVI profile over the
years can be attributed to several reasons, not only to extreme weather events like droughts, but also
to agricultural practice; i.e., crop rotations or different planting times (winter crops versus summer
crops). Therefore, more accurate methods are needed to characterize the abnormal state of vegetation
influenced by drought. Dynamic time warping (DTW) [31] is a match algorithm according to the
warping similarity of temporal profiles, and it is proven to be an efficient solution to handle these
issues in crop classification, effectively reducing the intra-class variations related to different vegetation
types and agricultural and land management practices [35–37]. But to date, the effect of this method
on vegetation anomaly calculations has not been well evaluated in related studies.

The main challenge for monitoring the response of vegetation to drought with satellite imaging
is the analysis of the relationship between vegetation and drought, as well as the calculation of the
vegetation response’s time lag. The effect of drought on vegetation is cumulative and nonlinear,
and it is not manifested by vegetation at a certain degree or time during the year [38–40]. Several
factors determine vegetation response, including various drought characteristics (duration, severity
and intensity), vegetation characteristics and phenology, and the general environment conditions
of the location (e.g., soil type and elevation) [41–43]. This complexity and nonlinearity make it
more difficult to extract lag time relationship between climatic conditions and vegetation response.
The correlation coefficients and regression method were widely used in most previous studies to analyze
the relationship of NDVI and SPI, and over an approximately 1–3 month scale, a strong correlation
between NDVI and SPI have been proven [44–48]. However, more detailed time lag information
observed by satellite images is still not clear. At present, research on the large-area response lag of
remote sensing-derived variables, such as VIs have mainly been conducted on a monthly scale and
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have not explored in finer time scales. In addition, few previous studies have concentrated on the
relation between vegetation anomaly and drought, since the vegetation index, rather than ‘vegetation
anomaly’ index was used to analyze the relationship between vegetation and drought, it is difficult to
remove the influence of non-drought factors (seasonal change and vegetation growth) on the changes
of a vegetation index [44,49]. Some studies have used standard scores to characterize the anomalies of
vegetation and rainfall, and other methods have been tried to calculate the time lag of vegetation’s
response to drought in more sophisticated way [50–52]. More detailed study of vegetation response to
drought is needed to give a more accurate response relationship and response time lag.

The overall objective of this study is to develop a refined methodology to map and characterize
spatial-temporal dynamics of detailed vegetation response lag to drought in semiarid regions, focusing
on Nebraska. Daily time series of MODIS NDVI data and the Daymet dataset over a 15-year study
period (2000 to 2015) were used to create annual maps of vegetation response lag, and assess the
variations of lag among different vegetation types. In addition, we analyzed the potential contributors
to vegetation stress using random forest.

2. Materials and Methods

The MOD09GQ time-series, Cropland Data Layer (CDL) and Daymet dataset from 2000 to
2015 were used to extract the vegetation anomaly, and climate anomaly, respectively. The irrigation
data and DEM were also applied to the driving force analysis of vegetation response diversity.
The methodological workflow consisted of the following steps (Figure 1): (1) Data preprocessing
and NDVI time-series smoothing; (2) calculation of SPI (precipitation anomaly); (3) calculation of
the temperature anomaly; (4) calculation of the vegetation anomaly, which involves the extraction of
average phenology NDVI profile, DTW match of NDVI observed time-series and phenology profile,
and the anomaly calculation of NDVI at daily scale; and (5) extraction of vegetation response lag based
on lag correlation coefficient.

Nebraska is located approximately between 40◦ and 43◦ N latitude and 95◦ and 104◦ W longitude,
with a total area of 200,365 km2. The state is located in the U.S. Central Great Plains region, and
is an agriculturally dominated state supporting both irrigated and rainfed crops. The western and
central parts of Nebraska are covered by expansive grasslands, which is a natural vegetation ecosystem
that is less affected by human activities, both irrigated (e.g., alfalfa, corn, and soybeans) and rainfed,
dryland crops (e.g., winter wheat). The eastern part of Nebraska is extensively cropped in a primarily
corn-soybean cropping system under rainfed production. Nebraska ranks among the leading producers
among states in the U.S. for the state’s main crop types of corn, soybean, winter wheat, and alfalfa
(Figure 2).
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Figure 2. Crop distribution and geographical location of study area.

