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Abstract: In-time and accurate monitoring of land cover and land use are essential tools for countries
to achieve sustainable food production. However, many developing countries are struggling to
efficiently monitor land resources due to the lack of financial support and limited access to adequate
technology. This study aims at offering a solution to fill in such a gap in developing countries,
by developing a land cover solution that is free of costs. A fully automated framework for land
cover mapping was developed using 10-m resolution open access satellite images and machine
learning (ML) techniques for the African country of Lesotho. Sentinel-2 satellite images were accessed
through Google Earth Engine (GEE) for initial processing and feature extraction at a national level.
Also, Food and Agriculture Organization’s land cover of Lesotho (FAO LCL) data were used to
train a support vector machine (SVM) and bagged trees (BT) classifiers. SVM successfully classified
urban and agricultural lands with 62 and 67% accuracy, respectively. Also, BT could classify the two
categories with 81 and 65% accuracy, correspondingly. The trained models could provide precise LC
maps in minutes or hours. they can also be utilized as a viable solution for developing countries as
an alternative to traditional geographic information system (GIS) methods, which are often labor
intensive, require acquisition of very high-resolution commercial satellite imagery, time consuming
and call for high budgets.

Keywords: machine learning; land cover mapping; cloud processing; Google Earth Engine; satellite
time series

1. Introduction

The United Nations (UN) predicts that the world population will increase to 8.7 billion by 2030
and 9.7 billion by 2050 [1]. This population growth impacts natural resources utilization and causes
land use changes. Hence, the UN 2030 agenda for sustainable developments goals (SDG) aims to,
achieve food security, improve nutrition, and promote sustainable agriculture to end hunger [2].
This aim has been highlighted under target 2.4 of the SDGs by promoting political and technological
efforts to ensure sustainable food production systems, implementing resilient agricultural practices
that increase productivity and production, helping maintain ecosystems, strengthening capacity for
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adaptation to climate change, extreme weather, drought, flooding, and progressively improving land
and soil quality [3]. In more detail, indicator 2.4.1 of the SDGs is defined as the proportions of the
agricultural area within productive and sustainable agriculture and was specifically designed to focus
on agricultural lands which are used to grow crops and raise livestock [4]. Therefore, characterizing and
mapping land cover are essential for planning and managing natural resources including agricultural
lands [5]. For this purpose, implementation of efficient operational land cover requires advanced remote
sensing methodologies with the ability to provide inexpensive, on-demand and accurate land cover
products using available free and open access data and free cloud-based data processing platforms.

Regarding land cover mapping resources, the Global Land Cover—SHARE database (GLC-SHARE)
developed by the UN’s Food and Agriculture Organization (FAO) is a database with 30 arc-second
spatial resolution based on available national and regional land cover databases [6]. Inglada et al.,
provided the land cover of France using Sentinel-2 products for 17 land cover classes [7]. Also,
a cloud-based platform and dense stack satellite time series were utilized to provide artic land cover [8].
Belgiu et al., investigated the ability of a Machine Learning (ML) methodology in land cover mapping
in different agro-ecological regions of the planet [9]. Cardille et al., Introduced Bayesian Updating of
Land Cover (BULC) for the ongoing updating of land cover classification [10]. Xiaong et al. developed
an automated cropland scheme for the continent of Africa by utilizing Moderate Resolution Imaging
Spectroradiometer (MODIS) data (250-m resolution) and Google Earth Engine (GEE) [11]. Furthermore,
the Climate Change Initiative (CCI) team of the European Space Agency (ESA) released a land cover
map at 20-m resolution over Africa for the year 2016 [12].

The above researches were performed using supervised or unsupervised methods to classify
and map land cover. However, such methods are time-consuming and require substantial labor and
funds [7]. Moreover, the mentioned methodologies have been applied to data sets collected at a certain
period of time [13]. This leads to the inability to monitor changes in land cover or to conduct further
necessary post-analysis. Furthermore, implementation of such methods on cloud-based platforms are
very limited. Thus, many attempts with remote sensing have been carried out in order to overcome
the challenges of producing less costly and more time efficient land cover mapping [14].

