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Abstract: Semantic segmentation in high-resolution remote-sensing (RS) images is a fundamental
task for RS-based urban understanding and planning. However, various types of artificial
objects in urban areas make this task quite challenging. Recently, the use of Deep Convolutional
Neural Networks (DCNNs) with multiscale information fusion has demonstrated great potential
in enhancing performance. Technically, however, existing fusions are usually implemented by
summing or concatenating feature maps in a straightforward way. Seldom do works consider
the spatial importance for global-to-local context-information aggregation. This paper proposes
a Learnable-Gated CNN (L-GCNN) to address this issue. Methodologically, the Taylor expression
of the information-entropy function is first parameterized to design the gate function, which is
employed to generate pixelwise weights for coarse-to-fine refinement in the L-GCNN. Accordingly,
a Parameterized Gate Module (PGM) was designed to achieve this goal. Then, the single PGM and its
densely connected extension were embedded into different levels of the encoder in the L-GCNN to
help identify the discriminative feature maps at different scales. With the above designs, the L-GCNN
is finally organized as a self-cascaded end-to-end architecture that is able to sequentially aggregate
context information for fine segmentation. The proposed model was evaluated on two public
challenging benchmarks, the ISPRS 2Dsemantic segmentation challenge Potsdam dataset and the
Massachusetts building dataset. The experiment results demonstrate that the proposed method
exhibited significant improvement compared with several related segmentation networks, including
the FCN, SegNet, RefineNet, PSPNet, DeepLab and GSN.For example, on the Potsdam dataset,
our method achieved a 93.65% F1 score and 88.06% IoU score for the segmentation of tiny cars
in high-resolution RS images. As a conclusion, the proposed model showed potential for object
segmentation from the RS images of buildings, impervious surfaces, low vegetation, trees and cars in
urban settings, which largely varies in size and have confusing appearances.

Keywords: semantic segmentation; CNN; deep learning; remote sensing; gate function; multiscale
feature fusion

1. Introduction

With the rapid development of global observation technologies, a large number of remote-sensing
(RS) images with high spatial resolution can be acquired every day. High-resolution RS images render
rich ground details. Accordingly, extracting objects of interest in RS images with high quality has
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become an urgent need. Technically, efforts in semantic segmentation for RS images have surged
in recent decades because it is a fundamental approach to analyze RS images, which has many
important real-world applications [1–4], typically including plant-disease detection [5–10], land-cover
planning [11], vegetation extraction [12], cloud detection [13,14], urban-change detection [15–17],
vehicle detection [18], building extraction [19,20] and road extraction [21,22]. However, none of these
applications reaches satisfactory segmentation quality. The main challenge lies in that, in the absence
of prior knowledge about the image itself and the motivation behind segmentation for applications,
there is no general way to instruct a computer on how to group visual patterns of colors, textures
and other features. To this end, this paper mainly focuses on the fundamental task of semantic
segmentation in high-resolution RS images obtained by airborne sensors.

The task of semantic segmentation is to partition an image into several semantically meaningful
regions, such that pixels in each region have the same object category label. Specifically, given
an image, the goal of semantic segmentation is to develop an agent that can infer a category label
for pixels belonging to the same object. This task has been addressed in many ways in terms of
pattern analysis [1,3,4]. In spite of great progress and many thoughtful attempts in the past decades,
it still remains far from solved for various RS images. The main challenge lies in the following
four aspects. First, objects in urban remote-sensing images often have different scales. For example,
roofs usually appear in the form of large areas, while cars and trees take over small areas. Second,
because remote-sensing images are usually taken in a vertical view, lots of confusing artificial objects
are spatially distributed, for example, buildings, roads, vehicles and trees are scattered in every
corner of the picture. Third, there exist objects with large variations in visual appearance and size
belonging to the same category in RS images, which causes high intra-class diversity and low inter-class
variance. Taking the roofs as an example, buildings are different from one another in RS images due
to different architectural styles and materials, which causes intraclass diversity. However, some
roofs closely resemble roads, which cause interclass similarity. Finally, recently the resolution of
remote-sensing images has gradually improved, which improved visual perception but also caused
issues, too as much detailed information came out that could not before be presented in low-resolution
images. This further increases segmentation difficulty. The above four factors make RS imaging quite
difficult. Thus, supervised segmentation via learning has been receiving growing attention to enhance
segmentation techniques in recent years.

Recently, the usage of deep learning methods developed under the convolutional neural
network [23] brings out the boost of the field of computer vision. The task of semantic segmentation for
natural images has now been largely benefited from this development [24–29]. Technically, it is natural
to apply those existing approaches for natural images to RS images. The efforts have been actually
made by researchers with comparative studies [30–33]. Such practices have demonstrated the fact
that directly using the existing approaches for natural images cannot guarantee to yield satisfactory
segmentations for RS images. In other words, one needs to design new architectures of neural networks
to gear to the above characteristics of RS images.

The main purpose of this study is to develop a deep-learning model for semantic segmentation
in high-resolution RS images taken by airborne sensors. To this end, a Learnable Gated-Deep
Convolutional Neural Network (L-GCNN) was developed by using multiscale information fusion to
address challenging issues caused by various types of artificial objects with large variations in visual
appearance and size. Specifically, a gate function with learnable parameters was first introduced to
generate weights at different spatial positions. With this gate function, a Parameterized Gating Module
(PGM) was constructed to perform weighted sum operations on two adjacent levels of convolutional
layers. Then, the design of the single PGM and its densely connected counterpart were embedded,
respectively, into multilevels of the encoder in the L-GCNN. In this way, discriminative features
could be extracted at multiscales of receptive fields. Finally, the proposed L-GCNN was organized
as a self-cascaded end-to-end architecture with explicit encoder–decoder modules to sequentially
aggregate context information. That is, upon this architecture, pixelwise importance identified by the
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PGMs can be transferred from high- to low-level so as to achieve global to local refinement for the
semantical segmentation of RS objects. Furthermore, the performance of the L-GCNN was examined
with extensively comparative experiments on challenging public datasets, indicating the validity of
the proposed approach.

The article is organized as follows: Section 1 describes the background information, the problem
statement, the objective and the predictions of this study. Section 2 presents the related works of the
semantic-segmentation algorithm and its improved applications in remote-sensing images. Section 3
addresses the details of the proposed method. In Section 4, results are reported and analyzed. Section 5
discusses the method, followed by the conclusions in Section 6.

