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Abstract: An automated, fixed-location, time lapse camera system was developed as an alternative
to monitoring geological processes with lidar or ground-based interferometric synthetic-aperture
radar (GB-InSAR). The camera system was designed to detect fragmental rockfalls and pre-failure
deformation at rock slopes. It was implemented at a site along interstate I70 near Idaho Springs,
Colorado. The camera system consists of five digital single-lens reflex (DSLR) cameras which collect
photographs of the rock slope daily and automatically upload them to a server for processing.
Structure from motion (SfM) photogrammetry workflows were optimized to be used without ground
control. An automated change detection pipeline registers the point clouds with scale adjustment
and filters vegetation. The results show that if a fixed pre-calibration of internal camera parameters
is used, an accuracy close to that obtained using ground control points can be achieved. Over the
study period between March 19, 2018 and June 24, 2019, a level of detection between 0.02 to 0.03 m
was consistently achieved, and over 50 rockfalls between 0.003 to 0.1 m3 were detected at the study
site. The design of the system is fit for purpose in terms of its ground resolution size and accuracy
and can be adapted to monitor a wide range of geological and geomorphic processes at a variety of
time scales.

Keywords: rockfall; photogrammetry; time lapse; monitoring; automation

1. Introduction

Terrestrial remote sensing technologies, such as terrestrial laser scanning (TLS) and structure
from motion (SfM) photogrammetry have been increasingly used to characterize and monitor rock
slope hazards [1–4], and other geomorphic processes [5–9]. They are used to monitor processes at
repeat intervals on the order of days to months or years, nevertheless wide spread use as fixed or
permanent installation systems has yet to be achieved. At present, Ground-based Interferometric
synthetic-aperture radar (GB-InSAR) is widely used for continuous near-real time monitoring of
displacements for landslides [10,11], open pit mine walls [12], and rock slopes [13], as it can obtain
deformation measurements at the sub-millimeter level and is not affected by weather conditions [14].
For some monitoring applications, however, the use of TLS or SfM may be a feasible alternative to
radar monitoring as the system cost can be lower, higher ground resolution can be achieved, volumes
can be measured, and 3D displacements can be extracted.

With increasing amounts of available data storage, cloud computing, automation, and high-speed
connectivity, monitoring geomorphic or hazard processes at a higher frequency with fixed TLS or SFM
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system is becoming more viable. Terrestrial laser scanning has been used to study slope processes
at a high temporal rate (30 min repeat intervals), for the near-real time monitoring of rock slope
pre-failure deformation [15], and to study the degradation of a coastal slope in high temporal detail [16].
Monitoring at a high frequency has been beneficial to better understand the acceleration behavior
prior to a rockfall and to capture short deformation periods [15]. It also produces a more accurate
Magnitude-Frequency (M-F) relationship as compared to measuring at longer time intervals [16,17].

Monitoring rock slopes with a fixed array of cameras using photogrammetric techniques to
build 3D models can also be a viable alternative to monitoring with TLS for a variety of monitoring
applications. A fixed array of cameras has several potential advantages including: an array of cameras
that are well positioned can better capture the morphology of the slope than a single TLS station; the
use of cameras can be a low-cost alternative to TLS systems; the design of the system (e.g., number of
cameras and camera specifications) is fit for purpose and scalable in terms of slope pixel size and level
of detectable change; the point clouds have embedded color; and time lapse monitoring facilitates
more frequent monitoring compared to repeat site visits.

The first known use of a photogrammetric system for landslide monitoring was by [18], where
a system of two low resolution cameras were used to monitor landslide displacements. The system
was meant to provide supplementary data at the site and not a replacement for other monitoring
equipment. Preliminary performance tests and quality assessments with a fixed system of cameras
were conducted by [19] for civil engineering applications using a system of five standalone units 8
Megapixel cameras. The use of fixed photogrammetric systems has also extended to the study of
continuous geomorphic processes conducted over 15 second time intervals over a period of a day [20].
Camera calibration procedures for precise change detection were also tested at a rock slope by [21].
These studies highlight the potential for using fixed array of cameras for monitoring a variety of
processes and changes at a wide spectrum at time scales.

