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Abstract: Space object recognition is the basis of space attack and defense confrontation. High-quality
space object images are very important for space object recognition. Because of the large number of
cosmic rays in the space environment and the inadequacy of optical lenses and detectors on satellites
to support high-resolution imaging, most of the images obtained are blurred and contain a lot of
cosmic-ray noise. So, denoising methods and super-resolution methods are two effective ways to
reconstruct high-quality space object images. However, most super-resolution methods could only
reconstruct the lost details of low spatial resolution images, but could not remove noise. On the
other hand, most denoising methods especially cosmic-ray denoising methods could not reconstruct
high-resolution details. So in this paper, a deep convolutional neural network (CNN)-based single
space object image denoising and super-resolution reconstruction method is presented. The noise
is removed and the lost details of the low spatial resolution image are well reconstructed based on
one very deep CNN-based network, which combines global residual learning and local residual
learning. Based on a dataset of satellite images, experimental results demonstrate the feasibility
of our proposed method in enhancing the spatial resolution and removing the noise of the space
objects images.
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1. Introduction

Space objects (SO) refer to objects in space, including satellites, space debris, cosmic stars, etc.
Object recognition, orbit determination, position estimation and other researches based on SO are
becoming increasingly important. These researches are the basis for entering space, understanding
space and controlling space. These researches are also indispensable parts of space attack and defense.
SO recognition, especially, satellite recognition and surveillance is the basis of space attack and
defense confrontation. The morphological characteristics are one of the important features of SO.
Therefore, the geometric shape and texture features are important for SO recognition, orbit estimation,
satellite attitude, and state judgment [1,2]. That means high resolution (HR) space object images with
less noise are very important to be obtained.

In SO research areas, software solutions used to obtain HR images for three reasons. First, due to
the limitations on sensor technology and high costs, it is very difficult to obtain HR images easily.
Second, updating imaging devices is very difficult when satellites are launched. Third, the space
environment is very complicated. So, denoising and super-resolution (SR) reconstruction technique,
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which can lower the cost as much as possible, is one of the key solutions to enhance the quality of
space object images very effectively.

SR methods improve image quality by adding useful information (high-resolution details).
SR methods could be generally categorized into two types according to the number of low resolution
(LR) images as the input: single image super-resolution (SISR) and multiple images super-resolution
(MISR). MISR methods require a collection of low-resolution images that are slightly different views of
the same object. But MISR methods are not a generally effective method in SO research area due to the
lack of data in this area.

SISR aims at recovering a HR image from a single LR image. This is an ill-posed problem since
a multiplicity of solutions exist for any given LR pixel [3]. SISR methods are often separated into
3 types: interpolation-based, reconstructed-based and example-based.

Interpolation-based methods [4,5] are the simplest way to enhance the spatial resolution of a single
image. However, the disadvantage of interpolation-based methods is that they could not effectively
recover the high-frequency information lost in the LR images and could easily lead to image blurring.
Reconstruction-based methods [6,7] treat the obtained LR images as the down-sampling result of the
HR images. Therefore, reconstruction-based methods solve the inverse process of down-sampling
using signal processing technology to recover the high-frequency lost details. Especially, using the
edge before solving SR problems. The disadvantage of reconstruction-based methods using edge prior
is it could reconstruct edge very well, but could not reconstruct the texture features well.

Example-based methods predict the high-frequency loss in the LR image by learning the
relationship between HR image and LR image [8–10]. Along with the great improvement of calculating
the ability of computers and a large amount of training data available, more and more machine
learning methods emerge endlessly. Especially, deep learning methods, which are generally referred
to deep convolutional neural networks (CNN) [8,11,12], are demonstrated to be a very effective way
not only for feature extraction and classification, but also for many problems in many other artificial
intelligence fields. Examples include image recognition [13], normal image SR reconstruction [9,14]
and remote-sensing image SR reconstruction [15–19]. CNN-based methods also could be used to solve
SR problems and have already been demonstrated to be a very feasible way. Dong et al. [3,20] proposed
the first CNN-based SR method named SRCNN. SRCNN is a three-layer convolutional neural network,
which is the same as the sparse-coding SR method, but performs better than the sparse-coding SR
method. Then, Kim et al. [21] proposed a very deep convolutional network using residual learning [22],
which had been demonstrated that could enhance the SR reconstruction performance and became
one of the state-of-the-art methods. But there is still room for improvement of the SR reconstruction
performance and there is no CNN-based method solving SR problem of single SO image.