2. Related Works

Advances on the semantic segmentation of RS images have been always associated with
those for natural images. However, traditional methods based on manual features usually fail
to produce satisfactory results and lack robustness to complex situations, with low accuracy
performance. Thanks to the development of deep learning [34], CNNs [23] and its variants [24–26]
demonstrate powerful capacity for semantic segmentation in natural images. In the literature,
the Fully Convolutional Network (FCN) [24] is a seminal work for this task. Later, some sophisticated
models were developed, typically including the Deconvolution Network [27], SegNet [26], U-Net [25],
Pyramid Scene Parsing Network (PSPNet) [35], RefineNet [28] and DeepLab [29]. Beyond traditional
methods with manual features, these methods can learn hierarchically abstract features from data that
show good segmentation performance in natural images.

Technically, the boost of the deep models as well as the availability of large-scale RS images with
high visual quality provide a chance to enhance the segmentation performance. Accordingly, the idea
of deep learning has already been applied to semantic segmentation for RS images. In the literature,
most researches focus on how to modify the FCN framework for this issue. Typically, Sherrah [36]
combined the dilated convolution [29] into the FCN with no down-sampling operations for
high-resolution RS images. Later, multiple FCN-based frameworks are constructed to segment
buildings, vehicle and the informal settlements [37–40] in RS images. Wang et al. [30] proposed
a Gated Segmentation Network (GSN) to select adaptive features when fusing feature maps at different
levels. Liu et al. [31] constructed a cascaded network for partitioning confusing manmade objects.
Chen et al. [38] proposed to use the shuffling CNN to segment aerial images. Yuan [41] considered to
integrate the activations from multiple layers in FCN for pixel-wise prediction. These researches have
largely enriched the methodology of semantic segmentation for RS images.

In summary, the key in most models [24–26,30] is to develop tricks to fuse the feature maps
learned at different scales for fine segmentation. One popular way being used is to add them together.
In this way, the contribution of all of the pixels are equally considered. However, it is well known that
the segmentation errors often occur with higher probabilities at the pixels in edge regions between
objects. This fact implies that the contributions to the above fusion should be different at different
spatial positions. Based on this observation, a new semantic segmentation model will be developed in
this paper to learn different weights at different pixels and a gate function with learnable parameters
will be constructed to achieve this goal.

3. Method

This section describes the details of the proposed method. The fusion strategy for multiscale
feature maps under the FCN framework is first introduced, which motivated us to design the
parameterized gate module. Then, the architecture of the segmentation network is described in
detail. Finally, the training algorithm and the inference approach are given for clarity.



Remote Sens. 2019, 11, 1922 4 of 22

3.1. Parameterized Gate Module

To achieve the goal of multi-scale feature fusion, a weighted fusion strategy is first introduced
as follows:

F f usion = (↑ Conv (Fupper))⊕
(

W⊗Conv
(

Flower
))

, (1)

where Fupper and Flower record feature maps (tensors) obtained at high level and low level, respectively,
F f usion is the fusion result, “Conv” indicates the convolution operation, ⊕(·, ·) is the elementwise
summation operation and “↑” performs spatial upsampling. In Equation (1), W collects pixel weights
and “⊗” stands for the entitywise product of two tensors. Note that, it is unnecessary to provide
another weight matrix on the operation at the left side in Equation (2), as such two weight matrices
can be shrunk to one for parameter reduction in deep-learning frameworks.

The fusion in Equation (1) has actually been considered in GSN proposed by Wang et al. [30],
where the weights in W are calculated with information entropy. Formally, information entropy H(z)
is defined on the probabilities of pixel z belonging to all of the categories:

H(z) = −
C

∑
i=1

pi(z) log2(pi(z)), (2)

where pi(z) is the predicted probability of pixel z belonging to the i-th category; and C is the number
of categories. Information entropy acts as a feature selector by supplying different weights for different
pixels. Thus, it can perform as a gate function to guide the fusion.

Note that in Equation (2) all the weights are computed in a pre-defined way. This indicates that
the gate function is not a learnable one that cannot tune well to data. To remedy this drawback, we first
consider the Taylor expression of information-entropy function. With a notation replacement from
pi(z) to xi and by considering the expression at point x0 = (1/C, 1/C, . . . , 1/C)T ∈ RC, it follows that

H(x1, x2, · · · , xC) = −
C
∑

i=1

1
C log2

(
1
C

)
−

C
∑

i=1

(
log2

(
1
C

)
+ 1

ln 2

) (
xi − 1

C

)
−

n
∑

j=2

C
∑

i=1
(−1)j

(
1
C

)−(j−1) 1
j×(j−1) ln 2

(
xi − 1

C

)j
,

(3)

where x = (x1, x2, · · · , xC)
T ∈ [0, 1]C, Rn(x) is the Peano residual term and n is the highest order of

the expression. Here, xi, i = 1, 2, · · · , C, can be viewed as the probability of a pixel belonging to the
i-th category. Thus, each xi drops into the interval [0, 1].

Then, we parameterize the above expression in Equation (3) by taking its coefficients as variables.
Ignoring the Peano residual term, a gate function is then defined as follows:

G(x1, x2, · · · , xC) =
C

∑
i=1

n

∑
j=0

aij

(
xi −

1
C

)j
, xi ∈ [0, 1], i = 1, 2, · · · , C, (4)

where aij, i = 1, 2, . . . , C and j = 0, 1, 2, . . . , n, are parameters to be learned from the data.
The proposed gate function is actually an extension of the single variable function

“ f (x) = −xlog2(x)” in C-dimensional space with the primitive polynomial g(x) = ∑n
j=0 ajxj. As f (x)

gives a single curve, the gate function in Reference [30] can only yield the weights in a predefined way.
In contrast, the gate function in Equation (4) can generate flexible curves. With learnable parameters,
it provides a weighting mechanism, adaptive to data.

Finally, we embedded the above gate function into the neural network to develop a Parameterized
Gate Model (PGM). The task of the PGM is to integrate high-level contextual information and detailed
low-level information together in a spatially weighting way. The structure of the PGM is demonstrated
in the bottom-right dashed box in Figure 1. It takes high-level feature maps Fupper (already having
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performed 2×upsampling) and low-level feature maps Flower as inputs. By denoting the output of
PGM by F f usion, it follows that

F f usion =
(

ReLU (G (softmax (Conv (Fupper))))⊗ Flower
)
⊕ (Fupper) , (5)

where Conv (Fupper) performs “1× 1” convolutions on thetensor Fupper and “⊗” and “⊕” stand for the
entitywise product and sum of two tensors, respectively. There are C categories in total that need to be
segmented from the RS images. Thus, the output of the 1× 1 convolution layer contains C channels.
Feature maps in these channels are finally transformed by the softmax layer to be the probabilities of
each pixel belonging to the C categories. This gears to the need that C inputs of gate function G(·) in
Equation (4) should be dropped into the interval [0, 1].