In this study, we contribute to this field of research by presenting a new application of an array of
cameras to the study of rock slope hazard by long-term monitoring on a daily basis, the development of
an automated method for processing data including automation of vegetation removal and point cloud
registration with scale adjustment, development of a method that does not require the use of ground
control points, and an optimized workflow for high resolution and high precision change detection.
We also provide a comparison of the developed technique with a method using ground control points.
Furthermore, the study also investigates whether such a system can be a viable alternative for the study
of rockfall pre-failure deformation and magnitude frequency relationships. This generally requires the
detection of deformation on the cm range [22–25].

2. Study Site

This study is part of a research collaboration with the Colorado Department of Transportation
(CDOT), where several rock slope hazard sites are being studied with terrestrial remote monitoring
methods. The study area includes slopes along Interstate I70 west from Denver (Figure 1). The study
site chosen for the development and implementation of the time lapse camera system is located 50 km
west of Denver and 10 km west of Idaho Springs, within the front range of the Rocky Mountains
(Figure 1).

The study area is located within the front range of the Colorado Rocky Mountains. The rocks at
the site are Precambrian in age and are part of a gneissic formation composed of interlayered units
of biotite gneisses, granite gneiss, and microcline-gneiss [27]. The study site itself consists of jointed
biotite gneiss. The biotite gneiss consists of interlayers of plagioclase-biotite gneiss and sillimanitic
biotite-quartz gneiss and is well foliated. The gneissic layering can be identified in the site photograph
in Figure 2. The gneiss is folded along a northeast trending axes, and contains a minimum of two or
more joint sets [28]. The joint system formed during the Larimide Orogeny and the most prominent
joints are oriented longitudinal to the folding axis (on average N19W), with cross joints striking east to
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northeast [28]. The combination of steep canyons, jointed rock, and seasonal freeze thaw cycles makes
this region particularly prone to rockfall hazard.
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Figure 2. Area of rock slope monitored using the 5-camera monitoring system. For comparison purposes,
ground control points (targets) were installed on the monitored area (red stars and inset image).

3. System Design

In general, the design of a camera system is unique to the study site of interest and the requirements
to monitor a given phenomenon. Several design variables need to be considered and optimized on
a per site basis, including the following:

• The distance of the camera network to the target;
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• The number and locations of the cameras;
• The camera resolution and lens configuration;
• The available budget;
• The size of the monitored area;
• Required data resolution and accuracy;
• Required monitoring interval;
• Sophistication of time lapse controller and associated equipment;
• Site access constraints;
• Environmental constraints.

Some site characteristics and phenomena may not be suitable for camera monitoring. An example
could be a large site requiring high resolution or small ground pixel size. This would require a large
network of high resolution cameras. More suitable configurations could include monitoring large
displacements over a large area at lower resolution or monitoring small displacements at a high
resolution over a smaller area.

The following subsections outline the required components of the camera system and the design
considerations for rockfall monitoring using a time lapse system.

3.1. System Components

For indefinite data collection, the system needs to operate autonomously, have its own power
supply, be protected from weather, and operate reliably in various weather conditions. The system used
for this study consists of a camera and lens, a solar panel, an internal battery pack, a microcomputer
controller, a wireless internet connection, and a weatherproof and tamperproof protective housing
(Figure 3).

Such systems can be designed using low cost computers such as Raspberry Pis and custom
designed protective housing [19]. For this study, to ensure reliable long term operation and camera
protection, a commercial system housing and microcomputer Cyclapse [29] was used (Figure 4, inset A).
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Figure 3. Long-term time lapse system components: (1) Camera and fixed lens; (2) battery;
(3) microcomputer to control power supply, to trigger photos on a schedule, and to upload pictures to
a server for data processing; (4) a wireless internet connection; (5) a power supply such as solar panels;
(6) a protective housing.

3.2. Camera and Lens

The choice of camera depends on the target resolution required to be able to detect the process of
interest and the site geometry. There are many low-cost camera options, which may be suitable in
some applications, including small sensor systems, action cameras, cell phone cameras, and network
video cameras. For rockfall monitoring, high quality photos and high resolution cameras are necessary
to be able to detect fragmental rockfall volumes and small precursor changes occurring on the slope.
There is a correlation between higher end and higher resolution cameras and 3D model accuracy [30].
For this reason, Canon 5DSR cameras with 50-megapixel resolution were used for this study.
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The locations of the cameras were constrained to the opposite side of Clear Creek at an 80 m
average distance to the slope. Canon EF 85 mm prime lenses were selected to maximize coverage of
the scene.