Denoising methods improve image quality by removing useless information (noise). Noise is
another key reason causing low quality SO images obtained by launched satellites. The noise in
obtained SO images mainly caused by cosmic-ray. Cosmic-rays are formed by various energetic
particles from space, mainly including protons, particles and a small number of other nuclei.
They could be regarded as salt and pepper noise of SO images, whose gray value is obviously higher
or lower than surrounding pixels. These noises seriously affect the analysis of SO images. Hitherto,
the most widely used methods to remove cosmic-ray noise are conventional methods, which would be
introduced in the next section. There is no CNN-based method to be used for removing cosmic-ray
noise in a single SO image.

Hitherto, most of these methods could only solve one problem in the meantime. Especially in
the field of improving the image quality of a space object, there is no method that could solve the SR
problem and denoising problem with only one method. Considering the effect that residual learning
has achieved in the field of image processing. So, in this paper, a deep CNN-based denoising and
SR method is proposed. This method could enhance the spatial resolution of obtained SO images
with cosmic-ray noise well removed in the meantime. We call this method “enhanced very deep
super-resolution network in space object researching” (SO-EVDSR). Considering that the lost details
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are the high-frequency part of SO images while most of the other information between the LR image
and HR image is the same, residual learning is a very good algorithm to implement to solve this
problem [21]. We use one deep CNN-based network, which combines global residual learning and
local residual learning to solve both denoising and SR problem. The HR results with cosmic-ray noise
well removed could be finally generated by this network. By the way, our method could handle three
scale factors in solving the SR problem. This could reduce the number of parameters three-fold.

In summary, our contribution is divided into the following two aspects:

1. We propose a method named SO-EVDSR. This method could remove cosmic-ray noise and
enhance the spatial resolution of SO images in the meantime. It is the first time that a denoising
and SR reconstruction method based on only one very deep convolutional network implemented
in the SO images research field.

2. This method combines the global residual learning and local residual learning. Experimental
results show that our method performs better than several typical methods including some
state-of-the-art methods in both quantitative measurements and visual effect.

The rest of this paper is organized as follows: in Section 2, we introduce and analyze some
related works in denoising and solving SR problems, In Section 3, we give detailed descriptions of the
proposed method. In Section 4, the detail of the experiment and the results are reported. In Section 5,
some discussions are shown. Conclusion are drawn in Section 6.

2. Related Works

2.1. Cosmic-Ray and Denoising

As mentioned above, cosmic-ray noise could be regarded as salt and pepper noise, whose gray
value is obviously higher or lower than surrounding pixels. But this type of noise is different from
typical salt and pepper noise because its area is usually larger than one pixel, just like Figure 1
illustrated. The area whose gray value is obviously higher than surrounding pixels are cosmic-ray noise.

Figure 1. Space object image with simulated cosmic-ray noise.

The early method to remove cosmic-ray noise in SO images is to take multiple images in the same
field of view, just like Windhorst R. A. et al. [23] proposed. Then the cosmic-ray noise would be located
based on sequential image information. Finally, a correct gray value is used to replace the gray value
of the pixel contaminated by cosmic-ray noise. This type of method requires multiple images from the
same field of view, which could not handle cosmic-ray noise in a single image.

Median filtering is one of the widely used classical methods to remove the cosmic-ray noise in
a single SO image. But this method is no longer a very good method because it can further blur the
edge of the SO image, which is not good for SR problem.