Nebraska has two major climate zones: Continental in the east and semiarid in the west.
The state has a steep precipitation gradient ranging from about 380 mm in the west to >800 mm
in the east (Figure 3b). The temperature in the south is higher than that in the north (Figure 3a)
(https://datagateway.nrcs.usda.gov/GDGHome.aspx). These precipitation and temperature gradients
reflected in the spatial distribution of cropping types, agricultural management practices, and vegetation
types across the state. A combination of dryland, irrigated crops, and short grass prairie is predominate
in the west, transitioning to predominately rainfed corn-soybean systems and tall grass prairie
vegetation types in the east. Rainfall fluctuates greatly throughout the year and across the spatial
extent of the state, and also has a high level of inter-annual variability in precipitation, resulting in
periodic drought events [53].
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Nebraska has been profoundly affected by long and extreme droughts for centuries. In recent
years, global climate change has significantly increased the frequency and intensity of extreme weather
events in Nebraska [55]. For example, the severe flooding in 2011, and extreme drought in 2012, which
was the driest and warmest year on Nebraska’s record [56].

2.1. Data and Preprocessing

The MODIS time-series, Cropland Data Layer, and Daymet dataset from 2000 to 2015 were used
to extract the vegetation anomalies and climate anomalies respectively. The irrigation data and Digital
Elevation Model (DEM) were applied for the driving force analysis of vegetation response diversity.
All the spatial data were resampled to 250 m spatial resolution for further data processing.

2.1.1. Time-series MODIS Data

The NASA MODIS sensor offers timely and large-area surface monitoring observations with high
temporal (near daily) and moderate spatial (250 meter) resolutions. MODIS data sets products were
acquired from NASA [57] (https://modis.gsfc.nasa.gov/) with the image data products calibrated and
atmospherically corrected for gases, aerosols, and cirrus-cloud effects using the MODIS atmospheric
correction algorithm [58,59]. In this study, MOD09GQ daily products from 2000 to 2015 were used to
calculate the NDVI time series data [60].

MOD09 red and near-infrared (NIR) reflectance imagery, centered at 645-nanometer and
858.5-nanometer wavelengths, respectively, are available at 250-m resolution from the MOD09GQ
product on a daily time step. This MODIS image data product has scientific quality assurance (QA)
flags describing the overall image data quality, band-specific quality, atmospheric correction state
and adjacency correction state that was used to reduce the noise of NDVI time series data during
time-series NDVI reconstruction in this study.

https://modis.gsfc.nasa.gov/
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Three MODIS images (h10v04, h10v05, h11v04) were joined with the MODIS Reprojection Tool
(MRT) [61,62] to cover Nebraska, and the Land Data Operational Products Evaluation (LDOPE) tool [63]
(https://lpdaac.usgs.gov/tools/ldope/) was applied to parse and interpret the QA Science Dataset (SDS)
layers. The ‘unpach_sds_bits’ tool and the ‘cp_proj_param tool’ of LDOPE were used to decode the
MOD09GQ quality control band. The decoded QA band represents that the quality of every pixel
in every daily image would be used in a data smoothing procedure to help remove the influence of
anomaly data.

The reflectance data of the red and NIR bands were used to calculate the NDVI as an indicator
of the photosynthetic capacity of the vegetation at the pixel level. The NDVI was calculated using
Equation (1):

NDVI = (ρNIR − ρRED)/(ρNIR + ρRED), (1)

where ρNIR (846-876 nm) and ρRED (620–670 nm) are the bidirectional surface reflectance for the
MODIS bands.

2.1.2. Time Series Smoothing

The study area can experience periodic cloud cover throughout the growing season, which
seriously affects the quality of the NDVI time series. Considering our purpose is to find vegetation
response to climate change in remote sensing time series, which represents anomaly fluctuation in
temporal profile, the quality of NDVI time series is a critical issue, since cloud cover could cause a
similar anomaly. To reduce the noise of NDVI time-series, the Savitzky-Golay filter [64] was applied
for its simplicity and reliability.

The Savitzky-Golay filter is a simplified least squares-fit convolution for smoothing and computing
derivatives of a set of consecutive values (a spectrum) [64]. It was proven to be the most efficient
algorithm for separating distinct multi-temporal profiles, compared with other common smoothing
algorithms [65]. Furthermore, it effectively preserve key temporal features, such as the relative
maximum, minimum, and width of the time-series dataset [66,67].