In this study, we are proposing a combination of an automated land cover mapping methodology
and machine learning technique using sets of data obtained from the UN’s FAO land cover maps
and free of cost Sentinel-2 high-resolution imagery adapted through an open access and cloud-based
platform to produce high precision and on-demand land cover maps. The FAO provides land cover
maps at the national and global level for a diverse range of purposes such as forest management,
global land cover, water management, etc. [6,15,16]. These land cover maps are generated from
different methods including field, airborne or space-borne data. Provided data are valuable sources
of information for various applications [17]. GEE is a cloud-based platform providing access to free
satellite and airborne image services and offering computational power [18], through its Application
Program Interfaces (APIs) including the ESA’s Copernicus Programme [19], NASA and the U.S.
Geological Survey [20,21]. Furthermore, it allows users to ingest and utilize other geospatial and/or
in-situ data as fusion tables or images. GEE has been utilized in several studies covering topics
such as global forest change [22], global surface water change [23], crop yield estimation [24], rice
paddy mapping [25], urban mapping [26,27], flood mapping [28], and land cover mapping [29,30].
The computational power of GEE along with its comprehensive data access make GEE a capable option
for implementation of land cover mapping platforms which are timely, accessible from remote areas
and free of cost for researchers and countries with economical and technical difficulties.

The objectives of this paper are summarized as following:

1. To investigate the potential, limitations, and utilization of GEE for feature extraction.
2. To study the advantages of adding spatial feature to classify land cover and the feasibility of high

dimensional feature space in similar applications.
3. To evaluate the performance of machine learning models to classify the land surface by using

high dimensional feature space.
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4. To evaluate the methodology on three different areas in Lesotho to ensure that it is independent
from climatic variables and agro-ecological zones.

This paper is structured as follows: Section 2 describes the study areas and the data; Section 3
presents the proposed methods; Section 4 is dedicated to the results and Section 5 highlights the main
findings and the implications of this study and is followed by our conclusion.

2. Study Area and Data

2.1. Study Area

This study has been carried out over territory of the Kingdom of Lesotho (Figure 1). The Kingdom
of Lesotho is a landlocked country completely surrounded by South Africa. The total area of the
country is 30,450 km2, making it the 137th largest country on the planet. Lesotho’s population was
estimated to be 2,174,645 in 2015 by the UN and expected to reach 2,607,957 by 2030 and 3,203,470 by
2050 [1]. The poverty level in Lesotho is high with 62 percent of the population living on less than
2 USD per day. It is estimated that 36.4 percent are living on 1 USD or less per day. Agriculture is
the main economic sector in Lesotho such that 60–70% of the country’s laborers obtain supplemental
income from agriculture.

Figure 1. The Kingdom of Lesotho (study area) within the continent of Africa.

Poverty is the worst in rainfed farming areas. The country’s territory is divided into four
agro-ecological zones based on altitude and landscape, namely: lowlands, the foothills, the Senqu
River Valley (SRV), and the mountains [13]. The FAO Global Agro-Ecological Zones [31] divide the
country into four major agro-ecological zones which are characterized by four different lengths of
growing period (LGP) based on analysis of climate, soil, and terrain data (Figure 2).

The climate of Lesotho is characterized by two main seasons: a rainy season from October to
the end of March and a dry season from April to the end of September. Normally the majority of
precipitation occurs during the southern hemisphere summer thunderstorms (Figure 3).

In this study three different pilot areas labelled as (1) Maseru, (2) Lejone, and (3) Mokhotlong
with surface areas of 482.65, 484.45, and 492.39 km2, respectively, were selected from the territories of
Lesotho in a way that each area would fall within a distinct agro-ecological zone to represent Lesotho’s
variability of different geological features, land cover and land use.
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Figure 2. Agro-ecological zones of Lesotho based on length of growing period (LGP) and foot-print of
pilot areas. (1) Maseru, (2) Lejone, and (3) Mokhotlong.

Figure 3. Comparison between mean of normalized difference vegetation index (NDVI) of three studied
pilot areas and agricultural seasons in Lesotho.

Footprints of the selected areas are shown in Figure 2. This will ensure the efficiency and the
independency of the proposed algorithm for providing comprehensive training data. It is well-known
that different agro-ecological zones form unique ecosystems influencing plant growth characteristics
including photosynthesis (plant chlorophyll content) and therefore spectral reflection [32].

