
remote sensing  

Article

Evaluating the Temperature Difference Parameter in
the SSEBop Model with Satellite-Observed Land
Surface Temperature Data

Lei Ji 1,*, Gabriel B. Senay 2, Naga M. Velpuri 1 and Stefanie Kagone 1

1 ASRC Federal Data Solutions, Contractor to U.S. Geological Survey (USGS) Earth Resources Observation
and Science (EROS) Center, Sioux Falls, SD 57198, USA

2 U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, North Central
Climate Adaptation Science Center, Fort Collins, CO 80523 USA

* Correspondence: lji@contractor.usgs.gov; Tel.: +1-605-594-6584

Received: 26 June 2019; Accepted: 18 August 2019; Published: 20 August 2019
����������
�������

Abstract: The Operational Simplified Surface Energy Balance (SSEBop) model uses the principle of
satellite psychrometry to produce spatially explicit actual evapotranspiration (ETa) with remotely
sensed and weather data. The temperature difference (dT) in the model is a predefined parameter
quantifying the difference between surface temperature at bare soil and air temperature at canopy
level. Because dT is derived from the average-sky net radiation based primarily on climate data,
validation of the dT estimation is critical for assuring a high-quality ETa product. We used the
Moderate Resolution Imaging Spectroradiometer (MODIS) data to evaluate the SSEBop dT estimation
for the conterminous United States. MODIS data (2008–2017) were processed to compute the 10-year
average land surface temperature (LST) and normalized difference vegetation index (NDVI) at 1 km
resolution and 8-day interval. The observed dT (dTo) was computed from the LST difference between
hot (NDVI < 0.25) and cold (NDVI > 0.7) pixels within each 2◦ × 2◦ sampling block. There were enough
hot and cold pixels within each block to create dTo timeseries in the West Coast and South-Central
regions. The comparison of dTo and modeled dT (dTm) showed high agreement, with a bias of 0.8 K
and a correlation coefficient of 0.88 on average. This study concludes that the dTm estimation from
the SSEBop model is reliable, which further assures the accuracy of the ETa estimation.

Keywords: actual evapotranspiration; land surface temperature; MODIS; normalize difference
vegetation index; SSEBop model; temperature difference

1. Introduction

As a process of transferring moisture from the land surface into the atmosphere, evapotranspiration
(ET) is an important element in the hydrologic cycle of the Earth. Measurement and estimation of ET
are essential and important for investigations and applications in hydrology, ecology, climatology,
agriculture, and water resources management. However, accurate estimation of ET remains a challenge
because ET is driven by numerous complexed factors including radiation, vapor-pressure deficit,
temperature, soil moisture, and plant stomatal conductance [1–4]. Although direct ET measurement
can be implemented using water budget methods (e.g., lysimeter, soil moisture depletion, and field
experiment plot) and water vapor transfer methods (e.g., Bowen ratio energy budget and eddy
covariance), the scale of the ET measurement is ground-based. Spatially explicit estimation of ET over
a basin or a region relies on models that integrate ground information and atmospheric observations
with remotely sensed data. Satellite remote sensing techniques have become increasingly attractive
because they provide spatially and temporally contiguous observations from visible, infrared, and
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thermal infrared wavelengths for retrieving land surface parameters used for the energy balance and
ET modeling.

Since the 1990s, various remote-sensing-based ET estimation models have been developed for
estimating actual ET (ETa) using the surface energy balance method. Those well-known models include
Surface Energy Balance Index (SEBI) [5], Two-Source Energy Balance (TSEB) [6], Surface Energy Balance
Algorithm for Land (SEBAL) [7,8], Simplified Surface Energy Balance Index (S-SEBI) [9], Surface
Energy Balance System (SEBS) [10], Mapping Evapotranspiration at high Resolution with Internalized
Calibration (METRIC) [11,12], and Operational Simplified Surface Energy Balance (SSEBop) [13,14].
Some ET models are designed with high complexity to approximate the actual hydrological mechanisms
and processes for increasing model accuracy, which require more input data and measurements to
calibrate parameters. However, the complexity may influence the accuracy of the model output due to
the potential errors in the input data and parameters. High requirement for input data also usually
impedes the applications of ET estimation at regional or national scale. Other models have simplified
structures, which eliminate less important processes in computation. Although these models may
sacrifice accuracy to some extent, the simplicity benefits the model in operational applications over a
large area.