To achieve better filtering, data quality control flags, assigning corresponding weights were used
to identify spurious observations for the SG filter. Quality control flags were calculated using LDOPE
and ArcGIS. The CMD batch program of the LDOPE tool was used to decode the quality information of
the red and NIR bands in batches (Table 1), and ArcGIS was used for batch grading synthesis (Table 2)
to obtain the quality grade file corresponding to NDVI. Subsequently, the SG filter was applied by
setting a window width of four, one envelope iteration, and an adaptation strength of two. Fitting
iterations of the SG filter were set to two. The weight of quality level one was one; the weight of quality
level two was 0.5, and the weight of quality levels three and four was set as zero to remove the image
noise. After the S-G filtering, the noises of quality level three images were completely removed, and
the noises of quality level two images were obviously improved.

Table 1. Band quality control flag.

Quality Level Description Bit combination Quality Flag

level 1 highest quality 0000 0
level 2 partial noise 0001 1000 1

level 3 missing,
serious noise

1011 1100
1101 1110 1111 2

Table 2. Normalized Difference Vegetation Index (NDVI) quality control flag.

Quality Level Description Quality Flag

Level 1 quality of two bands are both level 1 0

Level 2 one of the bands is level 1,
another band is level 2 1

Level 3 quality of two bands are both level 2 2
Level 4 one of the bands is level 3 3

https://lpdaac.usgs.gov/tools/ldope/
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2.1.3. Daymet Dataset

The meteorological data were downloaded from the ORNL DAAC (https://daymet.ornl.gov/).
The Daymet data set provides gridded estimations of weather variable for North America with daily
time resolution and 1-km2 spatial resolution [68]. The daily mean temperature dataset (2000–2015) and
daily total precipitation dataset (1981–2015) were used in this study, and were first resampled to 250 m
by the bilinear interpolation resample method. The daily mean temperature data were processed
by temperature anomaly calculation, and the daily total precipitation data were used to acquire the
Standardized Precipitation Index (SPI) in Nebraska since 1981.

2.1.4. Cropland Data Layer

The Cropland Data Layer (CDL) [69], hosted on CropScape (https://nassgeodata.gmu.edu/

CropScape/), provides a raster, geo-referenced, crop-specific land cover map at 30-m spatial resolution
for the continental United States. The crop distribution map from 2000 to 2015 were resampled to 250 m
by the majority resample method, and used to calculate accurate vegetation anomaly. In addition, the
crop distribution in 2012 was applied to assess crop-related vegetation response to drought.

2.1.5. Irrigation Data

The MODIS Irrigated Agricultural Dataset (MIrAD) [70] provided by the U.S. Geological Survey
(https://earlywarning.usgs.gov/USirrigation) was used as the irrigation data source. This data set
was derived using a land cover data set, USDA agricultural irrigation area statistics and the annual
maximum VI information calculated from MODIS VI data. The MirAD has a nominal spatial resolution
of 250 m and irrigation distribution in 2012 was available to analyze the human effect on extreme
drought in Nebraska.

2.1.6. Digital Elevation Model (DEM)

The ASTER Global Digital Elevation Model (ASTGTM) provided by NASA (https://earthdata.nasa.
gov/) was used as a Digital Elevation Model (DEM) in this study. The spatial resolution of this product
is 30-m and was resampled as identical resolution (250-m) of MODIS by bilinear interpolation resample
method. The DEM influences the natural environment of vegetation (local temperature and rainfall
event), thus it was applied to analyze the driving force of various vegetation response to drought.

2.2. Methodology

The methodological workflow consisted of the following steps (Figure 2): (1) Data preprocessing
and NDVI time-series smoothing (see Section 2.1.2); (2) calculation of SPI (precipitation anomaly);
(3) calculation of the temperature anomaly; (4) calculation of the vegetation anomaly, which involves
the extraction of average phenology NDVI profile, DTW match of NDVI observed time-series and
phenology profile, and the anomaly calculation of NDVI on a daily scale; and (5) extraction of vegetation
response lag based on lag’s correlation coefficient.

2.2.1. Standardized Precipitation Index (SPI)

To better capture the spatial patterns and temporal variations of dryness, the Standardized
Precipitation Index (SPI) [14] was adopted in this study as the drought index. Compared to other
drought indices, the SPI has several advantages, including unambiguous theoretical development,
robustness, versatility, including temporal flexibility, and the simplicity of requiring only a precipitation
data input [71,72].