There are also some other conventional methods to remove the cosmic-ray noise in a single SO
image. Zhu Z. et al. [24] first, make the first-order difference in two directions of the image, and the
difference result is compared with the threshold to distinguish noise and candidate noise. Then,
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a Bessel curve fitting method is used to calculate the deviation of candidate noise. Finally, cosmic-ray
noise is identified. The drawback is this model is that it is so simple that the applicability of this
method is not good. Dokkum P. G. [25] uses a Laplacian edge detection method to detect cosmic-ray
noise. This method achieves a very good effect in removing cosmic-ray noise. However, it does not
consider the presence of bright supersaturated space objects. To reduce the running time, Pych. W. [26]
proposed a fast removing cosmic-ray noise method based on image histogram. This method does not
need to model objects, nor does it need a high signal-to-noise ratio. However, the drawback of this
method is spectral energy in some pixels would be eliminated incorrectly.

Recently, CNN-based methods have achieved better results than conventional methods in the
computer vision area [27,28]. So, some CNN-based denoising methods are appearing constant.
Because cosmic-ray noise belongs to a type of salt and pepper noise, let us discuss some CNN-based
denoising methods in removing salt and pepper noise.

The first CNN-based method to solve the denoising problem was proposed by Jain et al. [29].
This method achieved similar or even better results compared with other conventional methods.
Mao et al. [30] proposed an auto-encoders with symmetric skip connections network. This method
implemented 10 pairs of symmetrical convolutional and deconvolutional layers, whose first five
layers are coding layer and the last five layers are decoding layer. From this method, the CNN-based
network for image denoising became deeper and deeper. Zhang et al. [31] proposed DnCNN combined
batch-normalization and residual learning and achieved state-of-the-art results.

2.2. Single Image Super-Resolution

Like the denoising problem, CNN-based methods are becoming more popular and efficient.
Due to the limited space, we only discuss some works on the most representative CNN-based SISR
reconstruction methods.

SRCNN is the first CNN-based SISR method, which achieved better results than conventional
methods. It was proposed by Dong et al. [3,20] SRCNN is the first SISR method based on CNN,
and discussed the relationship between SRCNN and the spare-coding method, which is one of the
typical conventional SR methods. This method was then further improved mainly by increasing
network depth or sharing network weights. SRCNN consists of three layers, which are inspired by
sparse-coding: feature extraction, non-linear mapping, and reconstruction. Filters of spatial sizes 9 × 9,
1 × 1 and 5 × 5 are used respectively. For validation, LR images are created by the downsampling of
HR images, then are transformed through a HIS transform. The Intensity channel matrix is upscaled
through the network. Finally, an HIS reverse transform is implemented to generate the final image.

VDSR [21] is the first CNN-based SISR method using residual learning. VDSR always consists of
several layers, which could deepen the network. VDSR achieved very good results and became one of
the state-of-the-art SISR methods. Normally, Kim et al. [21] uses a 20 layers network to train and test
data in that paper. As the basic theory in VDSR, residual learning [22] is very important and affects
many methods in deepening the convolutional network. Conventional convolutional networks or fully
connected networks will more or less lose information when transmitting information. At the same
time, gradient disappearance or gradient vanishment will cause deep networks hard to train. Residual
learning could solve this problem. By directly transferring input information to output, the integrity of
information is protected. The whole network only needs to learn the difference between input and
output, which simplifies the learning goal and difficulty. So, the depth of the residual network is much
deeper than the depth of conventional convolutional network.

DRCN [32] combines residual learning and recursive network and it was also proposed by
Kim et al. for solving the SISR problem in the same year. DRCN is another CNN-based method,
which combines residual learning and recursive neural network. This network takes an interpolated
image as input and is divided into three modules. The first module is Embedding network, which could
extract feature maps. This module is a recursive network. The second module is the inference network,
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which can do non-linear mapping. The last module is the reconstruction network, which could
reconstruct the final result.

DMCN is another CNN-based method, which proposed by Xu et al. [33]. This method is
used to handle various remote-sensing image restoration tasks such as SR and Gaussian denoising.
This method also build local and global memory connections to combine image detail with
global information. This method could not only solve SR problems but also achieve a very good
denoised result.

3. Proposed Method

In this section, the problem definition is discussed first, then the details of our proposed method,
SO-EVDSR, are given.