The Simplified Surface Energy Balance (SSEB) method developed by Senay et al., 2007 [15] is a
simplified thermal-based surface energy model. The model requires setting up uniform hydro-climatic
regions where climatic conditions are comparable for the hot and cold reference pixels to limit the impact
of confounding factors that cause changes in land surface temperature (LST). The SSEB formulation
was enhanced by Senay et al., 2011a [16] to handle the impact of topography on surface temperature
using a lapse rate correction factor. Later, Senay et al., 2011b [17] introduced a revised SSEB that
handles both elevation and latitude effect on surface temperature using the difference between LST
and air temperature. Furthermore, the SSEB was parameterized for operational applications and
renamed to SSEBop (Operational SSEB) by Senay et al., 2013 [13]. The SSEBop model is formulated
based on the principle of satellite psychrometry, which uses LST measured from satellite sensors to
estimate the psychrometric surface equivalents of dry-bulb and wet-bulb air temperatures to calculate
ET fractions and ETa for every pixel in an image. The SSEBop model uses predefined hot and cold
reference boundary limits for each location and time, so that the estimation of ET fractions can be
operationally implemented using the SSEB approach [13]. SSEBop is one of the simplest surface energy
balance models for large-scale operational ET estimation because the model directly solves for latent
heat flux without the need to solve for other surface energy balance components such as net radiation,
sensible heat, and ground heat fluxes [13,14].

To meet the needs for water resource use and management, the U.S. Geological Survey (USGS)
Earth Resources Observation and Science (EROS) Center routinely produces historical and near-real
time ETa maps at regional, national, and global level using the SSEBop model. Those ETa products
include (1) global 1 km ETa and ETa anomaly (ratio of concurrent ETa to long-term median value)
maps (2003 to present) at dekadal (10-day), monthly, and yearly intervals [18], (2) nationwide 1 km ETa
and ETa anomaly maps for the conterminous United States (CONUS) (2001 to present) at 8-day, and
monthly, and yearly intervals [18], and (3) monthly and yearly 30 m ETa maps for some focus areas
such as the Upper Rio Grande Basin [18] and the southwestern CONUS [19].

The SSEBop ETa products have been comprehensively validated at field scale using in situ flux
tower data and at basin scale using water balance approaches. Comparisons of the SSEBop ETa against
flux tower data were found to show reasonable accuracies across different landscapes [13,14,20–23].
For example, validation of the 1 km SSEBop ETa product with individual flux towers had R2 of
0.70–0.97 across the CONUS [13]. Validation of the 100 m SSEBop ETa estimates in the Colorado
River Basin using eddy covariance flux towers showed good accuracy levels with R2 ranging from
0.74 to 0.95 [14]. Validations of the SSEBop ETa data at basin scale were also found to be reliable in
previous studies [14,20,21] and comparable with other existing global ET datasets, such as the MOD16
ET [24,25] and the FLUXNET upscaling ET obtained by combining global flux tower records and
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machine-learning algorithm [26]. Furthermore, the SSEBop ETa product was found to be reliable in
multi-model comparison studies across various landscapes and regions [27–31]. Although previous
studies indicated a certain level of uncertainties of SSEBop ETa data in point scale in some locations,
the data were more accurate at basin scale with uncertainties as low as 15–20% [22].

The SSEBop model computes ETa as a product of ET fraction generated from LST and reference
ET using two key parameters, i.e., air temperature (Ta) for establishing a maximum ET limit condition
(cold boundary) and predefined temperature difference (dT) between dry bare surface and canopy
surface [13]. In the SSEBop model, dT is calculated from the surface energy balance equation under
average-sky conditions for dry bare soil where ET is assumed to be zero, and sensible heat is assumed
to be maximum [13,14]. Thus, dT is determined based on the assumption that the difference between
the hot and cold values remains nearly constant from year-to-year for a given location and period under
average-sky conditions [13,21]. Because dT is a key parameter in the SSEBop model, validation of the
dT estimation is critical for assuring the accuracy of the ETa products. dT represents the LST difference
between dry/hot bare soil pixels and wet/cold vegetated field pixels (assumed to be equal to canopy
level air temperature). Direct validation of dT data would be impractical from field measurements
because of the difficulty in obtaining air temperatures of dry/hot soil and wet/cold canopy at the same
location, especially across a large ET mapping area. However, observations from satellite sensors
provide a convenient and flexible tool for measuring LST for dry/hot and wet/cold pixels, which can be
used to estimate dT and compare it with the modeled dT.

The objective of this study was to evaluate the SSEBop dT estimates using satellite LST observations.
We collected and analyzed the Moderate Resolution Imaging Spectroradiometer (MODIS) surface
reflectance data (2008–2017) to determine hot and cold pixels based on the normalized difference
vegetation index (NDVI). We used the MODIS LST data to compute actual LST for hot and cold pixels
to simulate observed dT, which was further compared with the dT data generated from the SSEBop
model. We performed the evaluation of the dT products for sampling blocks across the CONUS. The
degree of agreement between the satellite-observed dT and modeled dT was quantified to understand
the accuracy of the SSEBop ET products.