2.2. FAO Land Cover Lesotho Classes

FAO Land Cover of Lesotho (FAO LCL) was developed in 2016 using commercial satellite images
and conventional GIS methods, along with supervised image classification techniques with very
high-resolution satellite and airborne images with spatial resolution of 1.5 m. It utilizes an object-based
classification on pan-sharpened images. The FAO LCL consists of 32 land cover categories based on
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FAO ISO 19144 Land Cover Meta Language, which provides a common reference structure for the
comparison and integration of data for any generic land cover classification system [33]. A list of land
cover classes and the specifications of satellite images that were used in FAO LCL data are shown in
Tables 1 and 2, respectively [34]. In this study, the FAO LCL resolution was resampled in order to
change the spatial resolution from 1.5 m to 10 m so that it would match Sentinel 2 spatial resolution.
The pixel values of the original dataset represented the dominant land cover for each land cover class
within 10 m × 10 m cells. These values were aggregated across the new pixel size using a majority filter
of 100 m × 100 m cell size. The majority filter algorithm determined the new value of the cell based on
the most popular land cover within the filter window. Such method has been used by FAO in 2014 to
harmonize national land cover datasets into the GLC-SHARE land cover and by other studies [6,35,36].

Table 1. FAO LCL classes and classes definitions.

Class
Code LC Type LC Name LC Description

1 BUILT-UP
(4 classes)

Urban Areas Relatively larger urban built-up areas, commonly with
presence of trees

Urban Commercial and/or
Industrial areas Commercial and/or industrial built-up areas

Rural Settlements,
Plain Areas

Rural houses in flat lying plain areas + small cultivated
herbaceous crops + closed herbaceous natural vegetation,

often together with trees and/or shrubs employed for
demarcation

Rural Settlements, Slopping
and Mountain Areas

Rural houses in sloping and mountainous areas +
herbaceous natural vegetation, occasionally with shrubs

employed for demarcation, usually treeless

2 AGRICULTURE
(5 Classes)

Rainfed Agriculture,
Plain Areas

Rainfed herbaceous crops cultivated in flat-lying plains,
relatively larger sized fields

Rainfed Agriculture, Sloping
& Mountainous regions

Rainfed herbaceous crops in sloping land and mountains
with terracing and/or contour ploughing, small and medium

sized fields, sometimes with lines of shrubs
demarcating fields

Rainfed Agriculture, Sheet
Erosion

Rainfed herbaceous crops with visible water sheet erosion,
commonly with associated gully erosion

Irrigated Agriculture Small size irrigated herbaceous crops near water courses

Rainfed Agriculture +
Rainfed Orchards

Small rainfed herbaceous crops + regular rainfed orchard
plantations (usually as rows of fruit trees separating

elongated fields)

3
TREES

(7 Classes)

Trees, Needle leaved,
(Closed)

Closed evergreen needle-leaved trees, sometimes occurring
as plantations

Trees, Needle leaved, (Open) Open evergreen needle-leaved trees + herbaceous
natural vegetation

Trees, Broadleaved, (Closed) Closed deciduous broadleaved trees, commonly along
river beds

Trees, Broadleaved, (Open) Open deciduous broadleaved trees + herbaceous
natural vegetation

Trees, Undifferentiated
(Closed) Closed undifferentiated trees

Trees, Undifferentiated,
(Open) Open undifferentiated trees + herbaceous natural vegetation

Trees, (Sparse) Sparse trees + herbaceous natural vegetation (closed-open)
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Table 1. Cont.

Class
Code LC Type LC Name LC Description

4
HYDROLOGY

(4 Classes)

Large Waterbody Large perennial fresh water lake or dam reservoir

Small Waterbody Small fresh water seasonal and/or perennial reservoir, Pool,
Waterhole, etc.