3.1. Problem Definition

Because of the lack of data in the remote-sensing area, a single image for denoising and
super-resolution reconstruction is one of the best ways to solve this problem. So, our method could be
defined as this: recover a HR image from its LR version. The relationship between HR image and its
LR version could be achieved by the final trained output of the CNN-based network, which takes a lot
of HR ground truth and its LR downsampling as inputs.

In summary, the purpose of solving the denoising and SISR problem using a CNN-based method
is to establish a mapping F from the LR image to its HR reconstruction image, which is as similar as
possible to the ground truth HR image. Let us denote the LR image as Y. Our goal is to recover from
Y an image F(Y). In our proposed method, SO-EVDSR is the mapping F that could recover from Y
an image F(Y).

By the way, image denoising problem and SR problem are similar because these two problems
all need to be processed high-frequency parts while most other information preserved. Although the
noise in obtained SO images is caused by cosmic-ray, it could still be regarded as a kind of salt and
pepper noise. So only one deep CNN-based network is used to solve these two problems. That means
there is only one mapping F in our method.

The training and testing procedure of our SO-EVDSR are illustrated in Figure 2. Pairs of LR images
and HR images were sent to SO-EVDSR for training, then other LR images are sent to SO-EVDSR
for testing.

Figure 2. The training and testing procedure of enhanced very deep super-resolution network in space
object researching (SO-EVDSR).
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3.2. Proposed Network

In this subsection, the structure of our SO-EVDSR is proposed first. Then the details of global
residual learning and local residual learning in our method are also discussed.

3.2.1. Enhanced Very Deep Super-Resolution Network in Space Object Researching

The proposed SO-EVDSR is illustrated in Figure 3. SO-EVDSR takes an interpolated LR image
(to the desired size) with simulated cosmic-ray noise (salt and pepper noise) as input. The HR image
with noise well removed is reconstructed by SO-EVDSR.

Figure 3. The structure of SO-EVDSR.

SO-EVDSR is a very deep convolutional network that contains 20 convolutional layers.
These convolutional layers were divided into three types. The first convolutional layer with relu
belongs to the first type. The last convolutional layer without relu belongs to the second type, The rest
belong to the third type, which includes nine identical convolutional blocks. Each convolutional block
contains two convolutional layers with one relu. SO-EVDSR combines one global residual learning
(GRL) and nine local residual learning (LRL). Except for the first and the last, the rest of layers are in
the same type: 64 filters of the size 3 × 3 × 64, where a filter handle on 3 × 3 spatial region through
64 feature maps. The first layer handles the input image. The function of the last layer, which consists
of a single filter of the size 3 × 3 × 64, is reconstructing image.

By the way, our output image has the same size as the input image by padding zeros every layer
during training.

The configuration of SO-EVDSR is shown in Table 1.

Table 1. Enhanced very deep super-resolution network in space object researching (SO-EVDSR)
configuration.

Block Layer Name Conv<Receptive Field Size>-<Number of Channels>-<Number of Filter> Parameters

1 Conv Conv3-1-64 1664Relu

1 2 Conv Conv3-64-64 102,464Relu

3 Conv Conv3-64-64 102,464

2 4 Conv Conv3-64-64 102,464Relu

5 Conv Conv3-64-64 102,464

3 6 Conv Conv3-64-64 102,464Relu

7 Conv Conv3-64-64 102,464
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Table 1. Cont.

Block Layer Name Conv<Receptive Field Size>-<Number of Channels>-<Number of Filter> Parameters

4 8 Conv Conv3-64-64 102,464Relu

9 Conv Conv3-64-64 102,464

5 10 Conv Conv3-64-64 102,464Relu

11 Conv Conv3-64-64 102,464

6 12 Conv Conv3-64-64 102,464Relu

13 Conv Conv3-64-64 102,464

7 14 Conv Conv3-64-64 102,464Relu

15 Conv Conv3-64-64 102,464

8 16 Conv Conv3-64-64 102,464Relu

17 Conv Conv3-64-64 102,464

9 18 Conv Conv3-64-64 102,464Relu

19 Conv Conv3-64-64 102,464

20 Conv Conv3-1-64 102,464

3.2.2. Residual Learning in SO-EVDSR

Residual learning means the input and output are largely similar, so in our method, a residual
r = y − x is defined, where most values are likely to be zero or small. Using residual learning to solve
SR problems had been demonstrated in a very effective way [21]. In SO-EVDSR, r is the residual pixel
of x and y. So, we could make the whole network training easy and could further make the whole
network deeper than normal. It could roughly be divided into two types, i.e., global residual learning
and local residual learning.