SPI has different scales for different application. One-month SPI could reflect the soil condition,
which directly influences the vegetation growth. In our study, one-month SPI was applied both for
reflecting annual drought events and calculating accurate response lag. To be specific, we first calculate
the annual average of one-month SPI in 2000–2015 to select normal climate year and relatively severe

https://daymet.ornl.gov/
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
https://earlywarning.usgs.gov/USirrigation
https://earthdata.nasa.gov/
https://earthdata.nasa.gov/


Remote Sens. 2019, 11, 1873 9 of 22

drought year for further study. Then, for the severe drought year, in order to better find the accurate
temporal scale of vegetation response, we calculates the one-month SPI, but represented it on daily
scale with a one day time step, in accordance with daily scale of NDVI time-series. For each day,
we calculated the cumulative rainfall for the previous 30 days to calculate a one-month scale SPI
(Equation (2)). Finally we computed 30 times the one-month SPI, since there are approximately 30 days
in a month.

Psum =
30∑

d=1

Pi (2)

where Pi denotes the daily precipitation at day i, d represents the previous d day, and Psum represents a
1-month scale cumulative precipitation at day i.

According to the World Meteorological Organization, at least 20–30 year precipitation record
should be used to calculate the accurate SPI [73,74]. In this study, a 35-year historical record of
precipitation data (1980–2015) were used to assure the SPI accuracy. For a more detailed explanation of
the theory and calculation of SPI, one may refer to these related studies [14,75,76].

2.2.2. Temperature Anomaly

The difference between the observed value and the multiyear Gaussian fitting value is used as the
index of the temperature anomaly (Equation (3)). The distribution of daily mean temperature in a year
is similar to Gaussian distribution; therefore, the normal daily mean temperature could be obtained by
Gaussian fitting numerical values (Figure 4a). Gaussian fitting values for characterization of normal
daily mean temperature compared to the traditional average characterization method have higher
reliability and can effectively eliminate the interference of abnormal climate. Considering that the
temperature across two climatic zones in Nebraska has obvious spatial heterogeneity, the Gaussian
fitting and the calculation of temperature observation are processed at pixel level. We conducted
many tests, and found out that lots of pixels have a small temperature peak in spring, and the double
Gaussian model outperformed the single Gaussian model. Thus, a double Gaussian model was used
to fit the normal daily mean temperature, because of its better accuracy (Figure 4b).

Tanot = Tt − Tt (3)

where t is the day of year (DOY), Tanot is the temperature anomaly at date t, Tt denotes the observed
daily mean temperature and Tt denotes the multi-year gaussian fitting value (normal temperature) at
date t.
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Figure 4. (a) Demonstrating the Gaussian fit of daily mean temperature at pixel-level. The points in
(a) represent the observed daily mean temperature of current pixel in 2000–2015; (b) represents the
fitting error of fitting process in subfigure (a).

2.2.3. Vegetation Anomaly

Vegetation anomaly calculations include three steps: (1) Derivation of the phenological NDVI
profile of vegetation, (2) dynamic time warping (DTW) of the NDVI time-series and phenological
NDVI profile, and (3) vegetation anomaly calculation.

The first step in calculating the vegetation anomaly is to calculate the NDVI phenology curve
of each vegetation type. Based on temperature anomaly and multi-year SPI in Nebraska, the period
from 2008 to 2011 were selected as ‘normal’ climate years without extreme climatic events. Using crop
information from the CDL, the phenological NDVI profile of each vegetation type was then obtained
by averaging the daily NDVI values for all pixels by vegetation categories. These phenological NDVI
curves represent the growth of each vegetation type under mean climate conditions.

The second step is the calculation of vegetation anomaly using DTW match algorithm. It is
important for reducing the false anomalies caused by the different planting and harvesting periods.
DTW is an algorithm that uses dynamic programming to modify time-series data sequences to find the
minimum bending distance between two time sequences to achieve sequence matching [77]. DTW has
three constraint rules: Monotonicity constraint, endpoint constraint, and continuity constraint. Under
these constraint conditions, the bending path is obtained by minimizing the sum of path distance.