As mentioned above, validations of the SSEBop estimates have been conducted through using flux
tower data, flux tower-based gridded ETa estimates, and basin-scale water balance data [20–23] and
through comparison with existing well-established ETa model estimates [27–31]. Although flux towers
provide direct ETa measurements, the limited number of tower locations in space hampers wide and
comprehensive use of the data for the model validation. Other gridded ETa products, either estimated
from remote sensing-based models or from flux tower upscaling algorithms, are useful for evaluating
the SSEBop product at pixel level. These modeled ETa products can be utilized for ETa data evaluation
through cross-model or cross-data comparisons, but they cannot be referred to as the ground-observed
references in the data validation. Unlike the ETa estimates, the dT parameter generated from the
SSEBop model can be directly compared with satellite-observed LST at pixel level. Because MODIS
contains abundant collections of LST and other land surface products, we choose to validate the dT
data instead of the ETa data in this study. This method provides an auxiliary approach for evaluating
the SSEBop model in addition to the previous model validation investigations [20–23,27–31].

2. Materials

2.1. Study Area

Our study area encompasses the CONUS with a map extent of 24–50◦N and 66–126◦W (Figure 1).
The topography of the CONUS is featured by moderate elevations consisting of hills and low mountains
in the east, low elevations in the vast central plains (i.e., the Great Plains), and high elevations with
high rugged mountain ranges in the west. According to MODIS land cover data (MCD12Q1) [32], the
primary classes of vegetated land in the CONUS are cropland (19.8%), forest (15.6%), shrubland and
savanna (25.7%), grassland (34.3%), and wetland (0.6%). Based on the 30-year (1981–2010) climatology
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data [33], the annual average air temperature is 11.6 ◦C and total precipitation is 780 mm, calculated as
the spatial means across the CONUS. The climate varies greatly, ranging from humid-subtropical in
the Southeast, humid-continental in the Northeast and Midwest, semiarid in the western Great Plains,
arid in the southwestern deserts, to Mediterranean along the western coast.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 16 

 

semiarid in the western Great Plains, arid in the southwestern deserts, to Mediterranean along the 

western coast. 

 

Figure 1. Map of the study area showing the 2° × 2° (approximately 200 km) sampling blocks and 

examples of the 10-year (2008–2017) average land surface temperature (LST) and normalized 

difference vegetation index (NDVI) images for 12–19 July. (a) LST. (b) NDVI. Data source: Moderate 

Resolution Imaging Spectroradiometer (MODIS) Collection 6 MYD11A2 and MYD09A1 (Table 1). 

2.2. MODIS Data 

We used a suite of MODIS datasets (Collection 6) including Land Surface Reflectance, Land 

Surface Temperature, Active Fire, and Land Cover to compute the observed dT parameter (Table 1). 

All the MODIS datasets were obtained from the Application for Extracting and Exploring Analysis 

Ready Samples (AppEEARS) managed by the Land Processes Distributed Active Archive Center (LP 

DAAC) [34]. We downloaded the MODIS data for the CONUS map extent in the geographic 

coordinate system. The data included 1850 images of four MODIS products for the years from 2008 

to 2017 (Table 1). 

Table 1. MODIS datasets used for developing observed temperature difference (dT). 

Figure 1. Map of the study area showing the 2◦ × 2◦ (approximately 200 km) sampling blocks and
examples of the 10-year (2008–2017) average land surface temperature (LST) and normalized difference
vegetation index (NDVI) images for 12–19 July. (a) LST. (b) NDVI. Data source: Moderate Resolution
Imaging Spectroradiometer (MODIS) Collection 6 MYD11A2 and MYD09A1 (Table 1).

2.2. MODIS Data

We used a suite of MODIS datasets (Collection 6) including Land Surface Reflectance, Land
Surface Temperature, Active Fire, and Land Cover to compute the observed dT parameter (Table 1).
All the MODIS datasets were obtained from the Application for Extracting and Exploring Analysis
Ready Samples (AppEEARS) managed by the Land Processes Distributed Active Archive Center
(LP DAAC) [34]. We downloaded the MODIS data for the CONUS map extent in the geographic
coordinate system. The data included 1850 images of four MODIS products for the years from 2008 to
2017 (Table 1).
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Table 1. MODIS datasets used for developing observed temperature difference (dT).