3.3. Camera System Setup and Geometry

The camera system was designed with five individual camera stations, installed 80 m from the
slope on the opposing river bank of Clear Creek (Figure 4, Inset B and C). The system was designed to
trigger photos from a single control station (master controller). The master controller sends a signal to
the other camera stations (slave controllers) via connected cables, allowing near simultaneous photo
collection. The system can also trigger photos from each individual camera station based on their
internal clocks.

Each camera station was between 10 and 15 m apart with a distance to base ratio ranging between
1:5 and 1:8. The camera stations were installed on the river bank and were approximately parallel to
the target rock slope. The placement of the cameras allowed for a central photo having 50% overlap
with the photos from the intermediate stations, and outer station photos having 100% overlap with the
intermediate stations.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 20 
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4. Automated Workflow

The automated data processing workflow consists of three components: (1) Schedule picture
and upload of data; (2) SfM construction of 3D models; and (3) a registration and change detection
pipeline (Figure 5). The workflow is designed for use to monitor an area without ground control



Remote Sens. 2019, 11, 1890 6 of 18

points. The workflow requires some initial manual processing steps prior to initiating automation.
This includes setting the schedule of pictures, providing a scaled and referenced SfM model as a
reference for registration, and providing a classified point cloud with vegetation for vegetation removal.
A detailed description of the three steps can be found in the following subsections.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 20 
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4.1. Automated Camera Control

Each camera station consists of a programmable microcomputer and USB LTE modem that controls
when pictures are taken, manages power consumption, and transfers data to a server. Pictures are taken
at a set time every day and the time is synchronized using the network connection. After each transfer,
a batch script on the processing computer fetches, organizes and backs-up the photos. If a minimum
number of photos were not collected (i.e., due to system errors), the SfM model construction is not
initiated, preventing poor model constructions.

4.2. SFM Model Construction

Agisoft Photoscan v.1.4.5. [31] was used for construction of the 3D photogrammetric models via
an automated script using Python v.3.7.3 [32]. The script is initiated after photos are uploaded to the
FTP server.

In Photoscan, sparse point cloud construction was conducted using the highest accuracy settings,
disabling generic or reference pre-selection and adaptive fitting, and not limiting the number of
tie points detected per image to maximize tie point detection. An upper limit of 500,000 matching
keypoints was used.

Tie points with outlier reprojection errors (>2 standard deviations) were filtered and removed
iteratively. One iteration consisted of a reduced filtered reprojection error, removal of points above
the filtered values, and the optimization of camera parameters and/or camera locations. The iterative
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procedure stopped after a set number of iterations or once the remaining number of tie points reached
the lower threshold of 100,000 tie points.

Dense point clouds were constructed using a medium density setting, typically generating point
clouds with 7,000,000 points corresponding to a ground point spacing of 0.02 m. Tests at ultra-high
density produced models of greater than 70,000,000 points, which led to computational issues in later
stages of processing. The medium density setting was therefore deemed appropriate for automatic
processing purposes.

4.3. Automated Registration with Scale

The proposed method of registration without ground control requires that real-world scale and
orientation (translation, rotation, scale) be determined and applied to the 3D photogrammetric models.
Real world scale is modeled using a single terrestrial laser scan of the site. A photogrammetric model is
manually aligned and scaled to the reference TLS point cloud. This photogrammetric model becomes
the reference model for registration for all subsequent models.

Development of automated registration algorithms has mainly been for TLS-derived point clouds
(e.g., [33–36]) within the fields of robotics, computer vision, and photogrammetry. Applications
incorporating automated alignment with scale difference are still in early development [37–39]. In this
work, an automated registration algorithm with scale was developed in C++, which relies in part on
the similarity of successive point clouds in a fixed position multi-camera setup. The steps used in the
algorithm are outlined in Figure 6. The algorithm is based on the open-source point cloud library
(PCL) [36] and estimates scale using a four-step process where the estimation gradually becomes
more refined: (1) Initial rough estimation based on ratio of resolution; (2) fast point feature histogram
matching and ratio of principal eigenvalues; (3) rigid alignment and singular value decomposition
(SVD) scale estimation; and (4) refinement with an iterative corresponding point (ICP) algorithm
with scale.