Global residual learning. The global residual learning (GRL) in SO-EVDSR is a long skip
connection that could make the whole network deeper and easier to train. As illustrated in Figure 4,
it usually connected the input and the output of the last convolutional layer by the Equation (1).

FHR = FLR + Fn+1. (1)

FHR, FLR and Fn+1 denote the global residual learning of mapping F whose function is
reconstructing the final result, the input image and the last convolutional layer of mapping
F respectively.

Figure 4. Global residual learning in SO-EVDSR.
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Local residual learning. The local residual learning (LRL) was used to alleviate the degradation
problem caused by ever-increasing network depths and improve the learning ability. It could further
improve the information flow [34]. As illustrated in Figure 5, the Equation (2) could describe how LRL
in our SO-EVDSR works.

Fn = Fn,2 + Fn−1. (2)

Fn, Fn,2 and Fn−1 denote the nth local residual learning of mapping F, the second convolutional
layer of the n-th convolutional block and the (n − 1)-th local residual learning of mapping F.

Figure 5. Local residual learning in SO-EVDSR.

4. Experiment

In this section, the dataset we used in this article is discussed first. Then training parameters we
used are discussed and given the final parameters we used. The experimental results are given in the
last part of this section.

4.1. Dataset

The dataset this paper used was BUAA-SID1.0 [35], which contains 9200 gray images of the
size 320 × 240. Before this dataset is established, there were no public documents about SO and
image simulation mentioned SO image database, which contained abundant geometric characteristics.
But the geometric characteristics of SO are very important for detecting and recognizing. Therefore,
this database, which contains different viewing angles of 20 satellites, has great significance. The names
of satellites in the database are a2100, astrolink, cobe, dsp, early-bird, eo1, ers, esat, ets8, fengyun,
gallieo, glonas, goms, helios2, irns, is-601, minisat-1, radarsat-2, timed and worldview, respectively.

We separated the whole database into a training set and testing set with a hold-out method.
We used 80% to train and 20% to test, because in SO research field, images obtained are comparatively
similar and the requirements of reconstruction precision are higher than those of normal image (like cat
or dog). First, we randomly chose 16 satellites (7360 images) as a training set and the other four
satellites (1840 images) as a testing set. In order to shorten the experiment time, we randomly chose
20 images of different satellite attitudes from each satellite in the training set we mentioned above.
Similarly, we also chose 20 images of different satellite attitudes from each satellite in the testing set.
All images used in our experiment were down-sampled into 1/2, 3/1 and 1/4, respectively. Then salt
and pepper noise was added to these down-sampling images. This could be used to simulate the
actual situation. Finally, all images were separated into pieces of the size 41 × 41.

4.2. Training Parameters

We now describe some details of our training model. Let Y denote an interpolated LR image and

X a HR image. A training dataset
{

x(i), y(i)
}N

i=i
was given, and our goal was to learn an end-to-end

relationship model F that predicts values X̂ = F (X), where X̂ is the prediction from LR image. We used
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mean squared error and L2 regularization to train the parameters. The definition of L2 loss function
was illustrated in Equation (3):

L2 =
1

2M

M

∑
i

M

∑
j

(
F
(
Yij
)
− Xij

)2 (3)

As illustrated in Equation (3), M represents the number of samples, F(Y) represents reconstructed
image, and X represents the ground truth.

Depth. The depth of the network is a very important parameter. In VDSR [21], the author has
verified the training results of the network from five layers to 20 layers. The results show that when
the network layers are 20, the best result can be achieved by considering the training time and training
effect comprehensively. We verify this conclusion, and the results are consistent with VDSR. As Figure 6
shows, we further deepened the network to 25 layers and found that the Peak Signal-to-Noise Ratio
(PSNR) was not significantly enhanced. So we use 20 layers to train and test.