Wetland (Perennial and/or
seasonal)

Natural perennial and/or seasonal fresh waterbody +
Perennial closed-open natural vegetation

River Bank River Bank (soil/sand deposits) + perennial or periodic
flowing fresh water (river)

5 SHRUBLAND
(2 Classes)

Shrub-land-(Closed) Natural Shrubs (H = 0.5 to 1.5 m), Closed

Shrub-land-(Open) Natural Shrubs (H = 0.5 to 1.5 m), Open + Natural
herbaceous vegetation (Open Closed)

6 GRASSLAND
(1 Class) Grassland Grassland—Natural vegetation

7 BARREN LAND
(5 Classes)

Bare Rock Rock outcrops

Bare Area Bare areas—undifferentiated areas not used for cultivation
and usually devoid of grass or shrub cover

Boulders & Loose Rocks
Areas with large scattered boulders and/or unconsolidated
loose rocks, commonly sloping, usually together with patchy

natural vegetation and/or shrubs and/or natural trees

Gullies Gully erosion, occasionally with trees and/or tall shrubs

Mines & Quarries Major mines and quarries as well as temporary building
material extraction sites

Table 2. FAO LCL specifications of utilized images.

Image Source Spatial Resolution (Meter) Spectral Resolution

Rapid Eye 5 5 bands (440 to 850 nm)
Spot 5 2.5 5 Bands (480 to 1750 nm)

Aerial orthophotos 0.5 3 Bands (visible light)

2.3. Test and Training Data Set Generation

Machine learning (ML) models are often used to classify satellite images. In order to train the
ML models, a set of ground truth labeled data points are required. In this study, we have randomly
selected over 12,000 points from three pilot areas. To ensure that the accuracy measurements for
all classifications are in the same order, the training and validation points were equally distributed
between all land cover classes. FAO LCL was used for labelling the training points.

3. Methods

Figure 4 shows the workflow of the proposed methodology. First, the FAO LCL data was prepared
and ingested into the GEE as data assets. Data preprocessing and feature extraction was done using
GEE on cloud machine by utilizing GEE JavaScript API. All the available Sentinel-2 imagery between
the first of October 2015 until the end of December 2017 were used as open access data. Images were
preprocessed to remove cloudy pixels and formed (1) an image stack divided into four seasons and
(2) a single image for all the territory of Lesotho. The image stack was used to extract the spectral
features as explained in Section 3.2.1. The single image was sharpened using Principal Component
Analysis (PCA) coefficients and then spatial features were extracted as explained in Section 3.2.2.
Finally, the feature vectors of three pilot areas were exported for training, validation, and classification
steps on local or cloud machines.
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Figure 4. Algorithm workflow of proposed machine learning classification and accuracy
assessment methodology.

3.1. Google Earth Engine Data

In this regard, GEE was used to collect and extract data at the national level for Lesotho. First,
all the available Sentinel-2 image tiles were selected for Lesotho and clipped to the country’s borders.
Clouds were filtered based on a pixel-wise filtering technique by the band QA60 of Sentinel-2 products
with a 5% cloudy pixel rate. This guaranteed that all the image tiles used in the next steps were
only removing cloudy pixels of each image without removing the whole tile. Then image collection
was divided into four groups based on the imagery season. Lesotho possesses four distinct seasons:
spring-rainy season (October first to the end of December), summer-rainy season (January first to end
of March), Autumn-dry season (April to end of June) and Winter-dry season (July to end of September).
The season time periods are based on the data available on the Famine Early Warning Systems (FEWS)
(www.fews.net) and the MODIS NDVI band (Figure 3).

3.2. Data Preparation

3.2.1. Spectral Features

High spectral resolution satellite sensors produce images in a higher number of bands in both
visible and invisible spectrums with narrower bandwidth [34]. Higher spectral sensitivity of sensors
could help in obtaining more information from earth surfaces including vegetation. One of the benefits
of high spectral images is the possibility of calculating different vegetation indices (VI). VIs, which are
obtained from satellite sensors, have been intensively studied and applied in many environmental and
remote sensing studies. Xue et al. listed 118 different VIs and reviewed the most popular ones [37].
In this regard, the Normalized Vegetation Index (NDVI) is the most utilized VI, which was introduced
by Rouse Jr. et al. [38] as follows:

NDVI =
NIR−Red
NIR + Red

(1)

NDVI is sensitive to vegetation even in conditions of scarce vegetation. However, soil brightness,
soil color, atmosphere, clouds, and shadows affect the NDVI. Since NDVI has negative correlation with

www.fews.net
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soil brightness and atmospheric effect. Enhanced Vegetation Index (EVI) was later introduced which
simultaneously correlates soil and atmospheric effects as:

EVI = G×
NIR−Red

NIR + C1 ×Red−C2 × Blue + L
(2)

where G is the gain factor equal to 2.5, L = 1 is the soil-adjustment factor, C1 = 6 and C2 = 7.5 are the
coefficients of the aerosol resistance term, which uses the blue band to correct aerosol influences in the
red band [39,40].