4.3.1. Ratio of Resolution

To get an initial rough estimation of scale, the similarity between subsequent point clouds is
taken advantage of, and scale is estimated based on the ratio of resolutions of the reference alignment
model and the aligned model. Since successive photogrammetric models are created using identical
parameters, the resolutions of the models vary minimally, and any minor deviations depend primarily
on the quality of the photos.

4.3.2. Fast Point Feature Histogram Matching and Ratio of Principle Eigenvalues

In the second step of the algorithm, the point clouds are down-sampled by a factor of ten times
the cloud resolution using a voxel down-sampling method to decrease processing time. For each of the
down sampled points, fast point feature histograms are calculated using the PCL [36]. The algorithm
calculates multidimensional histograms of values for each point encoding the geometric characteristics
surrounding the point. The histograms are then used to obtain correspondences between point clouds.
A random sample consensus (RANSAC) based correspondence rejecter implemented in PCL [36]
is used to remove poor correspondence matches. Point clouds are then created for the data and
reference cloud consisting of the remaining matches. Eigenvalues are calculated for each point in the
correspondence point clouds. The ratio of each of the three principal components from each cloud is
calculated, and the average of the three ratios is used as the scale factor for this step.

4.3.3. Rigid Alignment and SVD Scale Estimation

At this stage, a rigid transformation and rotation is applied. This is done by finding
correspondence between the reference and data subsampled point clouds using the calculated
featured histograms. The correspondences are filtered using RANSAC and the best transformation is
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obtained. The transformation estimation using singular value decomposition with scale estimation
from PCL is implemented to refine the rotation, translation, and scale.

4.3.4. Iterative Registration

The final step is to refine the registration using an iterative corresponding point algorithm with
scale adjustment. Within this algorithm, correspondences are estimated between points (not features)
using a normal shooting method, poor correspondences are rejected using a median rejecter, and the
transformation is estimated using singular value decomposition with scale using PCL functions [36].
These steps are repeated until a preset stopping criterion is met.
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Figure 6. Registration pipeline for change analysis without ground control.

4.4. Vegetation Filtering

Following registration, vegetation is filtered from the aligned point cloud. To automate the
vegetation removal, a template of vegetation points is first manually made from a series of 3D models
of the site. The template consists of the subset of the total model points consisting of vegetation.
The vegetation removal algorithm first removes outliers using a statistical outlier removal algorithm.
The algorithm performs a statistical analysis on each point’s neighborhood distances and removes
points that are outside 2 standard deviations of neighborhood distance. The nearest neighbors within
a 0.1 m radius of each vegetation point are then found and removed from the point cloud. Figure 7
illustrates an example of the vegetation template and workflow for this step.
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4.5. Change Detection Algorithm

A change detection algorithm based on slope-dependent normals was implemented. Normals
are calculated and the comparison direction is set based on the reference model normal direction.
The difference is calculated along the normal to a subset of closest points in the data model. The mean
location along the vector is then used as the raw distance. The raw distances are then filtered using
a nearest neighbor averaging filter. This change detection algorithm was originally implemented
by [15].

Prior to implementation of the automated algorithm, an optimum normal radius was determined
by cycling through a series of normal radius distances and finding which radius minimized the error
between two models, as in [16].

Within the automated workflow, change is calculated cumulatively from the reference model,
change in the prior 30 days, and change on a daily basis. The daily change data are used to identify
rockfall events and calculate their volumes. The cumulative change data are used to identify and plot
pre-failure deformations prior to rockfall events.

5. Experimental Methods

5.1. Target-Based Models

As a check and to assess the accuracy of the proposed monitoring approach without ground
control points, targets were installed on the slope. Fifteen 15 cm diameter targets were installed, spread
equally throughout the scene (see Figure 2). The target locations were surveyed with a total station
from the opposing river bank of Clear Creek with an accuracy of 3 mm.

A separate manual method was used to construct a SfM model using the surveyed ground control
in the scene. Each target was manually identified in Photoscan and the surveyed coordinates were
assigned to the targets. The same model construction settings and procedure was used for the ground
control-based construction as for the previously described approach without ground control.

5.2. Time Lapse Data Collection

Time lapse data was collected on a daily basis since 19 March 2018. Pictures were taken using
aperture priority with an F8 aperture settings and an ISO setting of 100. Each camera in the system
was set to take photos at 12:00 pm and 12:30 pm daily.