Figure 6. PSNR comparison of different depths with learning rate 0.001.

Learning rate. One possible reason that could affect the convergence of the model is learning rate.
A basic rule of learning rate is that a high learning rate could boost training. But simply setting the
learning rate higher could also lead to vanishing or exploding gradients, which could make the whole
network difficult to converge.

Figure 7 illustrates the comparing result of different initial learning rates. This result shows that
the learning rate was very important for training and only a proper learning rate could achieve the
best effect.

Gradient clipping. Gradient clipping is used in our training. In essence, the chain derivative
was used in the back-propagation method while training. When calculating the gradient of each layer,
some multiplication operations will be involved. Therefore, if the network was too deep, most of the
multiplication factors were greater than unity, then the final result may tend to be infinite, which is
called gradient exploding. Gradient clipping is a method that is often used to resolve gradient
exploding problem. By setting a threshold θ, the gradient will be limited to that range [−θ, θ] when it
exceeds to the threshold.

Mini-batch gradient descent. Mini-batch gradient descent is a compromise method between
the batch gradient descent method and the stochastic gradient descent method. This method not
only ensures the accuracy, but also speeds up the convergence. So, this method was also used in
our training.
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Epochs. Epoch is another important parameter in training. Figure 8 illustrate the result of
increasing epoch. The result shows that peak signal-to-noise ratio did not increase obviously after
120 epochs.

Figure 7. Comparison of different learning rates.

Figure 8. Comparison of different epochs with the learning rate 0.001.

Finally, we used a network of depth 20. Momentum and weight decay parameters are set to
0.9 and 0.001, respectively. Training batches were set to 64. We trained our model over 120 epoch.
The learning rate was initially set to 0.001 and then decreased by a factor of 10 every 20 epochs. We used
NVIDIA Tesla P4 to run our experiment and the total time taken by training was almost eight hours.

4.3. Results

To evaluate the result of these algorithms, we used quantitative measures to compare these results.
Normally, we use five methods to evaluate the results.
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4.3.1. Quantitative Measurements

PSNR is the most commonly used measurement to evaluate the result of an image. It is defined as
the ratio between the maximum possible value of a signal and the value of distorting noise that affects
the quality of its representation [36]. The definition of PSNR is showed in Equation (4):

PSNR = 10 log10
(maximum pixel value)2

MSE
(4)

The MSE witch is defined in Equation (5) is the mean square error. X and F(Y) are the ground
truth and reconstructed image, respectively. M and N are number of rows and columns in the images
X and F(Y), respectively.

MSE =
∑N

j=1

(
∑M

i=1
(

F(Yi,j)− Xi,j
)2
)

MN
(5)

SSIM =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2

xµ2
y + C1

)
(σ2

x + σ2
y + C2))

. (6)

Another most commonly used measurement is the structure similarity (SSIM), which is defined
in Equation (6). In Equation (6), a and b refer to images X and F(Y), which are referenced the ground
truth and the reconstructed HR image respectively. C1 and C2 are constants. µx is the local mean
of reference (X) image and µy is the local mean of the reconstructed F(Y) image. σx and σy are the
standard deviations and σxy is the cross-covariance for these images. Finally, a higher SSIM is better.

However, in this article, SSIM was probably not a good metric as the numbers were so close in
different methods up to the fifth or sixth decimal places (as illustrated in Table 2). So the human visual
system (HVS) [37] and human visual system model (HVSm) [37] metrics are also used to compare the
reconstruction performance among different methods.

The HVS metric is defined as Equation (7).

HVS = 20log(255/MSEH). (7)

In Equation (7), MSEH is defined as Equation (8).

MSEH = K
M−7

∑
i=1

N−7

∑
j=1

8

∑
m=1

8

∑
n=1

((D[m, n]i,j − D[m, n]ei,j)Tc[m, n])2 (8)

In Equation (8), M and N denote image size respectively, Dij denotes the Discrete Cosine Transform
(DCT) [38] coefficients of 8× 8 image block for which the coordinates of its upper left corner are equal to
i and, Deij denote the DCT coefficients of the corresponding block in the original image and K denotes
1/[(M − 7)(N − 7)64]. Finally, Tc denotes the matrix of correcting factors which was introduced
in [39].