Note that, in Equation (4), there are no constraints on the parameters. Accordingly, the value
of the function may be negative. Considering that the weight should be non-negative, the Rectified
Linear Unit (ReLU) operation is employed to achieve this goal. That is, the output of the gate function
in Equation (4) is supplied to a ReLU layer.

Technically, since the gate function in Equation (5) contains parameters to be learned, it will take
part in the process of back-propagation during model training. To make the gate more discriminative,
a loss function was embedded into the PGM, as shown in the bottom-right dashed box in Figure 1.
Specifically, at the high level, the label matrix of the training RS image is first downsampled to be
of a size equal to that of the Fupper channel and then standard cross-entropy is employed as the loss
function at this level. Since label information is directly utilized on this level, minimizing loss function
guides the convolution operation in the PGM to learn the semantic features. As a result, this treatment
in turn helps enhance the goodness of the gate in PGM.

3.2. Densely Connected Pgm

High-resolution RS images contain confusing artificial objects and complex background. To further
improve the segmentation performance, it is inadequate to consider only the local information for
multiple-level (layer) feature fusion. It is well known that context information around objects is
an important visual hint for object perception as it describes the dependency between the object and
its surroundings. To this end, context information at the highest layer of the CNN is utilized since it
has the largest receptive filewith high nonlinearity on the feature maps.

Technically, the proposed PGM and dilated convolution [29] are combined to utilize multiscale
context information. The reason behind this combination can be explained as follows. On the one hand,
the PGM provides a mechanism to provide the spatial importance of the feature maps. Intrinsically,
it is a local operation between two adjacent levels in the decoder phase for image segmentation. On the
other hand, dilated convolution can enlarge the receptive field. As a result, semantic information
from a large spatial region can be captured in this way. Furthermore, with multiscale configurations
of dilated convolution, multiscale contexts can easily be accumulated together for convolutional
operations. Thus, the combination of the PGM and dilated convolution can be achieved by spatial
context weighting.

Based on the above analyses, a Densely Connected PGM (DC-PGM) was designed that is
performed at the highest layer of the CNN (namely, the ResNet101). The structure of DC-PGM
is demonstrated in the bottom-left of Figure 1. Specifically, dilated convolution is performed in three
context scales. Operation “Conv 3 × 3 (d = 3)”, for example, stands for 3× 3 dilated convolution with
dilation rate d equal to 3 and pixel stride equal to 1. That is, d is set to be 3, 6 and 12, respectively.
Then, the PGM and dilated convolution are combined to capture multiscale context information where
PGM takes the output of one dilated convolution and the original Feature Maps (FMs) as its input to
guide multiscale feature fusion. Symbol “◦” means feature-copy operation. Topologically, this yields
a structure in which PGMs are densely connected. As a result, context information with three scales
can be fully utilized to improve performance. Finally, with concatenation operation “ c©”, the output of
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ResNet101 at the highest level and the outputs of the PGMs at the three context scales are concatenated
together. In this way, four scales of context information are actually fused together.

3.3. L-GCNN Neural Architecture

Based on the above PGM and DC-PGM designs, a Learnable Gated CNN (L-GCNN) was
developed for RS image semantic segmentation. Figure 1 illustrates its architecture. In this model,
the encoder part for feature learning was constructed on ResNet-101 [42]. ResNet-101 is a well-
structured module and details can be found in Reference [42]. In addition, the architectures of the
Shortcut Convolution Module (SCM) and Squeeze-and-Excitation Module (SEM) can be found in
References [30,43], respectively.

SCM1...

ResNet-101

DC-

PGM

w/2 w/8 w/16
w/32

PGM

Conv11
Level 1

Level 3

Level 4

Level 5

end-to-end

Softmax

Up-sampling

FMs

Con33
(d=3)

c

PGM

c

PGM

c

c

The structure of the DC-PGM

..
.

..
.

...

Flower


Conv11 Softmax

Loss

Learnable 

gate function 
ReLU

The structure of the PGM

Fupper

2up

SCM1 SEM SCM2

PGM SCM2

PGM SCM2

SCM1 SEM

SEMSCM1

PGM

Con33
(d=3)

Con33
(d=3)

Figure 1. Overview of the model Learnable Gated Convolutional Neural Network (L-GCNN)
for remote-sensing (RS) image segmentation. In the encoder part, ResNet-101 is used as feature
extractor. In the decoder part, the Parameterized Gate Module (PGM) and Densely Connected PGM
(DC-PGM) are proposed for feature fusion. In addition, the Shortcut Convolution Module (SCM) and
Squeeze-and-Excitation Module (SEM) were employed as basic processing units. Details of PGM and
DC-PGM are shown in dashed boxes.

As demonstrated in Figure 1, the L-GCNN consists of two parts. The first part is the encoder
that is responsible for feature extraction from the input images. As ResNet is capable of developing
a deeper network with high efficiency for training by shortcut connections, the 101-layer ResNet
(named as ResNet101 [42]) was employed to fulfil this task.

The second part in the L-GCNN is the decoder for pixel-level classification to achieve the goal of
semantic segmentation. It performs five-level information fusion, corresponding, respectively, to the
size of “ w/32× w/32, w/16× w/16, w/8× w/8, w/4× w/4, w/2× w/2”, where w stands for the
width of the image. At the highest level (Level 5 in Figure 1), it contains two modules: DC-PGM and
SCM. All the remainder levels consist of the modules of SCM, SEM and PGM. Note that, at the lowest
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lever (Level 1 in Figure 1 ), operation “Conv 1× 1” was employed to map the output of the decoder for
label inferring.

Table 1 gives the L-GCNN configuration. The ResNet101 with 99 convolution layers was employed
to learn the feature maps at five levels. In Table 1, symbol “3×3, 64”, for example, indicates that
64 channels are output by convolutional operations with 3×3 kernel size on the feature-map channel.
In SEM [43], for example, “GP-FC-4-FC” stands for the operation in the “global pooling layer, fully
connected layer and fully connected layer” subnetwork, with four nodes between two fully connected
layers. The configurations of the PGM and DC-PGM gear to structures shown in Figure 1. In addition,
in ResNet101 and SCM, a ReLU layer is performed immediately after each group of convolutional
operations in the bracket.

Table 1. L-GCNN configuration. Here, C stands for number of objects to be segmented, “/2” indicates
that strides for convolution are equal to 2 and “×” outside the bracket indicates that the convolution
group in the bracket is repeated by the following numbers.