For two days, 7 and 8 July 2018, photos were collected every 30 min from 9:00 to 16:00. The purpose
of the test was to see if we could improve the overall accuracy and precision of the model by taking
repeated photographs and whether improved model quality could be observed in areas typically
affected by low sun exposure.

5.3. Pre-Calibration and Intrinsic Camera Parameters

To optimize SfM model construction, various pre-calibration approaches for the determination of
intrinsic camera parameters were tested and applied to all of the time series data collected. Models
were constructed using fixed pre-calibration (intrinsic parameters fixed), using pre-calibration and
allowing adjustment of the intrinsic parameters during bundle adjustment, and using no pre-calibration
and solving for the intrinsic parameters during bundle adjustment. Models were also constructed
using separate pre-calibration parameters for each camera station and using one set of pre-calibration
parameters for all cameras.

To determine pre-calibration parameters, Agisoft Lens [31] was first used with the built-in
checkerboard. This however, did not provide representative intrinsic camera parameters due to
difficulty in simulating the field focus and camera settings in a lab setting. The intrinsic camera
parameters were then determined using self-calibration with bundle adjustment. Pictures of the field
site with the installed targets were taken for each camera while installed in the protective housing.
This ensured that the calibration procedure accounted for the additional outer layer of glass on the
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protective housing. The intrinsic camera parameters were then solved within Agisoft Photoscan [31].
Ideally, this self-calibration procedure should be done in a separate calibration field to provide better
accuracy intrinsic camera parameters and because the proposed procedure does not rely on targets
being installed at the field site. For this study, the assumption is that using the targets installed at the
field site closely approximates a calibration field.

As a test, pre-calibration parameters were also extracted from the solved intrinsic parameters from
a model constructed without pre-calibration. These parameters were then used as a set of artificial
pre-calibration parameters and applied to all models in the time series.

6. Results

6.1. Spatial Assessment of Accuracy

To assess the effects of using a method without ground control and the effects of different
pre-calibration settings on spatial accuracy, the TLS scan was used as a reference for change comparison.
The distribution of differences in comparing the TLS to the SfM models was used to assess the
model accuracy. This was done by analyzing the statistics of the differences and assessing the spatial
distributions of differences qualitatively.

Figure 8 shows the comparison between TLS and five different SfM model constructions: (1)
No pre-calibration with separate calibration parameters for each camera; (2) no pre-calibration with
one calibration group for all cameras: (3) pre-calibration with one calibration group for all camera;
(4) pre-calibration with separate calibration parameters for each camera; (5) a model constructed using
ground control. The figure shows the resulting differences as histograms and spatially distributed over
the comparison area for qualitative assessment of accuracy.

The target-based model (Figure 8, Inset E) produced, on average, 0.01 m error on each target
compared to the surveyed coordinates. This error is also reflected in the comparison of the target model
with the TLS reference, which resulted in a standard deviation of differences of 0.011 m. Qualitatively,
the spatial distribution of residuals is random and uniformly distributed, indicating a good agreement
with the TLS reference scan.

The pre-calibrated model constructed with separate calibration parameters for each camera
(Figure 8, Inset D) is comparable to the target-based model with a standard deviation of 0.011 m.
However, qualitatively the accuracy differs. The spatial distribution of residuals is uniform in the
central part of the model, however deviates slightly around the periphery, indicating a slight distortion
in the model.

Both model constructions without using pre-calibration are of lesser accuracy. The model
constructed with separate calibration groups (Figure 8, Inset A) produced a standard deviation of 0.019
m. The model differences are uniformly distributed in the central parts of the model, but significant
systematic errors are visible in the upper and lower parts of the model.

The models constructed with the same calibration parameters for all cameras (Figure 8, Inset B
and C) produced standard deviations of 0.017 m and 0.019 m, respectively, for the pre-calibrated and
non-pre-calibrated cases. Compared to the separated calibration group constructions, the differences
appear with more distortion and appear as a characteristic ‘bowl’ effect.

An assessment of spatial accuracy over time was conducted by using the TLS scan as a reference
for comparison and calculating the change to each successive SfM model. The standard deviation of
the spatial differences is plotted over time in Figure 9 for three comparison scenarios.
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The first comparison scenario (A) shows the difference between using separate fixed pre-calibration
parameters for each camera station and using one set of fixed pre-calibration parameters for all cameras
(Figure 9, Inset A). Using separate individual pre-calibration resulted in a better accuracy than using
a single calibration for all cameras. The average standard deviations for the time period considered
were 0.13 m and 0.16 m, for separate and grouped, respectively.