The only difference between HVS and HVSm is the visual masking effects are taken into account
by HVSm. First, DCT coefficients of size 8 × 8 original image block and 8 × 8 processed image block
are calculated between pixel values, then a reduction based on the value of contrast masking was done.
Finally, we calculated MSEH . More details could be found in [40].

4.3.2. Quantitative Results

Table 2 shows that based on BUAA-SID1.0 dataset, our SO-EVDSR model has the best performance
(red text in Table 2) in MSE, PSNR, SSIM, HVS and HVSm.
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Table 2. Results of applying the SR methods to the BUAA-SID1.0 image.

Method Scale MSE PSNR SSIM HVS HVSm

Bicubic 2 4.810885296 41.30855358585935 0.9999984940625836 54.1835 54.2532
3 9.004434909 38.58623897872875 0.9999963947901308 52.2901 52.3281
4 13.07634938 36.96593844957169 0.9999929499766917 50.8295 51.0292

SRCNN 2 3.087851266 43.23423987529352 0.9999989854654752 56.5810 56.7858
3 6.815264731 39.79597630702207 0.9999972759376027 54.6213 54.9024
4 10.10653004 38.08478289567298 0.9999954949789307 52.0198 52.2285

VDSR 2 2.518198065 44.11990474992009 0.9999992553686302 57.0211 57.2354
3 5.540032111 40.69568078908413 0.9999982028334025 55.2018 55.3811
4 8.284960877 38.94789898927323 0.9999968440793972 52.7028 53.0285

DRCN 2 2.452489995 44.23473116546864 0.9999992569876331 57.8302 58.0522
3 5.527730285 40.70533516546694 0.9999982135434648 56.0238 57.2419
4 8.263899739 38.95895321354315 0.9999968452134436 53.5229 53.9219

DMCN 2 2.370692141 44.38205200938572 0.9999992858920935 59.3410 60.1925
3 5.31803133 40.87329469327502 0.9999982947593297 56.6815 58.2859
4 8.124998092 39.03257093209752 0.9999969012845702 54.0283 54.8921

SO-EVDSR 2 2.263607982 44.58279144085883 0.9999993199209739 61.4168 62.0269
3 5.08946923 41.06407867788109 0.9999983700995432 59.0214 60.1920
4 7.891428243 39.15924749054321 0.9999969575852177 57.1832 57.9237

4.3.3. Visual Comparison Results

Firstly, we applied some classical methods to deal with cosmic-ray noise. Figure 9 shows the
result of median filtering with filter sizes 3 × 3, 5 × 5, 7 × 7 and 9 × 9. The result shows that filter size
3 × 3 and 5 × 5 could not remove cosmic-ray noise completely, while 7 × 7 and 9 × 9 could remove
cosmic-ray noise, but also cause further loss of image details. Therefore, using median filtering only
could not achieve ideal denoising effect, and it is not suitable for space object image processing because
of the high-precision measurement.
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Figure 9. Median filtering result of dealing with cosmic-ray noise.

Then, Figure 10 shows the result of using an erosion operation to deal with cosmic-ray noise.
We used the “disk” and “square” kernel type respectively. The result shows that when the kernel size
was 3, cosmic-ray noise could not be removed, and when the size was 4, cosmic-ray noise could be
removed, but at the same time, the satellite details were obviously lost, so the simple erosion operation
could not achieve the desired denoising effect. Then the expansion operation of the same size was
added, the combination of these two operations was called the opening operation. The results show
that the image details will still be lost further. Therefore, only using the erosion operation or opening
operation could not achieve ideal denoising effect, and it was not suitable for space object image
processing because of the high-precision measurement.
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Figure 10. Erosion operation and opening operaiton result of dealing with cosmic-ray noise.

Figure 11 shows the result of using the BM3D algorithm [41] to deal with cosmic-ray noise.
The result shows that the ideal denoising effort is still not achieved and the image is blurred further.
That is because BM3D could not regard cosmic-ray noise as typical noise, which it could deal with.
The similar result happens on the algorithm, which was proposed in [42].