In this study, the seasonal mean of NDVI and EVI were calculated as spectral features based on
Lesotho climatic seasons (Figure 3) on all existing data. The combined application of NDVI and EVI
decreases the effect of atmospheric transmission and insures the reliability of the spectral features.

3.2.2. Spatial Features

In addition to the spectral properties of satellite images, the spatial properties (i.e., image texture)
are important characteristics that can be used to describe land cover. Texture is defined as feel,
appearance, or consistency of a surface or a substance. In the digital image processing field, the texture
is the spatial arrangement of colors or pixel intensities. Different sets of metrics are designed in image
processing to quantify the perceived texture of an image. Hereby, spatial properties were extracted
from the Sentinel-2 images into two steps.

Image Pre-Processing with PCA

To extract the textural properties of images, it is necessary to pre-process the images in order to
remove the noise or increasing the amount of details in each images tile. Therefore, to increase the
differences between different textures in an image, principal component analysis (PCA) was applied.

PCA uses orthogonal transformation to convert possibly correlated data into linearly uncorrelated
values so that the first principal component has the largest possible variance [41]. In general, almost any
data matrix can be simplified by PCA. PCA estimates the correlation structure of variables. Therefore,
principal component analysis of a data matrix extracts the dominant patterns in the matrix.

PCA was applied on visible channels (B2, B3, and B4) and near infrared (NIR) channel (B8)
of Sentiel-2 images. Then the first component was combined with the original image plus a
coefficient. Pan-sharpening is the injection of high-resolution panchromatic image into lower resolution
multispectral images to get higher resolution multispectral images [42]. However, this study takes
advantage of PCA pan-sharpening method on Sentinel-2 images by applying PCA coefficients that
were obtained from visible bands and the bands with higher atmospheric transmission (i.e., band 8
and 12) on all the bands. Figure 5 compares the first and second principal components with Google
Earth images, Sentinel-2 images and the final sharpening results using first and second components.

Texture Features: Grey Level Co-occurrence Matrix (GLCM)

A co-occurrence matrix is a matrix that is defined over an image I in which it is the distribution
of co-occurring pixel values (grayscale values or colors) at a given offset (∆x, ∆y) that is a position
operator to be applied on any pixel in an image. The (i, j)th value of the co-occurrence matrix gives the
number of times in the image that the ith, and jth pixel values occur in the relation given by the offset.
For an image with p different pixel values, the p× p co-occurrence matrix C is defined over an n×m
image I, as:

C∆x,∆y(i, j) =
n∑

x=1

m∑
y=1

{
1, i f I

{
x, y = i and I

{
x + ∆x, y + ∆y = j

0, otherwise
, (3)

where, I(x, y) indicates the pixel value at the pixel (x, y). Here, the co-occurrence matrices were
calculated over three visible and two NIR bands for an offset of 8 pixels distance in all directions.
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Second order statistics can be derived from co-occurrence matrices to quantify the properties of an
image. In this study, we have calculated 18 s-order statistics introduced by Haralick et al. and Conners
et al., e.g., correlation, sum of variance, and contrast, etc. [43,44].

Figure 5. (A) Google Earth high resolution image. (B) Sentinel-2 10-m resolution image. (C) First
principal component of 4 selected bands. (D) PCA sharpened image with first principal component. (E)
Second component of PCA. (F) Sharpened image with second component of PCA.

3.3. Trained Machine Learning Models

For machine learning models, we have trained bagged trees (BT) and support vector machine
(SVM). BT and SVM have been used in various studies for land surface classification [45–47]. The BT
that was used in this study is an ensemble of decision trees model with 30 learner trees [48]. The BT
model in this study only accepts one parameter (number of trees). It should be noted that, typically, in
remote sensing applications, random forest classifiers are used which are a specific type of bagged
trees in which it needs two parameters. First, the number of trees, and second is the number of features
(predictors) to train each decision tree. However, in this study, the BT model was trained on all features.
The SVM model was trained based on a degree three polynomial kernel [49] and one verses one (ovo)
decision function.