Method Level 1 Level 2 Level 3 Level 4 Level 5

Resnet101

 7× 7, 64, /2

3× 3, max pool/2




1× 1, 64

3× 3, 64

1× 1, 256

× 3


1× 1, 128

3× 3, 128

1× 1, 512

× 4


1× 1, 256

3× 3, 256

1× 1, 1024

× 23


1× 1, 512

3× 3, 512

1× 1, 2048

× 3

SCM1

3× 3, 64

3× 3, 64

× 2

3× 3, 256

3× 3, 256

× 2

3× 3, 512

3× 3, 512

× 2

3× 3, 1024

3× 3, 1024

× 2

3× 3, 1024

3× 3, 1024

× 2

SEM


1× 1, 64

GP-FC-4-FC

sigmoid




1× 1, 64

GP-FC-16-FC

sigmoid




1× 1, 256

GP-FC-32-FC

sigmoid




1× 1, 512

GP-FC-64-FC

sigmoid

 −−

PGM


1× 1, C

softmax

gate




1× 1, C

softmax

gate




1× 1, C

softmax

gate




1× 1, C

softmax

gate

 −−

SCM2

3× 3, 64

3× 3, 64

× 2

3× 3, 64

3× 3, 64

× 2

3× 3, 256

3× 3, 256

× 2

3× 3, 512

3× 3, 512

× 2 −−

DC-PGM −− −− −− −−

3× 3, 512

PGM

× 3

Conv1× 1
[
1× 1, C

]
−− −− −− −−

Finally, it is worth pointing out that, in Figure 1 the combination of the three modules of SCM,
SEM and PGM is performed at levels 4, 3, 2 and 1, in order. This treatment renders a new characteristic
for multilevel feature fusion in that both the spatial importance and channel importance of the feature
maps are considered with adequate nonlinearity via the deeper network. As a result, in the decoder
phase, abstract features could be filtered out well for semantic segmentation.

3.4. Training and Inference

In the learning stage, the original RS images and their segmented images are employed to train
the model. All of them are previously repaired in the same size with w× h, where w and h stand for
the width and height of the image, respectively. As the segmentation task is essentially multicategory
classification for pixels, normalized cross-entropy loss is used as the learning objective. For each image
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I and its segmented Y (ground truth), the predicted segmentation is denoted by Ŷ. Then, the loss for
image I is defined as follows:

Loss(Y, Ŷ, θ) = − 1
w× h ∑

zi∈I

C

∑
k=1

I(yi = k)log pk(zi), (6)

where θ collects all parameters in the L-GCNN, C is the number of categories, I(·) is the truth function,
zi is the i-th pixel in image I , yi is the ground-truth label of zi and pk(zi) is the output of the softmax
layer at the k-th channel for pixel zi.

Note that the above loss function is also used to define loss in the PGM. Correspondingly, ground
truth Y Is downsampled to be Yj fitting to the same size at the j-th level. For example, at the fourth
level, the width and height of Yj are equal to one quarter of those of the original image. Formally,
it can be formulated as follows:

Loss(Yj, Ŷj, θ) = − 1
wj × hj ∑

zj
i∈I j

C

∑
k=1

I(yj
i = k)log pk(z

j
i), (7)

where superscript j indicates the j-th level and the meanings of the notations correspond to those
in Equation (6) for understanding.

For one training image I , loss function is in total constructed as follows:

Loss (θ; I) = Loss
(
Y, Ŷ, θ; I

)
+ λ ∑

j∈PGMs
Loss

(
Yj, Ŷj, θ; I

)
+ β ‖θ‖2

2 , (8)

where λ and β are two regularization parameters and || · || indicates the L2 vector norm. Specifically, λ

is used to balance PGM contributions, while β is employed to avoid model overfitting after training.
The formulation in Equation (8) considers all losses in PGMs, including those in DC-PGM in Figure 1,
to automatically cotrain the model.

The function in Equation (8) calculates loss for one image. During training, the goal is
to minimize all loss for all training samples. Due to the huge memory requirement, however,
supplying all of the training images into the network in one batch mode is actually impractical.
Alternatively, random minibatches are constructed to train the network by multiple iterations in an
end-to-end manner. Technically, the L-GCNN is trained by the methodology of error back-propagation.
Stochastic gradient descent (SGD) was employed to achieve this goal.

Algorithm 1 lists the steps of how to train the L-GCNN. Learning rate η associates to the step
of the gradient update when using the SGD strategy to train the model. Specifically, it is trained in
minibatch mode. Thus, the main loss in Equation (8), as well as the update of the parameters, are
averaged on all of the images in the minibatch used in the current iteration. In addition, as L-GCNN
includes more than 100 convolution layers, batch normalization is performed after each group of
convolution operations to guarantee convergence of learning. The convergence condition in Step 10 is
set so that the loss of the network stays unchanged at two adjacent iterations.

In the inference stage, new RS image I with size equal to that of the training images is supplied to
the trained L-GCNN. In this stage, no loss in the PGMs is calculated. After obtaining the output of the
final softmax layer, for pixel zi ∈ I , probability pk(zi) of pixel zi ∈ I belonging to the k-th category is
picked out and its finally predicted class label ĉi is determined by the following inference formulation:

ĉi = arg max
k
{pk(zi)}. (9)

As for an RS image whose size is larger than the training images, it is first cropped into several
patches. After each of these patches are finally segmented, the probabilities of the overlapped regions
are averaged for final inference.



Remote Sens. 2019, 11, 1922 9 of 22

Algorithm 1 Training algorithm for the proposed L-GCNN.
Input: Training samples composed of images and their corresponding segmented ground

truth labels {(I , Y)}, regularization parameters λ and β, learning rate η and maximum number
of iterations T.

Output: Network parameters in θ of L-GCNN.
1: Initialize θ.
2: Downsample all segmented ground-truth labels {Y} at five levels, respectively, for PGM.
3: Let t← 0.
4: while t < T do
5: Randomly construct a subset of Minibatches in {(I , Y)}.
6: Call L-GCNN forward pass to implement all operations on each of the Minibatches.
7: Perform batch normalization on each of the Minibatches after each group of convolutional

operations.
8: Calculate average loss on Minibatches according to Equation (8).
9: Update θ using the SGD strategy on a Minibatch in an averaged way.