Note that the direct use of DTW makes any real anomaly disappear, because the small fluctuation
of the anomaly on the daily scale would also be weakened by DTW. Therefore, the Gaussian filter was
first applied to reconstruct the time-series NDVI data sequence before the DTW was applied to remove
small fluctuations. The DTW was then applied to the Gaussian-filtered NDVI curve to obtain the
matching date (Figure 5). The original curve is then matched according to the matching date. Finally,
vegetation outliers were calculated according to Equation (4):

NDVIanoit = NDVIitk −NDVItk (4)

where NDVIanoit is the vegetation anomaly value of pixel i in day t, NDVIitk denotes the NDVI of pixel
i in day t, k is the crop type of current pixel i, and NDVItk is the normal NDVI value of crop type k in
matched day t.
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and phenological profile; the planting days of observed time-series is later than that of the
phenological profiles.

During the non-growing season period, the fluctuation of the NDVI profile is not a manifestation
of crop growth anomalies, but is more likely to be caused by soil, wild grass, and noise of the remote
sensing image. Therefore, when the NDVI anomalies were calculated using DTW matching, the
planting date and harvesting date were obtained according to the match date of the start and end of
the growing season. The NDVI anomalies before and after planting were filled with ‘NaN’ to obtain
the final vegetation anomaly data.

2.2.4. Response Lag

The lag period is the key to investigating the response of vegetation to climate anomalies. It is
also the most challenging and key point in obtaining accurate correlation and function relations in
climate-vegetation response comparisons. Due to its simple principles and wide application, the
lag correlation coefficient was applied to analyze the data time series and determine the lag period
according to the highest correlation coefficient.

Considering that the temporal anomaly and precipitation anomaly have different response
mechanisms, the vegetation response lag to temperature anomalies and rainfall anomalies were
extracted respectively.

The response of plants to climate anomalies is characterized by accumulation and hysteresis.
In this study, we defined the ‘response’ period and ‘lag’ period. The ‘response’ period refers to the
accumulation of climate anomalies that influence vegetation, and the ‘lag’ period represents the lag
time of the vegetation response. In this study, response lag was calculated as the sum of the response
and lag periods.

Temperature anomaly was calculated in daily scale, so we first calculated the sum of temperature
anomaly on a different scale (one week–two months) which represents the ‘response’ period. Then
the lag correlation coefficients were computed to get the optimal ‘lag’ period on each ‘response’ scale.
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Finally, based on the different optimal lag correlation coefficient on different ‘response’ scales, the
optimal ‘response’ scale was decided by the maximum correlation coefficients, and response lag was
obtained by the sum of ‘response’ period and ‘lag’ period. As for precipitation response, since we
calculated SPI on a one-month scale, it was hard to define the ‘response’ period and ‘lag’ period, so the
response lag was totally decided by the results of maximum lag correlation coefficient. In order to
catch the drought response in climate anomaly year, we shrank the input time-series of lag correlation
calculation by setting the climate threshold value (SPI < 1, temperature anomaly > 1) and maintained a
certain duration (duration > 50 days).

2.2.5. Random Forest

Random forest (RF) [78] is an ensemble learning method of cart trees to analyze nonlinearity
and interactions between predictors [79]. The main advantages of RF include significantly reducing
possible overfitting [80], and minimizing influence by collinearity among analysis variables [81], but
up to now this method is not common in climate and hydrological science. In this paper, RF was
used to understand what or how factors contributed to vegetation anomalies. More specifically, it
was applied to analyze the relationship between vegetation anomalies and a series of factors (climate
anomalies, irrigation, crop type, growth period, DEM and image quality).

The RF model was run using the TreeBagger class on matlab2014b at the pixel-level. Two
parameters need to be tuned for RF, namely the ’NumTrees’, which is be created by randomly
selecting samples from the training samples, and ’MinLeafLeaf’, which is the minimum number of
observations of per tree leaf. The ‘MinLeafLeaf’ is set up as five according to multiple experiments,
and the ‘NumTrees’ parameter was set up as 500 according to the ‘out-of-bag squared error,’ and the
out-of-bag error of our model eventually reached below 0.0015, which means a high accuracy and
good generalization. The importance for each predictor variable (feature) was also analyzed in our
study. The factor importance index is the increase in prediction error if the values of that variable are
permuted across the out-of-bag observations. This measure is computed for every tree, then averaged
over the entire ensemble and divided by the standard deviation over the entire ensemble.

3. Results and Discussion

3.1. Spatial-temporal Pattern of Drought

Spatial and temporal patterns of drought are useful for revealing the occurrence patterns of climatic
and vegetation anomalies in the study area. The consistency of spatial and temporal patterns of climatic
and vegetation anomalies is very important in investigating the correlation between climatic-vegetation
interactions over the study area.