The second comparison (B) (Figure 9, Inset B) shows the difference between using separate fixed
pre-calibration parameters for each camera station and using separate fixed pre-calibration where the
parameters were obtained from a previous SfM model construction. The pre-calibration parameters
were obtained by extracting the intrinsic camera parameters of a well-constructed SfM model of
the site. The average standard deviation for the pre-calibration from the SfM model was 0.16 m.
The pre-calibration based on a SfM model was less accurate than the pre-calibrated case, however, both
cases maintained similar precision. The standard deviation of the comparison standard deviations
over the time period were 0.0006 m and 0.0008 m for the pre-calibrated fixed models and pre-calibrated
fixed model with pre-calibration from a SfM model, respectively.

The third comparison (C) (Figure 9, Inset C) compared models constructed using a fixed
pre-calibration, a non-fixed pre-calibration (intrinsic camera parameters allowed to vary during
bundle adjustment), and using no pre-calibration. The fixed pre-calibration performed best in terms of
both accuracy and precision. The non-fixed pre-calibration and no pre-calibration were significantly
worse in terms of precision (Table 1). For these two cases, the intrinsic camera parameters were solved
during the bundle adjustment. These cases also had outlier cases where a high standard deviation
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occurred. The outlier cases typically occurred where there was an obstruction in the view in one or
multiple photographs, such as a passing transport truck that partially blocked the view, or during poor
visibility conditions. The fixed pre-calibration case maintained its precision even in these non-ideal
cases. Unless otherwise specified, all following results are presented for the fixed pre-calibration case
(with separate pre-calibration for each camera).

Table 1. Summary statistics of three time series comparisons.

Comparisons Mean (m) Standard Deviation (m)

Comparison A
Pre-calibration fixed (per camera) 0.0134 0.0006

Pre-calibration fixed (one for all cameras) 0.0175 0.0017

Comparison B
Pre-calibration fixed (per camera) 0.0134 0.0006
Pre-calibration fixed from model 0.0164 0.0008

Comparison C
Pre-calibration fixed (per camera) 0.0134 0.0006

Pre-calibration not fixed (per camera) 0.0151 0.0015
No pre-calibration (per camera) 0.0163 0.0019

6.2. Multiple Combined Photos

Models generated from a fixed network of cameras are produced from a lower number of positions
than a traditional terrestrial data collection where one camera can be easily moved to multiple different
locations. As result, models are constructed with a low number of photos. To test if increasing
the number of photos per station had a positive effect on precision and accuracy of the models in
a fixed setup, SfM models were constructed with varying numbers of repeated photos throughout
two consecutive days. To estimate precision, models constructed with varying numbers of repeated
photos were compared between the two consecutive days. To estimate accuracy models constructed
with varying numbers of repeated photos were compared to the TLS model (Figure 10). Models
generated using a greater number of photos produced a better overall precision, however, the accuracy
remained between 0.012 and 0.013 m. Although, increasing the number of photos didn’t improve
overall accuracy, the combination of photos from different times of day did improve the number of tie
points detected in areas obstructed by shadows in individual collections.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 20 
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6.3. Rockfall Analysis

Change detection results were calculated using the pre-calibrated fixed case without ground
control. The rockfalls were extracted from the change detection results and overlaid on the SfM model
for comparison. Figure 11 shows the cumulative amount of rockfalls detected since the beginning
of daily monitoring. The rockfalls colored in red highlight the rockfalls that occurred from the TLS
baseline scan from 13 February 2018 to the start of photo monitoring on 19 March 2019. More than
50 fragmental rockfalls were detected ranging in size from 0.003 to 0.1 m3 between 13 February 2018
and 24 June 2019.

A time series deformation analysis was conducted by plotting the per-point change over the
study period in the areas where rockfalls occurred. No deformation was detected prior to the
rockfalls observed at the site. In this magnitude range, deformation prior to rockfall have been rarely
observed [25].Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 20 
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7. Discussion

A five-camera time lapse camera system was implemented for the long-term monitoring of a rock
slope, and an automated data processing workflow was developed that does not require ground
control points. This study investigated whether this monitoring method was viable for monitoring
rock slope processes and compared the method to one using ground control. The results showed
that a well-designed system using a fixed pre-calibration can achieve similar accuracies as methods
using ground control. Furthermore, the detection limits achieved were also in the ranges required for
monitoring rock slope pre-failure deformation processes and fragmental rockfalls.