10: if Loss(θ) converges then
11: Stop.
12: end if
13: t← t + 1.
14: end while

4. Experiments

4.1. Data Description

The proposed approach to semantic segmentation for RS images has been evaluated on two
public benchmark datasets. Figure 2 demonstrates some examples of the images and their manually
segmented ground truths. As can be seen from these examples, there are many artificial objects with
different sizes and confusing appearance, which poses a challenge for achieving both consistent and
accurate semantic segmentation. The details are described as follows:

Potsdam Dataset: This dataset is constructed for the ISPRS 2D Semantic labeling challenge
in Potsdam [44], which shows a typical historical city with large building blocks, narrow streets
and a dense settlement structure acquired by airborne sensors. It consists of 38 true orthophoto
(TOP) tiles (images). Each tile has four bands, infrared, red, green and blue channels. Corresponding
Digital Surface Model (DSM) and Normalized Digital Surface Model (NDSM) data were also provided.
The size of each image was 6000× 6000 pixels. The ground-sampling distance (spatial resolution) of
both the TOP and the DSM was 5 cm. Thus, they were taken with a very high resolution in the field of
RS image processing. Before this dataset was released by ISPRS, dense image matching with Trimble
INPHO 5.6 software was used to generate DSM data, while Trimble INPHO OrthoVista was employed
to generate the TOP mosaic [44]. In order to avoid hole areas without data in the TOP and the DSM,
patches were selected from the central part of the TOP mosaic and the very small remaining holes
in the TOP and the DSM were interpolated [44]. In this work, only the bands of red, green and blue
were employed.

All of these images have been manually segmented into six categories at pixel level, impervious
surfaces (imp surf), building, low vegetation (low veg), tree, car and clutter. Background objects (e.g.,
containers, tennis courts, swimming pools), different from the above five class of objects of interest,
were collected into the clutter class. It should be pointed out that, following treatment in previous
works [30,31], the class of clutter in the Potsdam dataset was not considered in the experiments, as the
background accounts for a very small ratio in total image pixels. Note again that the ground truth
(class labels) of only 24 images was publicly available. Accordingly, the 24 images with ground truth
available were randomly divided into a training subset of 16 images and a test subset of 8 images.
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Massachusetts Building Dataset: This dataset was constructed by Mnih [45], which consists
of 151 aerial color (red, green and blue) images taken in the Boston area. Each image has
1500× 1500 pixels with a ground-sampling distance (spatial resolution) of 1 m. The entire dataset
covers roughly 340 square kilometers, mostly urban and suburban areas and buildings of all sizes.
Target maps were obtained by rasterizing building footprints obtained from the OpenStreetMap project
and data were selected to regions with average omission noise level of roughly 5% or less [45]. The data
were split in advance into a training subset of 141 images and a test subset of 10 images. All of these
images have been segmented into two categories at pixel level, building and nonbuilding. Thus, this
dataset is associated with a task of binary-class classification.

Data preprocessing for training: In experiments, to reduce the problem of overfitting and train
an effective model, the trick of data augmentation was employed to enlarge the training samples.
Specifically, in the training stage, each training image is first processed by the following one or
combined operations: mirrors horizontally and vertically, rotation between −10 and 10 degrees
and resizing with a factor between 0.5 and 1.2 (multiscale). Then, 384 × 384 patches are randomly
cropped from the processed images to construct the dataset. As a result, the Potsdam dataset is finally
comprised of 9600 samples for training, among which 8000 samples were employed to build up the
training subset and the remaining samples were used as test samples. The Massachusetts building
dataset consisted of 14,700 samples, among which 13,700 samples were used for training and the
remaining were employed for testing.

(a) Potsdam dataset (b) Massachusetts building dataset

Figure 2. Example images and their manually segmented ground truths in he Potsdam dataset
(six categories: impervious surface, building, low vegetation, tree, car and clutter) and the Massachusetts
building dataset (two categories: building and nonbuilding).

4.2. Evaluation Metrics

To give a comprehensive evaluation on the performance of the different networks compared in
the experiments, two overall benchmark metrics were employed, the F1 score of the classification
and the score of the Intersection over Union (IoU). The mean value of the obtained scores on all of the
test samples is then reported. For clarity, the IoU score of each image is calculated as follows:

IoU(Pm,Pgt) =
|Pm ∩ Pgt|
|Pm ∪ Pgt|

, (10)

where Pgt denotes the set of ground-truth pixels, Pm stands for the set of prediction pixels and “∩”
and “∪” indicate the intersection and union operations between two sets, respectively. Operation | · |
indicates the number of the elements in the set.

Note that, for classification tasks, precision recall (PR) is a useful measure of prediction success
when categories are imbalanced. Accordingly, PR curves are drawn to render the tradeoff between
Recall and Precision on each of the categories. Technically, to this end, score maps of each category
predicted by the deep-learning model are first binarized with a series of thresholds changing from 0 to
1 and these binarized results are then compared with the ground truth to obtain the values of Precision
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and Recall at different thresholds. In this way, the PR curves are finally drawn by taking Recall as the
horizontal axis and Precision as the vertical axis.

4.3. Compared Methods and Experiment Settings

The proposed L-GCNN was compared with the six classic models developed with deep learning
for semantic segmentation, which demonstrate different strategies of multiscale feature fusion for fine
segmentation. The main information about these models is summarized as follows:

• FCN: a seminal work proposed by Long et al. [24] for semantic segmentation. Currently, it is usually
taken as the baseline for comparison. Three versions of FCN models, FCN-32s, FCN-16s and
FCN-8s, are available for public use. From them, the FCN-8s model with fine edge segmentation
preserving was employed for comparison.

• SegNet: This model was actually developed on the FCN framework by employing pooling indices
recorded in the encoder to fulfil nonlinear upsampling in the decoder [26]. It is now taken as
a fundamental structure for comparative evaluation on semantic segmentation.

• RefineNet: It is an approach for natural-image segmentation that takes ResNet as its encoder.
The performance of RefineNet has been evaluated with multiple benchmarks of natural images.
The distinct characteristic of RefineNet lies in the structure design of coarse-to-fine refinement for
semantic segmentation. Thus, it was also employed for comparison.

• PSPNet: The encoder of PSPNet [35] is the classical CNN. Its decoder includes a pyramid parsing
module, upsampling layer and convolution layer to form final feature representation and obtain
final per-pixel prediction. The distinct characteristic lies in the pyramid parsing module that fuses
together features under four different pyramid scales.

• DeepLab: In DeepLab [29], atrous spatial pyramid pooling is employed to capture multiscale
representations at the decoder stage. In the experiments, the ResNet101 network was employed
to design its encoder. Three-scale images with 0.5, 0.75 and 1 the size of the input image were
supplied to three nets of ResNet101, respectively, which were finally fused for prediction.