4. Results

4.1. Trained Models’ Performance

Table 3 shows the overall accuracy and training time for both models. The training time for the
SVM model was significantly higher than the BT model. The BT and SVM were trained and validated
based on a randomly generated dataset (12,000 point). BT yielded a higher overall accuracy in a 5-fold
cross validation process.

Table 3. Results of the overall accuracy.

Classifier Training Time (Seconds) Over-All Accuracy (%)

Bagged Trees 76 62.6
Support Vector Machine 1197 60.4
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Both models were trained and validated on a laptop PC with 1.8 GHz dual-core Intel Core i5 CPU
and 8 GB of memory to demonstrate the efficiency and practicality of the proposed method in real world
scenarios. Training and segmentation steps in remote sensing applications require high computational
power as well as memory resources [7,18]. In this study, the training time for both models showed
very high efficiency despite the size of the training and validation datasets. Furthermore, the achieved
time efficiency would allow the users to modify or add ground truth data samples and to retrain the
models in the future. This will guarantee the operational ability of the algorithm.

Tables 4 and 5 show the confusion matrices for the BT and SVM models. The BT achieved highest
accuracy, in the built-up class, 81%, while the SVM gained the highest accuracy in the hydrology
class, 76%. The differences of models’ performance were not significant in the agriculture, tree and
barren-land classes. The lowest accuracy was observed in shrub-land and grass-land classes for both
models. However, in the case of in grass-land class, the BT showed a lower score than the SVM.
The ESA CCI 20 m land cover of Africa reported an overall accuracy of 65%, however, the overall
accuracy for Lesotho was reported between 22% and 45%. The proposed methodology in this research
out-performed the ESA CCI 20 m land cover by 20% [12].

Table 4. Confusion Matrix—Bagged Trees Model (%).

Class
No.

Class
Name Built-Up Agriculture Trees Hydrology Shrub-

Land
Grass-
Land

Barren-
Land

1 Built-up 81 6 3 1 1 5 3
2 Agriculture 9 65 2 2 6 11 5
3 Trees 10 3 66 3 11 4 3
4 Hydrology 6 7 5 73 2 4 3
5 Shrub-land 4 6 13 1 55 11 10
6 Grass-land 11 15 5 3 14 38 14
7 Barren-land 7 6 3 3 8 9 63

Table 5. Confusion Matrix—Cubic SVM Model (%).

Class
No.

Class
Name Built-Up Agriculture Trees Hydrology Shrub-

Land
Grass-
Land

Barren-
Land

1 Built-up 62 8 5 3 2 15 5
2 Agriculture 5 67 2 3 5 13 6
3 Trees 4 2 64 4 13 8 4
4 Hydrology 2 6 4 76 2 5 5
5 Shrub-land 2 5 9 2 55 17 9
6 Grass-land 5 13 4 4 17 43 14
7 Barren-land 3 7 3 4 9 14 60

4.2. Classes Accuracy and Inter-Class Similarities

Tables 4 and 5 also shows the highest confusion rate for each class. It should be noted that both ML
models had high confusion rates in similar classes. The built-up class allocated the highest confusion
rate in agriculture and grass-land classes with 6% and 5% for the BT model and 8% and 15% for the
SVM model, respectively. Similarly, the highest confusion rate for the agriculture class was observed in
the grass-land class with 11% and 13% for the BT and SVM, respectively.

Tree and shrub-land classes showed a 13% and 9% confusion rate where the tree class was selected
as shrubs or vice versa. Also, the highest confusion rate for shrub-lands was occurred in grass-land
class with 17%. Grass-land class has the highest confusion rates with other classes with 17%, 14%, and
13% for shrub-land, barren-land, and agricultural areas respectively.
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4.3. Discriminating Ability of the Train Models: Precision, Recall, and Receiver Operator Curve

Figure 6 shows the recall, precision and F-score values for both trained models. As can be seen in
this figure, both models have similar precision and recall values. Precision is the fraction of relevant
points among the retrieved points in a specific class, while recall is the fraction of relevant points that is
retrieved over the total amount of relevant points in a class. Our results indicate that both models are
successful in retrieving relevant classes for both in-sample and out-sample data. Precision comparing
false positives to true positives. It captures the effect of the large number of negative examples on the
model’s performance, while higher recall means that the trained model is successful in returning most
of the relevant results [50].