Figure 6 shows the spatial pattern of temperature anomalies from 2000 to 2015 in Nebraska.
In 2012, Nebraska had extremely high temperature across the whole state, and in 2005, 2006 and
2015, heat waves also swept through Nebraska. Abnormally high temperatures generally occurred
uniformly in spatial pattern. During the periods of 2008 to 2011 and 2013 to 2014, the temperature was
relatively cool for the state.
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Annual averaged one-month SPI is more conducive to the demonstration of precipitation anomalies
that influence vegetation. Based on the spatial-temporal pattern of annual averaged SPI, as shown in
Figure 7, it can be clearly seen that severe drought events impacted the entire state of Nebraska in 2002
and 2012, which was consistent with the findings of the U.S. Drought Service’s seven-day drought
observation with the USDM Index (Figure 8). USDM is based on six key indicators (Palmer Drought
Index, SPI, Keetch-Byram Drought Index, modeled soil moisture, seven-day average streamflow, and
precipitation anomalies), numerous supplementary indicators, and local reports from many expert
observers (http://droughtmonitor.unl.edu/) [82]. However, the duration and severity of drought
detected by SPI1 and USDM showed a different pattern. The 2002–2003 and 2012–2013 were detected
by USDM as severe drought events, but as for one-month SPI, only 2002 and 2012 were severe
years, at which times droughts were detected earlier than USDM. Considering vegetation is first
influenced by meteorological drought, SPIs were more suitable than USDMs for vegetation drought
monitoring. In our results, Nebraska experienced widespread mild droughts in 2000, 2003, 2006
and 2014. Compared with temperature anomalies, the spatial pattern of rainfall anomalies has a
higher degree of fragmentation and spatial heterogeneity due to several factors (e.g., the atmospheric
circulation, and the morphology of the territory). The occurrence of rainfall anomalies does not
show an obvious drought-prone spatial sub-region: In 2000, a separate humid region appeared in
the northwest corner of Nebraska, but in 2007, this region was drier than other area in Nebraska.
Similarly, the drought in 2003 occurred in the central part of Nebraska, but the drought in 2010 mainly
occurred in northwestern Nebraska, and in 2014, drought hit southeastern Nebraska. The occurrence
of scarce rainfall has extremely complex spatial rules, and it is dependent on local spatial effects, which
is difficult to include in the module. Therefore, precipitation anomalies are difficult to spatially predict.

http://droughtmonitor.unl.edu/
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3.2. Driving Force Analysis 

Figure 8. Seven-day drought observation from U.S. Drought Service. The drought conditions in the
USDM are classified into four major drought categories, including moderate drought (D1), severe
drought (D2), extreme drought (D3), and exceptional drought (D4), from the least intense to the most
intense. The fifth category, D0, depicts “abnormally dry” conditions.

Discernible significant positive coherence can be observed when comparing temperature (Figure 6)
and precipitation (Figure 7) anomalies. Higher temperatures occurred frequently with scarce
precipitation. Notably, this correlation is more pronounced under extreme weather conditions
than for normal climate anomalies. For example, in 2002 and 2012, both severe temperature anomalies
and scarce precipitation occurred throughout Nebraska. However, in 2003 and 2014, dryness was
not associated with high temperature, and in 2005 and 2015, higher temperature was not associated
with dryness.
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3.2. Driving Force Analysis

The random forest method helped us to understand the contributors of vegetation anomalies
among many factors (climate, irrigation, crop type, growth period, DEM, and image quality). Figure 9
presents the factor ranking results. One-month SPI were most important factor to vegetation response,
and crop type also decided the response lag. The daily temperature anomaly shows a relatively low
influence on vegetation stress. Some studies have found the benefit of daily higher temperatures;
however, heat waves (temperature above normal lasting from a few days to a few weeks) could damage
vegetation [28,83]. Irrigation in many cropping systems of central and western Nebraska mitigates
the effects of precipitation deficits by maintaining adequate soil moisture conditions through water
application, unless under the most extreme of drought conditions, when irrigated crops are affected.
The growth period also affects the extent of climatic influence on vegetation. DEM, image quality, and
daily climate conditions are not important for vegetation condition responses in this study.
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3.3. Spatial-temporal Pattern of Response Lag

In the analysis of the spatial-temporal heterogeneity of climatic and vegetation anomalies, it was
found that the spatial-temporal scale of vegetation response was not consistent with that of temperature
anomalies and rainfall anomalies, and the lag response relationship was not consistent. Therefore,
the vegetation response lag to temperature anomalies and rainfall anomalies should be extracted
separately. Spatial-temporal patterns of response lag are useful for revealing the cumulative effect of
climate anomalies on vegetation conditions.