• GSN: This model was developed under the SegNet framework of with multilevel information
fusion [30]. At the decoder stage, a gate control module was designed to automatically select
adaptive features when merging multilevel feature maps. The gate function is defined on
f (x) = −x log2(x), which does not contain parameters for learning.

In the experiments, all the six above models and the proposed L-GCNN were performed in the
same experiment settings within the Pytorch framework, except the differences between initializations
for the hyperparameters and the parameters of the models. Technically, the guidance given by the
authors in their works is followed to initialize the hyperparameters. Specifically, when using the SGD
strategy to train the L-GCNN, learning rate η was initially set as 0.0001, which was later dropped by
a decay factor of 0.1 every 20 epochs. As for the two regularization parameters λ and β in Equation (8),
they were set to be 0.2 and 0.0005, respectively, in our implementation. The maximum number of
iterations in Algorithm 1 was set to be 30,000. Due to the limit of GPU memory, the size of each
minibatch was taken as 4 for training.

In addition, all models were pretrained with the tricks of transfer learning that are commonly
used for model training in the field of deep learning [46,47]. Intrinsically, it is a technique of fine-tuning.
Specifically, except for the L-GCNN, all other models are trained on PASCAL VOC 2012 [48] with
a semantic-segmentation task. For the L-GCNN, parameters in the encoder are inherited from those
for the ResNet101 [42] and those in the encoder part are also initialized with the pretrained models in
terms of transfer learning.

4.4. Experiment Results

The quantitative scores of F1 and IoU obtained by the seven models on all test images in the
Potsdam dataset are listed in Tables 2 and 3, respectively. Table 4 reports the quantitative scores
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obtained on all test images in the Massachusetts building dataset. In this experiment, the buildings
were identified as the objects of interest and thus only the scores measured on the buildings are reported
here. Due to class imbalance where the ratios of the total regions belonging to the objects were largely
different from each other, the two metrics of F1 and IoU were measured, respectively, on each of the five
categories. As can be seen from the comparative results in these tables, L-GCNN largely outperformed
the seminal FCN and SegNet models, which were initially developed for semantic image segmentation.
In addition, it is also superior to the PSPNet, RefineNet and DeepLab models, which were all designed
with the idea of multiscale information fusion in large receptive fields. In structure, the L-GCNN is
similar to the GSN. Compared with the GSN, the key in the L-GCNN is the design of the gate function
in Equation (4), which provides a mechanism to learn the spatial importance for multilevel information
fusion. The quantitative scores on the two datasets indicate the distinct improvement of the L-GCNN
over the GSN, demonstrating the effectiveness of our design for RS image segmentation.

Table 2. F1 scores (%) obtained on Potsdam dataset. “imp surf”: “impervious surfaces”; “low veg”:
“low vegetation”.

Model Imp Surf Building Low Veg Tree Car Average

FCN 88.31 93.09 83.26 82.10 73.05 83.96

SegNet 85.29 88.62 81.78 78.49 64.55 79.75

RefineNet 88.80 92.84 84.41 82.62 87.04 87.14

PSPNet 74.24 75.29 64.41 47.14 41.79 60.57

DeepLab 89.92 93.44 84.84 83.74 90.97 88.58

GSN 91.69 95.05 86.63 85.23 91.68 90.05

L-GCNN (our) 92.84 96.17 87.78 85.74 93.65 91.24

Table 3. IoU scores (%) obtained on Potsdam dataset.

Model Imp Surf Building Low Veg Tree Car Average

FCN 79.08 87.08 71.31 69.63 57.53 72.93

SegNet 74.36 79.57 69.17 64.60 47.66 67.07

RefineNet 79.86 86.65 73.03 70.38 77.05 77.39

PSPNet 59.04 60.37 47.50 30.83 26.41 44.83

DeepLab 81.69 87.69 73.67 72.02 83.42 79.70

GSN 84.43 90.45 76.42 72.28 84.30 81.58

L-GCNN (our) 86.64 92.62 78.21 75.04 88.06 84.12

Table 4. Metric scores (%) obtained on Massachusetts Building Dataset. They were measured on the
foreground object (the building) for comparison since there were only two categories in this task.

Metrics FCN SegNet RefineNet PSPNet DeepLab GSN L-GCNN (Our)

F1 70.29 65.47 82.38 79.73 77.58 83.68 85.73

IoU 58.01 54.22 71.59 68.50 65.90 73.29 76.15

To give a comprehensive comparison between the models, Tables 2 and 3 also list the mean
scores of the averaged segmentations on all of the five categories in the Potsdam dataset, which were
calculated from the test images. As can be seen from the comparisons, the performance of the L-GCNN
outperformed other advanced models by a considerable margin on the categories, especially on the
IoU score, which is an important metric for semantic segmentation. This fact can be clearly witnessed
from the tiny objects, including the car and the tree in the scenes.
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Furthermore, Figure 3 shows PR curves obtained from each of the categories. To give a compact
arrangement on these curves, the first five subfigures in Figure 3 were calculated on the Potsdam
dataset, including the categories of impervious surfaces (imp surf), building, low vegetation (low veg),
tree and car. The last subfigure was calculated on the Massachusetts building dataset, where only the
curves on the building category were needed to illustrate for comparison. It is seen that PR curves
obtained by the L-GCNN are always located at the top positions on all the given categories, which
indicates the effectiveness of the design of the network.
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Figure 3. Precision-recall (PR) curves obtained by all seven compared models. First five subfigures
were calculated on the Potsdam dataset and the last subfigure was calculated on the Massachusetts
building dataset. (a): imp surf; (b): building (Potsdam); (c): low veg; (d): tree; (e): car; and (f): building
(Massachusetts).

Figures 4 and 5 demonstrate segmentations of a few images obtained by the seven models,
FCN, SegNet, RefineNet, PSPNet, DeepLab, GSN and the L-GCNN. For clarity, segmentation
quality at different scales is demonstrated. As can be seen from these figures, the FCN, SegNet
and PSPNet models had difficulty in segmenting confusing size-variable buildings in the Potsdam
dataset. The obtained results by these three models rendered segmentations with low accuracy.
RefineNet and DeepLab improved the quality of segmentation but clear false negatives can also be
perceived from the segmentation results. Typically, they lack enough robustness to preserve the fine
edges of artificial objects. In contrast, the GSN and the L-GCNN performed better. Compared with
the GSN, the L-GCNN improved performance with satisfactory edge preserving. This fact can be
witnessed from results with coherent segmentations on both confusing and fine-structured buildings
and the tiny cars.