Product Satellite Attribute Pixel Size Compositing
Interval Output Dataset

MYD09A1 Aqua Land surface
reflectance 500 m 8-day

NDVI; cloud, cloud
shadow, cirrus, and

snow/ice masks

MYD11A2 Aqua Land surface
temperature 1 km 8-day Land surface

temperature
MYD14A2 Aqua Active fire 1 km 8-day Fire mask

MCD12Q1 Terra/Aqua
combined

Land cover
type 500 m Annual Vegetation cover

The Aqua MODIS Surface Reflectance is the MYD09A1 level-3 product containing surface
reflectance at 500 m resolution for bands 1 (620–670 nm), 2 (841–876 nm), 3 (459–479 nm), 4 (545–565 nm),
5 (1230–1250 nm), 6 (1628–1652 nm), and 7 (2105–2155 nm). The dataset is an 8-day composite, with
each pixel containing the best possible observation selected based on high observation coverage, low
view angle, and absence of clouds, cloud shadow, or aerosol during an 8-day period. We used the
MYD09A1 State Quality Assurance (QA) layer to extract cloud, cloud shadow, cirrus, and snow/ice
data for each 8-day composite.

The Aqua MODIS Land Surface Temperature is the MYD11A2 level-3 product that provides 8-day
composites of LST and emissivity at 1 km resolution. Each pixel value in the data is a simple average
of all LST observed within the 8-day period. The daytime LST in Kelvin degree was extracted for
this study.

The MODIS Active Fire is the MYD14A2 level-3 product at 8-day interval and 1 km resolution.
The 8-day composite contains fire pixels detected in each pixel during the 8-day period. The Fire
Mask layer in the MYD14A2 includes three categories of confidence levels: Low confidence, nominal
confidence, and high confidence. We used the nominal and high confidence levels to identify the active
fire pixels.

The Aqua MCD12Q1 (Collection 6) product provides the Terra and Aqua combined yearly land
cover type at 500 m resolution. We used the International Geosphere-Biosphere Programme (IGBP)
classification scheme, or Land Cover Type 1 in the MCD12Q1 data to identify vegetation cover.
The vegetation cover includes evergreen forest, deciduous forest, mixed forest, closed shrubland, open
shrubland, woody savanna, savanna, permanent wetland, cropland, and cropland/natural vegetation
mosaics, while excluding urban and built-up land, permanent snow and ice, barren, and water bodies.

2.3. Modeled dT Data

In the SSEBop model, dT is an intermediate product derived from the surface energy balance
equation [13]:

dT = (Rn × rah)/(pa × Cp) (1)

where Rn is the net radiation, rah is the aerodynamic resistance to heat transfer, pa is the air density,
and Cp is the specific heat of air. The most important assumption of the model is that the surface
energy balance process is mostly driven by available net radiation, and a decline in ET due to water
stress and other factors can be quantified by differences in LST [13,14]. Complete descriptions of
the SSEBop model and the dT computation are found in detail in Senay et al., 2013 [13] and Senay
2018 [14]. Besides a set of constant parameters, the most important variables as the input to the dT
computation are the minimum air temperature (Tmin) and maximum air temperature (Tmax) derived
from the Daymet dataset [35]. Daymet is a collection of 1 km gridded estimates of daily weather
parameters, including maximum and minimum air temperature, precipitation, water vapor pressure,
shortwave radiation, and snow water equivalent, updated from 1980 through the most recent full
calendar year for North America [35]. The Daymet dataset is archived and distributed through the
Oak Ridge National Laboratory Distributed Active Archive Center [36]. For this study, we calculated
the 10-year average (2001–2010) of daily 1 km Tmin and Tmax for the CONUS extent. The dT product is
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a 1 km gridded dataset estimated yearly at the daily time step, while the dT value is static for a given
pixel and date. To compare the modeled data with the 8-day interval MODIS data, we converted the
dT data from daily interval to 8-day mean values. To distinguish the two types of dT, we denote the
MODIS-observed dT as dTo and SSEBop model-estimated dT as dTm hereafter.