Figure 11. BM3D result of dealing with cosmic-ray noise.

Visually, in Figures 12–19, we could see the difference and enhancement among bicubic,
SRCNN [3,20], VDSR [21], DRCN [32], SO-EVDSR, DMCN and the ground truth. We could also
see the details that SO-EVDSR reconstructed, which SRCNN, VDSR, DRCN and DMCN could not
reconstruct that clearly.

Compared to VDSR, which also could provide three scale factors in one network, our method
not only performed better in scale factor 2, but also performed better in scale factor 3 and factor 4.
Figure 20 shows the result of the comparison.

Finally, we also experimented using SO-EVDSR to compare with a cascade method, which applied
a BM3D filter first to deal with cosmic-ray noise, then VDSR is applied to solve the SR problem.
Figure 21 is the result of comparison and the result shows that the performance of the cascade method
we applied was not as good as SO-EVDSR.
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Figure 12. Results of denoising and super-resolution (SR) of “timed0010” with scale factor ×2.

Figure 13. Results of denoising and SR of “worldview0004” with scale factor ×2.
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Figure 14. Results of denoising and SR of “worldview0000” with scale factor ×2.

Figure 15. Results of denoising and SR of “worldview0006” with scale factor ×2.
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Figure 16. Results of denoising and SR of “timed0004” with scale factor ×2.

Figure 17. Results of denoising and SR of “worldview0003” with scale factor ×2.
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Figure 18. Results of denoising and SR of “worldview0000” with scale factor ×2.

Figure 19. Results of denoising and SR of “worldview0005” with scale factor ×2.
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Figure 20. (top) Our results from using a single network for all scale factors. Super-resolved images
over all scales are better than the images below. (bottom) Results of VDSR. Result images are not
visually pleasing.

Figure 21. Result of comparing SO-EVDSR and a cascade method (BM3D and VDSR).

5. Discussion

Our SO-EVDSR, which combines GRL and LRL, achieves a very good result. Table 3 shows that
based on the same training parameters, the combination of GRL and LRL has better performance
in PSNR than using GRL or LRL only. This is different from Table 2. Table 2 focuses on comparing
the effects of each single-frame super-resolution reconstruction method, while Table 3 is based on
SO-EVDSR, comparing the effects of using GRL only (like VDSR), using LRL only and using GRL and
LRL (like our method) at the same time. The result shows that our SO-EVDSR has the best performance
in PSNR (red text in Table 3).

Table 3. Results of applying the SR methods to the BUAA-SID1.0 image.

Method Scale PSNR

Only Using GRL(VDSR) 2 44.11990474992009
3 40.69568078908413
4 38.94789898927323

Only Using LRL 2 44.00266113315757
3 40.42742178926535
4 38.63971533159192

SO-EVDSR 2 44.58279144085883
3 41.06407867788109
4 39.15924749054321
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In this work, we show that a single space object image denoising and super-resolution problem
could be well solved by a deep CNN-based method. This is the first time using CNN-based method to
solve single SO image denoising and SR problem. The experiment result shows that cosmic-ray noise
are well removed and textures, especially linear textures in a high-resolution image are recovered.
However, future research needs to especially evaluate the improvement for images of a star, which is
another important type of SO. The texture and detail in star images are very different from these in
satellite images.

It also of interest to research residual learning. Because we have already seen that the effect
of combining global residual learning and local residual learning. So, future research will try more
combinatorial approaches of the two.

6. Conclusions

In this work, we have presented a CNN-based denoising and single-image super-resolution
method named SO-EVDSR. This is the first time using a very deep CNN-based denoising and SISR
method to reconstruct high quality SO images. We combine global residual learning and local residual
learning to enhance the reconstruction effect. We have demonstrated that based on BAUU-SID1.0
dataset, which is a collection of satellite images affiliated to 20 satellites, our proposed SO-EVDSR not
only could remove the cosmic-ray noise, but also has better performance than VDSR and DRCN do,
which are two of the state-of-the-art SISR methods, in both quantitative measurements and visual effect.
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