This study shows that monitoring using a low number of camera positions in a fixed setup is best
done with a network of ground control points. This produces the most accurate models, even when
a photo is partially obstructed by an object. However, installing ground control points on a rock slope
is not practical nor cost effective. In this study, for example, the installation of ground control targets
required the use of climbing ropes and one lane of traffic on the interstate had to be closed.

The results show the importance of pre-calibration in both the creation of spatially accurate models
and in its effect at improving model accuracy over a time series, during poor weather conditions or
during partial obstruction of the scene. The method developed without using ground control points
and using a fixed pre-calibration resulted in similar accuracy and precision as using ground control.
This is advantageous as access to the monitored slope is not necessary. Even if some cameras may
not require pre-calibration, fixing the intrinsic camera parameters over time can reduce inaccurate
model generation due to poor weather, poor lighting conditions, or obstructions within the scene.
The network of installed targets was used as a proxy calibration field in this study. The accuracy of the
pre-calibration parameters may be further improved by using a separate calibration field. A separate
calibration site is also the recommended procedure for using the monitoring methodology without the
use of ground control on site.

The time lapse camera system is a viable monitoring approach for rockfall studies, highlighted by
over 50 fragmental rockfalls being detected during the study period. Furthermore, using pre-calibration,
a level of detection at 95% confidence between 2–3 cm was achieved, which is suitable for detecting
pre-failure deformation [22–25]. The point clouds generated also provide color data, which facilitates
the interpretation of rock slope processes. This is particularly beneficial in discerning the difference
between rockfall events and snow melting from the slope.

The suitability of using a time lapse system depends on the site geometry, required level of
detection, required frequency of data collection, and budget. In this study, the camera system was built
using a budget of USD $ 30,000 and allowed the monitoring of an approximately 1600 m2 area of rock
slope at a low cm detection level. Similar setups can be used to detect larger movements over a wider
area, or smaller movements concentrated over a smaller area.

The method presented was implemented for a rock slope; however, it is also suitable for monitoring
many geological processes or civil engineering structures at a variety of timescales. It can be used
for monitoring landslides [18], erosion [20], debris flows, and construction [19], for example. In the
context of geohazard management, multiple systems could be used and monitored in near-real time at
a variety of hazard sites. This could be done with aid of cloud computing. It could allow tracking of
hazard events, early warning, and even provide data of the condition of an asset being monitored.

Time lapse monitoring may be unsuitable for some monitoring cases. For example, large areas that
require high precision monitoring and a small ground pixel size would require an impractical number
of cameras. A feasibility study should be conducted prior to using this method and should consider
the required monitoring interval, coverage area, required ground resolution/precision, environmental
conditions, and budget. Since the monitoring requires good visibility, environments with frequent
precipitation or fog may be unsuitable. More frequent data collection is possible, however, data
transfer limits and data processing times should be considered. Furthermore, the system is generally
limited to daytime collection. Preliminary tests showed that night time data collection, even with long
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exposure times, did not provide enough tie points to be able to construct a model accurately. Night
time monitoring may be a possibility with artificial light sources.

8. Conclusions

A fixed time lapse camera setup with automated processing was developed to monitor a rock slope
on a daily basis. The method does not require the use of ground control points, which is advantageous
for studies of near vertical rock cliffs. The method was developed to provide a lower cost monitoring
alternative to more expensive technologies such as TLS and GB-InSAR and to provide the capability to
monitor geomorphic and geological processes at a high temporal rate.

The results show that it is possible to obtain close to the same accuracy using pre-calibration as
with ground control points. The automated processing methods developed in this article can also be
used to provide near-real time change data of geological processes. In the context of rock slope hazard
management, the system can provide crucial data on the condition of a rock slope, detailed rockfall
activity characterization, and areas of potential failure may be detected in advance by monitoring
pre-failure deformation. It would be beneficial to apply this monitoring approach to different site
geometries and monitoring requirements to further test its feasibility for practical deployment.
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