Figure 6. Precision, recall and F-Score parameters for each class. Left: Support Vector Machine model.
Right: Bagged Trees model.

Figure 7 compares the recall, area under the curve (AUC) in a receiver operator curve (ROC), and
a false positive rate (FPR) for both ML models. When comparing the AUC values of trained models,
the BT model showed higher ability in retrieving relevant data than the SVM. Also, the false positive
rate for both models was very low, meaning the number of incorrect points that were assigned to each
class of the land cover was low.

Figure 7. Area under curve (AUC) values in receiver operator curve (ROC), recall, and false positive
rate per class for trained models.
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4.4. Classification Results and Final Land Cover Product

The trained models were tested on the selected pilot areas to generate the final land cover products.
The testing step was run on the same PC as training and validation step. Segmentation results for
studied pilot areas are shown in Figure 8. The images in column A show the FAO LCL as the base map
for training ML models. Images in columns B and C show the results for the SVM and BT models,
respectively. The BT model classified the pilot areas in average 51 min for each pilot area. The BT
model was 48% faster than those of SVM in classifying pilot areas.

Figure 8. Comparison between the pilot areas 1, 2 and 3 for (A): FAO land cover of Lesotho (FAO LCL),
(B): Results of trained SVM model and (C): Results of BT model.

5. Discussion

5.1. Google Earth Engine as a Cloud Base Remote Sensing Platform

GEE was able to calculate the feature vector for the entire territory of Lesotho. Computational
power of GEE enables feature extraction at the national level; however, it was out of computation-time
in some circumstances. It could be due to high dimensional matrix operations for PCA analysis and
GLCM passing the system limits on allowed processing time for each request [18]. This problem can be
avoided by extracting the features at a local level instead of a national level, once the initial parameters
for PCA (i.e., the mean and covariance of pixel values for the selected bands) were extracted for the
country’s territory. GEE allows processing of data through its APIs in different ways. However, this



Remote Sens. 2019, 11, 1907 13 of 17

study selected the JavaScript API and GEE code editor as the main data processing tool. The goal
was to minimize the cost and increase the time efficiency of GEE in land cover mapping. Meanwhile,
the processing of generated feature vectors required to be partly executed on cloud machine (i.e., GEE),
then exported and partly processed on the local machine (PC), since such processing method was
causing the GEE code editor to run out of computation-time. This process of exporting and processing
the feature vector on a local/cloud machine acts as the main bottleneck of the algorithm’s pipeline.
Further efforts are required to overcome this problem by using new GEE features in the future.

5.2. The Effect of Spectral and Spatial Features on Accuracy Performance

Image segmentation has traditionally been applied to single-date satellite images [51]. Several
studies report the advantages of satellite time series segmentation, such as automated detection of
agricultural fields [50], better and faster forest change analysis [51], robustness against shadowing and
registration errors [51,52], reduced salt-and-pepper effect apparent in per-pixel classifications [53], and
the segmentation of multi-temporal images for cropland mapping [9]. In this study, we trained the
ML models based on the mean of a two years’ period in order to allow the ML models to learn the
spectral and temporal features of different land cover classes. Therefore, the proposed methodology
successfully takes advantage of the power of multi-temporal satellite time series, but still has the
flexibility to deliver accurate land cover products on an annual base period for land cover and land use
change applications.

Nyland et al. and Xiong et al. used GEE for land cover mapping by using fully spectral features
of available satellite time series [8,11]. However, using a times series introduces a level of confusion to
the final land cover products since the land cover is subject to change during the time, i.e., a landscape
could vary from forest to agriculture in due time because of agricultural development [7]. In this study,
we attempted to overcome this problem by using the GEE’s potentials in extracting texture features of
land surfaces in addition to spectral features for the first time. Introducing spatial (texture) features
as a descriptor for land cover mapping enabled our proposed method to perform on an annual base
process. It means the method needs the data of one annual period to be able to predict land cover
classes. The experiment showed that in the case of Lesotho the same method performs with 40% and
51% overall accuracy by utilizing only spectral or spatial features, respectively. On the other hand,
when utilizing the GLCM in a feature vector, it is important to select the spatial distance parameter
in the GLCM offset relative to the resolution of the satellite images. Therefore, the effect of GLCM
parameters in land cover mapping applications ask for more investigation in future studies.