In summary, the extensive comparisons above show that the L-GCNN can segment confusing
artificial objects in high-resolution RS images. In addition, it is quite robust to size-changeable objects
with satisfactory edge preserving. Furthermore, no poster-processing methods like conditional random
field or graph cut were employed to polish the final segmentation. This fact implies that the L-GCNN
can generate smooth results on complex visual regions of artificial objects. In addition, the available
information of the corresponding Digital Surface Model (DSM) and Normalized DSM (NDSM) data in
the Potsdam dataset was not employed to help segmentation. The above observations indicate the
validity of L-GCNN refinement for RS image segmentation.
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FCN
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RefineNet

PSPNet

DeepLab

Ground Truth 

GSN

Our

Figure 4. Visual comparisons between L-GCNN (ours) and other related methods on the Potsdam
dataset. Label includes six categories: impervious surface (white), building (blue), low vegetation
(cyan), tree (green), car (yellow) and clutter/background (red). Here, backgrounds are directly shown
as they were considered as masks when training the models.
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FCN

SegNet

RefineNet

PSPNet

DeepLab

Ground Truth 

GSN

Our

Figure 5. Visual comparisons between L-GCNN (ours) and other related methods on the Massachusetts
building dataset. Label includes two categories: building (red) and nonbuilding (black).
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5. Discussion

5.1. Result Analysis

In order to improve the prediction accuracy of boundaries and tiny objects, each of the six classical
models (FCN, SegNet, RefineNet, PSPNet, DeepLab and GSN) has its own advantages in different
aspects, such as optimizations on convolutions and feature fusion. By contrast, the proposed L-GCNN
mainly focuses on multiscale feature fusion.

Technically, summation and concatenation of feature maps are the most popular operations for
feature fusion. Beyond the direct concatenation operation, where additional 3D convolutions should
be performed on fused feature blocks, the summation operation in the L-GCNN was employed as there
were a relatively small number of parameters to be learned. Considering different situations for each of
the pixels can actually guarantee to yield satisfactory segmentation results. This motivated us to design
the L-GCNN, that is, the L-GCNN utilizes pixel category probability at multiscales obtained from the
current iteration during training and thus increases model-parameter effectiveness. This treatment not
only prevents possible training overfitting but also enhances the representation capability of the model.

From a qualitative point of view, our L-GCNN kept the advantage of the GSN, namely, the gated
mechanism to generate weights on different pixels in feature fusion. But from a quantitative view,
associated weights with low-level features should not be limited to [0, 1]. In other words, they can
be adaptively larger or smaller so as to improve segmentation accuracy. By contrast to the GSN,
the feature fusion in the L-GCNN is not a fixed formula that realizes the authentic data driven in
feature fusion. The main technical characteristics in the L-GCNN can be highlighted as follows:

• A gate function is proposed for multiscale feature fusion. The most distinct characteristic of
our gate function lies in that it is a parameterized formulation of the Taylor expression of the
information-entropy function. Beyond the entropy function with no parameters, our gate function
has learnable parameters that can be learned from data. This helps increase the representation
capability of our proposed L-GCNN.

• The design of a single PGM and its densely connected counterpart were embedded, respectively,
into multilevels of the encoder in the L-GCNN. This strategy yields a multitask learning framework
for gating multiscale information fusion, from which discriminative features can be extracted at
multiscales of receptive fields.

• Topologically, our L-GCNN is a self-cascaded end-to-end architecture that is able to sequentially
aggregate context information. Upon this architecture, pixelwise importance identified by the
PGMs can be transferred from high to low level, achieving global-to-local refinement for the
semantical segmentation of remote-sensing objects.

5.2. Parameter Sensitivity

As can be seen from previous sections, the performance of the L-GCNN is associated with the
learnable gate function, the design of the PGMs and the training strategy of the model. Therefore, this
subsection mainly discusses the above issues in light of the above aspects in order to better analyze
their effects on semantic segmentation. As the Potsdam dataset is a public benchmark containing
multiple categories in this work, the investigation was made experimentally with this dataset.

First, the power of the gate function in Equation (4) was analyzed. Note that it is formulated as
a polynomial. When training the L-GCNN, the highest order of the polynomial should be given in
advance. Let n denote the highest order. Table 5 lists the performance of the gate function with n equal
to 2, 3, 4, 5 and 6, respectively, where the two scores of the segmentation accuracy and the IoU are
measured on all five object categories in the test images in the Potsdam dataset. Other experiment
settings are the same as those used in Section 4.4. For simplicity, scores here were obtained on the
models trained without the help of the augmented multiscale samples. It can be seen that, when n is
larger than 3, performance is not largely improved. Thus, it is recommended to set n to 5 in usage.
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Table 5. Performance of the gate function with different polynomial orders in the L-GCNN. Here,
segmentation accuracy and IoU scores (%) reported for comparison. None of the augmented multiscale
samples was employed for training.

Model Imp Surf Building Low Veg Tree Car

Accu IoU Accu IoU Accu IoU Accu IoU Accu IoU

n = 2 91.45 85.00 96.23 90.87 86.18 76.35 83.94 74.46 90.25 86.53

n = 3 91.50 85.21 96.39 91.19 86.03 76.05 86.48 74.93 90.16 86.35

n = 4 90.36 84.65 95.74 90.60 86.33 76.77 83.34 74.44 90.36 86.65

n = 5 91.42 85.07 96.84 91.19 86.20 76.49 84.98 74.78 93.01 86.76

n = 6 90.99 84.97 96.54 91.35 86.30 76.69 86.05 74.66 93.85 86.27

Second, the effects of the training strategy were investigated with different values of the important
parameters, including regularization parameters λ and β in the objective function in Equation (8)
and learning rate η when employing the GSD strategy to train the model. Parameter λ acts as a tradeoff
between the designs of PGMs and non-PGMS, while β is a factor of weight decay that is related to
avoiding network overfitting. Learning rate η is associated with quality of convergence. To this end,
the performance of these parameters within a large range was investigated. Specifically, the value
set for λ was taken as {0.0002, 0.002, 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1, 2, 20}, the set for β is taken as
{5.0× 10−7, 5.0× 10−6, 5.0× 10−5, 5.0× 10−4, 5.0× 10−3, 5.0× 10−2, 5.0× 10−1} and that for η was
{10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2} in order. Figure 6 demonstrates their effect on segmentation
in terms of segmentation accuracy and IoU score on the Potsdam dataset. Besides the parameter
currently evaluated, other experiment settings were the same as those used in Section 4.4. It is seen
that all of these parameters could yield better performance in a large region but it may degreethe
performance with a small or a large value. Thus, it is recommended to have the values of λ, β and η as
0.2, 0.0005 and 0.0001, respectively, in usage.
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Figure 6. Effects of regularization parameters λ and β in the objective function in Equation (8)
and learning rate η when employing GSD strategy to train the model. Scores were obtained on
the Potsdam dataset. Metric scores of (a): parameter λ; (b) parameter β; and (c): parameter η.