In this study, the cumulative temperature anomaly was found to have a low correlation with
vegetation anomalies using the lag correlation coefficient, and no stable, specific lag period was found
to have a high correlation with vegetation anomalies. The influence of high temperatures on vegetation
is often a bi-directional, complex non-linear relationship. On one hand, an appropriately timed, high
temperature can lead to increased photosynthesis and better conditions for vegetation, particularly
during parts of the growing season where the energy environment is key to vegetation growth (e.g.,
spring green-up of the vegetated phase of plant growth). However, heat waves can cause stress, and
damage vegetation (e.g., during reproductive phase of crops). This nonlinear relationship is difficult to
characterize with a function, especially for the correlation of high temporal resolution time series like
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the NDVI profiles used in this study. In addition, there is a possibility that daily maximum temperature
could have a better correlation with vegetation anomaly. Also, the single-Gaussian fitting of normal
temperature using a more than 30-year time-series may improve the lag correlation results.

The response lag of vegetation to the one-month SPI is shown in Figure 10. The lag period of
drought ranged from two weeks to one and a half months; most lag periods were approximately
30–45 days. Under normal or wet climate conditions, vegetation did not perform an obvious response
behavior, but its response along an accumulated rainfall deficit that follows a normal period was
slower due to the water availability in the soil. During the two extreme drought anomaly years (2002
and 2012), vegetation responded rapidly to the deficit of accumulated rainfall. In 2013, the influence
of the precipitation anomaly only covered the northwestern part of Nebraska; however, the SPI12
index (Figure 5) is normal in this region, which means that the response lag and the vegetation’s
condition were not only decided by the water shortage, high temperatures, and plant diseases may
have accelerated vegetation response. Grassland is the predominant cover type in northwestern
Nebraska, which indicates a stronger response of grassland compared to that of cropland, even when
cropland is facing more severe drought conditions. A possible explanation is that crops of eastern
part are irrigated (corn, in particular, is a crop with high water requirement) compared with wild
grass. For this reason, yearly irrigation scheduling should be considered in order to compare different
behaviors, especially during drier seasons.
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In 2006, apart from grassland, there was a unique severe response region in the southwestern
part of Nebraska. This area was largely planted with winter wheat, and the 2006 drought conditions
occurred only in winter and spring of that year. Given that the primary growing season for winter wheat
is spring and early summer with a mid-summer harvest period, the early-year drought conditions
during the late winter and early spring of 2016 greatly reduced soil moisture conditions to support
winter wheat production, resulting in widespread drought stress in wheat over this region. Therefore,
vegetation damage and response lag were also determined by the time (season). However, under the



Remote Sens. 2019, 11, 1873 17 of 22

extreme climate conditions (2002 and 2012), the response lag pattern was consistent with the SPI12
distribution; other reasons for this influence seem to be implied. As seen from the spatial pattern in
the Figure 7, the vegetation with a relatively fast response to precipitation deficit in the dry period is
mainly concentrated in western Nebraska, which is less affected by human activities (irrigation, water
conservation projects) and where the vegetation type is mainly grassland. This shows that human
activities can mitigate some effects of climate stress, especially drought-induced water stress, on crops.

The results in this section show that the length of the lag period is related to the severity of climate
anomalies to some extent. When severe precipitation deficits occur, vegetation in general has a shorter
lag period for climate response, but the lag period of response is usually no less than two weeks, which
may be due to the accumulated soil moisture and the protective stress mechanisms of vegetation.
Besides, the results also implied the possibility to use an SPI1 with a moving window of one week
instead of one day.

3.4. Crop Response Lag

Frequency distribution of response lag by vegetation categories can further characterize the
diversity of vegetation response to climate. To better reveal the response lag of different vegetation
types to climatic anomalies, we chose the most severe drought year (2012) for further analysis. A total
of 1000 random pixels were selected for six main vegetation cover types according to the coverage area
size that included: Grass, soybeans, winter wheat, corn, deciduous forest, and alfalfa. In order to reflect
the real situation, random pixels were limited and adjusted according to the geographical location and
satellite quality; the low quality of pixels in the remote sensing image is removed based on QA band.