5.3. The Inter-Class Confusion Rates

In 2017, Inglada et al. reported a high confusion between continuous and discontinuous urban
fabrics. However, our study out performed their results with 81% accuracy for the BT model it is
noteworthy that in this study, all continuous and discontinuous urban fabrics were merged into the
built-up class [7]. The confusion between the built-up, agriculture and grass-land classes happened in
two major situations: first, in areas where the built-up class contains large abandoned land between
buildings and second in areas where small agricultural activities occur in cites or rural areas.

Moreover, agricultural lands were selected as grass-land in areas with higher soil moisture content.
These areas are mainly located near wet-lands such as areas near springs, slopes or at the bottom of
valleys. The vegetation growth in these areas is more continuous and in similar temporal patterns with
natural vegetation [9]. Also, confusion between agriculture and grass-land was common in rainfed
and sloping lands where natural vegetation and crops have similar growth periods. These results can
also be confirmed based on the Table 1 definition of each class.

Shrubs (0.5~1.5 m height) and trees (1.5 m~ height) normally have very similar growth patterns
and similar spatial distribution. These similarities will result in almost identical spectral and spatial
characteristics for trees and shrubs. In addition, shrub-lands in FAO LCL data are defined as open
shrubs with natural vegetation in between, which could lead to confusion between shrub-land and
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grass-land classes. Moreover, the two classes are containing bare rocks or areas without any vegetation
and therefore were classified as barren-land.

The earth surface geometry influences the quality of segmentation [54]. Meanwhile, woody shrubs
naturally grow on surfaces toward the south while natural vegetation is more adopted to areas with
shorter daylight time [55]. Therefore, the surface geometry typically affects the type of land cover
in each area. As an example, this effect could be seen in the final map product (Figure 7) where the
shrub-lands are located mostly on areas sloping toward the south. The comparison between the FAO
LCL and visual inspections results showed that the study results are more compatible with pilot areas’
topology and geometry.

The proposed methodology was able to provide an accurate land cover of urban and agriculture
lands. These land cover products are based on continuously updating satellite data with an annual
cycle. Such annually based product will allow the authorities in the country to monitor urban and
agriculture lands in line with the indicator 2.4.1 of SDGs to measuring the proportion of agricultural
area within productive and sustainable agriculture [4].

6. Conclusions

In this paper, an operational land cover mapping methodology is presented based on available
free access Sentinel-2 data and the GEE cloud processing platform. By utilizing a combination of
GEE and the FAO LCL data, our main objective was to measure the performance of machine learning
models and classify the land surface by using high dimensional feature space. The validation with
the proposed method and satellite imagery revealed an accuracy of 62 and 67%, respectively, for the
important land cover categories such as ‘urban’ and ‘agricultural lands’. Moreover, the trained models
provided a precise land cover tool for annual land cover and land use change comparison applications.
The models were trained, validated and tested on a simple laptop PC to demonstrate the cost and time
efficiency of the methodology. Such methodology opens doors for in field processing and mapping
land cover for future studies.

The study showed the GEE potentials in land cover mapping by processing the feature vector
at a national level for Lesotho in a short time. Further investigation is required to unveil the ability
of GEE in applying new ML techniques, i.e., deep learning models, on geospatial data. The current
GEE pipeline for processing the available data on GEE through the Python or JavaScript APIs requires
exporting large volumes of data to cloud or local storage as well as running the ML models on a
cloud machine. These processes are time consuming and require extra funds for cloud processing and
cloud storage.

Knowing the scale of the country, moderate resolution of the images, and natural changes and
errors in FAO LCL as the base map, the proposed methodology achieved accuracy that could be
considered satisfactory. Therefore, it is hoped that the individuals and organizations involved in
rural and urban development strategies, as well as forest and land conservation at regional and
sub-regional scales, can utilize the presented models for developing countries as an alternative to
traditional higher-cost GIS methods.
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