Finally, the effect of the PGMs in Section 3.1 was analyzed. To this end, all modules of the
PGMs and the DC-PGM are removed in this process. This treatment yielded a reduced model that
was evaluated along with original model L-GCNN in the same experiment settings. The highest
polynomial order of the gate function was set to be 5 in the experiments. Table 6 reports the metric
scores of the segmentations on the Potsdam dataset. Compared with the reduced model, it is seen
that the L-GCNN with gate function largely improved performance by a considerable margin on each
category, typically on the easily confusing category of “impervious surfaces” and the tiny objects of
cars. This fact indicates the validity of our design.
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Table 6. Comparisons between reduced model and L-GCNN with segmentation accuracy and IoU
scores (%). Note that here none of the augmented multiscale samples were employed for training.

Model
Imp Surf Building Low Veg Tree Car

Accu IoU Accu IoU Accu IoU Accu IoU Accu IoU

Reduced Model 90.13 80.71 94.49 88.92 85.94 74.63 83.86 72.64 91.35 82.88

L-GCNN 91.42 85.07 96.84 91.19 86.20 76.49 84.98 74.78 93.01 86.76

5.3. Model Complexity

This subsection analyzes the computational complexity of the L-GCNN. For comprehensive
analysis, it is compared with the related six networks, FCN, SegNet, RefineNet, PSPNet, DeepLab
and GSN. Table 7 outlines factors related to computational complexity, including total number of
the FLoating-point OPerations (FLOPs) in terms of Giga Multiplier ACcumulators (GMACs) and the
number of network parameters.

For comparison, averaged test time is also reported in Table 7. It was evaluated on images of
384× 384 pixels, which was fulfilled on a TITAN Xp GPU with 12G RAM. As can be seen, computation
scale in the L-GCNN was largely reduced to a certain degree compared with FCN, SegNet, RefineNet,
PSPNet and DeepLab. It was slightly larger than that of the GSN. However, the total number of
parameters in the L-GCNN stands at the median level. Accordingly, average test time was also at the
same level among the models.

Table 7. Computational complexity, including total number of the FLoating-point OPerations (FLOPs),
number of network parameters and average test time for each image of 384× 384 pixels on a TITAN
Xp GPU with 12G RAM.

FCN SegNet RefineNet PSPNet DeepLab GSN L-GCNN (Our)

#FLOPs (GMACs) 124.80 90.74 140.18 157.22 100.89 44.16 46.16

#parameters (M) 134 29 71 72 42 53 54

Averaged test time (ms) 33.56 20.47 38.08 57.23 54.89 29.52 31.47

5.4. Implications and Limitations

The main function of the gated mechanism in PGM module is to improve segmentation
accuracy on the details of RS images. In our L-GCNN, multiple PGMs were embedded, respectively,
into multilevels of the encoder that could automatically recognize objects with different sizes . In recent
years, with the continuous development of remote-sensing satellite sensors, many details that have
been overlooked in low-resolution images surface today. Therefore, improving the segmentation
accuracy of tiny objects is an urgent problem to be solved in the future. In addition, there are many
objects with various scales in RS images due to top-view imagery. Obviously, recognition of multiscale
objects is also a difficulty in semantic segmentation.

Beyond that, however, traditionally fixed weighting computation for information fusion has been
reconsidered as one that can be learned from data. To this end, the Taylor expression of a nonlinear
function was employed to achieve this goal, which was further formulated as a polynomial with
parameters and embedded into the network architecture. Such a formulation may render a trick of
commonly used generalization from nonlinear function with no parameters to that with learnable
parameters. This helps increase the representation capability of the network. Therefore, one can
reconsider many similar tasks in the fields of RS image processing, where explicate nonlinearity
governs the processes, by transforming them to be neural networks for learning from data.

Methodologically, however, the proposed L-GCNN model was developed on a classical
convolutional neural network for semantical segmentation. It has several limitations, as follows:
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• As reported in Table 7, the L-GCNN has more than 54 million network parameters. Such a huge
model requires to be trained with high-performance computing resources (like a computing
server with GPUs), which limits its usage in real-time semantical segmentation, embedded
systems and other situations with limited computational resource like those on orbiting satellites.
This drawback could be overcome by using the technique of model compression and more
effective topology with neural architecture search.

• The L-GCNN should be trained with a large number of samples. For example, on the Potsdam
dataset, there were 8000 samples in total, well-labeled for training. That is, good performance
may not be guaranteed due to the small size of sample sets. However, in the field of RS image
processing, public samples with truthful ground truth are very limited. One way to overcome this
point is to embed prior knowledge related to the task of semantic segmentation into the network.
Another way is to employ a generative adversarial network to yield more samples.

• The L-GCNN has no capability to treat new situations with different sample distributions and
unseen categories. Its performance could largely be reduced on unseen or adversarial samples.
In the future, its generalization power could be overcome by introducing a mechanism in the
network to allow online learning in terms of domain adaption, deep transfer learning and deep
reinforcement learning.

6. Conclusions

In this work, an L-GCNN has been proposed for semantic segmentation in high-resolution
RS images. The proposed L-GCNN is an end-to-end learning system that can achieve excellent
performance with the following three characteristics. First, a PGM was developed to integrate
multilevel feature maps together in way of pixelwise weighting. The distinct merit in the PGM
design lies in that the gate function has parameterized formulation for learning to select feature maps
on spatial positions. Second, the design of the single PGM and its densely connected extension was
embedded into multilevels of the encoder in the L-GCNN to help identify the discriminative features
at different scales. Third, as a whole, the L-GCNN is a self-cascaded architecture to sequentially
aggregate context information for the segmentation of artificial objects with large variations in visual
appearance and size. With these well-motivated topological designs, the L-GCNN can effectively
implement semantic segmentation in a manner of global-to-local and coarse-to-fine refinement.

Extensive comparative experiments demonstrated the advantages of the proposed L-GCNN,
in that it can achieve more accurate segmentation performance on both quantitative measurement and
visual evaluation compared with the related models. In the future, we aim to employ the design of
PGM to solve other tasks in the field of RS image processing, including fine-object localization, change
detection and object recognition in hyperspectral and SAR images. Furthermore, we aim to study the
limitations addressed in this work for related real-world applications.
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