As Figure 11 demonstrates, among all vegetation types, the response lag of grassland is the
shortest, distributed mostly around 30 days and rarely exceeding 35 days. Considering its location in
the western region of Nebraska where human activity is limited, grassland may suffer more serious
effects from water deficit stress than the other crop-related vegetation types. Deciduous forest had the
longest response lag of all vegetation types of up to 48 days, which means that when the deciduous
forest faces an extreme climate, its own stress responses and adaptability make it less influenced
by climate anomalies. Trees have a longer response lag to prolonged drought because of their deep
root system.
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For crops, the lag period of winter wheat had a large lag response range, spanning from 20 to
55 days. The growth period of winter wheat is different than the other summer crops, with the late
winter and spring conditions being critical to winter wheat growth and production. In 2012, drought
conditions in winter were gradually mitigated, with the greatest moisture deficits occurring mainly in
the central region of Nebraska, and parts of south also suffered drought. However, winter wheat is
widely distributed, covering the northwest, southwest and south. The special growing period and
wide planting range of winter wheat make it face various degrees of drought in different periods, so its
response time is also longer and more dispersed. Soybeans, corn, and alfalfa are mainly distributed in
the eastern part of the state under rainfed conditions, with irrigation being required for their production
in central and western Nebraska. They faced similar degrees of drought and had a similar response lag
distribution. The lag period (38-day peak) of soybeans was slightly shorter than that of corn and alfalfa
(42-day peak). This may indicate that the soybean is more sensitive to climatic anomalies, reflecting
them more quickly, so it can be used as an indicator crop of earlier stage drought stress in major crops.

4. Conclusions

Understanding the spatial-temporal response of vegetation to climate change is very important for
water resource management, crop drought warning, and disaster relief. Based on the long-term Daymet
data set and MODIS NDVI time-series images, this study investigated the spatial-temporal patterns
of vegetation anomalies and climatic anomalies, as well as the response lag during the 2000 to 2015
study period over the state of Nebraska. The SPI was used to obtain the precipitation anomaly, and a
Gaussian function was applied to obtain the temperature anomaly. DTW was the main technique used
to acquire vegetation anomaly information from the time-series NDVI data. A multi-layer correlation
analysis was then applied to obtain the response lag of vegetation to climatic conditions.

The main conclusions are summarized as follows: Based on annual averaged SPI12 and
temperature anomalies, 2002 and 2012 were found to have the most severe drought events throughout
Nebraska. In 2005, 2006 and 2015, high temperature anomalies hit most of Nebraska; and reduced
precipitation occurred in different regions of Nebraska in 2000, 2003, 2006, and 2014 causing more
localized, regional drought events. Based on SPI1 and vegetation anomalies calculated by DTW, no
significant hysteresis correlation was found between temperature anomalies and vegetation anomalies
in this study, but precipitation anomalies and vegetation anomalies have a temporal lag correlation
relationship. The response lag of vegetation to the SPI ranged from two weeks to one and a half
months, with most response lags being between 30 and 45 days. When faced with severe drought
events, grasslands had the shortest time response (35 days). In contrast, forests were slower to respond
to severe drought (48 days). The response lag of winter wheat varies across Nebraska, ranging
from 35 to 45 days. Soybeans, corn and alfalfa had similar response lag patterns of approximately
40 days. The random forest revealed the reasons for the different vegetation response resulted from a
combination of precipitation anomalies, vegetation types, high temperatures, and irrigation.

The results of this study serve as a scientific basis for better understanding climate-vegetation
response interactions for supporting policy designation of water resources management and agricultural
planning to reduce the impact of drought on agricultural production and ecosystems in semiarid
regions. Based on the climate and vegetation-related anomaly information, localized regional trends in
drying and heat, as well as the characteristics of drought conditions, can provide policymakers with
early warning of potential extreme climatic events. The lag response of different crops can provide
guidance for actual agricultural management actions and for drought mitigation and rational allocation
of water resources. A real-time drought prediction can be made in the lag period to predict the degree
of impact of drought on crop, so that an early warning about emerging drought conditions and their
potential impact on agricultural production can be issued. Further studies are desired, to investigate the
vegetation response to drought under different conditions (human activities, geospatial environment).
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