3. Methods

3.1. Processing of MODIS Data

We processed 5 sets of MODIS data (2008 to 2017) including surface reflectance, surface reflectance
QA, LST, active fire, and land cover (Table 1). All the datasets at 500 m resolution were remapped to
1 km (0.008333◦) resolution in the geographic coordinate system. The bilinear resampling method was
used for continuous data (surface reflectance), and the dominant resampling method was used for
thematic data (surface reflectance QA and land cover). We created the NDVI dataset at 1 km using
surface reflectance:

NDVI = (RNIR – Rred)/(RNIR + Rred) (2)

where RNIR is the reflectance of the near-infrared band and Rred is the reflectance of the red band. We
chose NDVI instead of other vegetation indices because the quantitative relationships between NDVI
and vegetation density have been well established from rich literature and from our ecological modeling
experiences. We extracted the cloud, cloud shadow, cirrus, and snow/ice layers from the MYD09A1
Surface Reflectance QA data and the fire layer from the MYD14A2 Fire Mask data. By combining all
the cloud, cloud shadow, cirrus, snow/ice, and fire layers, we created a general noise mask dataset at
an 8-day interval and 1 km resolution. The NDVI and LST datasets were filtered using the noise mask
to remove all poor-quality pixels from the two datasets.

Using the denoised NDVI dataset, we calculated the 10-year average (2008–2017) NDVI for each
8-day interval from 1 January to 31 December at pixel level. Because some years had missing values
due to noise (clouds etc.), we calculated the temporal average NDVI for the pixels that had more than
half of the total 10-year observations. We applied the same averaging method to the denoised LST data
and created a 10-year average LST dataset at 8-day interval. Figure 1 shows examples of the 10-year
average NDVI and LST images for the interval of 12–19 July.

The dT calculation uses the LST values selected for two different sites (described in detail in
the next section). Because of the possible difference in elevation between the two sites, especially in
mountain areas, LST needs to be corrected for the elevation effect with a lapse rate. The lapse rate is
the rate at which temperature decreases with an increase in elevation. In this study, we used a constant
lapse rate of 0.0065 K/m to correct for the elevation effect on LST [16]:

LSTc = Г × z + LST (3)

where LSTc (K) is the elevation-corrected LST (K), Г (K/m) is the lapse rate, and z is the elevation (m).
By applying the lapse rate to the 10-year average LST dataset, we created an elevation-corrected LST
dataset. The elevation data were obtained from Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) product developed by the USGS and the National Geospatial-Intelligence Agency [37].
From the GMTED2010 product suite, we chose the mean elevation product with 30 arc-second (about
1 km) resolution using for the LST correction.

We used the yearly MCD12Q1 land cover data (2008–2017) to create a stable vegetation cover
map. First, all vegetation classes in Land Cover Type 1, including forest, shrubland, savanna, wetland,
and cropland, were combined into a single class “vegetation”. The vegetation cover output was
simplified to a binary map consisting of “vegetation” and “non-vegetation” for each year. Then the
vegetation/non-vegetation maps of 10 years were temporally merged into a stable vegetation cover
map. In the stable vegetation map, a pixel is labeled as “vegetation” only if the pixel is consistently
“vegetation” through all 10 years in the vegetation cover maps.
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3.2. Calculation of Observed dT

By using the 10-year average timeseries NDVI and the stable vegetation cover data, we created
yearly timeseries maps of hot and cold pixels at an 8-day interval. Here, we defined the hot pixel
as NDVI < 0.25 and the cold pixel as NDVI > 0.7 for vegetation cover. The thresholds of 0.25 and
0.7 for identifying cold and hot pixels were based on our knowledge and experience with the use of
satellite-derived vegetation indices in ET modeling and mapping. The LSTc values were retrieved for
all hot and cold pixels from the timeseries maps. We used a square block of 2◦ × 2◦ as the sampling
unit (approximately 172 km × 222 km at 40◦00’N, 100◦00’W in the geographic coordinate system)
(Figure 1). There were 390 sampling blocks in the entire study area, with each block containing
240 × 240 pixels. Within each sampling block, we calculated the mean and standard deviation of LSTc
for all hot pixels and all cold pixels. We experimented with different sizes of the sampling blocks, for
example, 0.5◦ × 0.5◦, 1◦ × 1◦, and 2◦ × 2◦. Although the smaller block reduced the impact of spatial
variabilities in climatology and land cover on sampling, it decreased the probability of obtaining a
desired number of hot and cold pixels within each block.

The observed dT was computed as the difference between mean LSTc for hot pixels and mean
LSTc for cold pixels within a 2◦ × 2◦ sampling block:

dTo = Th − Tc (4)

where dTo is the observed dT, Th is the mean LSTc value for all hot pixels in a sampling block, and Tc is
the mean LSTc value for all cold pixels in a sampling block. To avoid outliers in the LSTc, we required
each sampling block to contain a sufficient number of both hot pixels and cold pixels that were not less
than 30 counts. Thus, we created the yearly dTo timeseries at an 8-day interval for all sampling blocks
where enough hot and cold pixels existed.

3.3. Comparison of Observed dT and Modelled dT

Like the dTo, we calculated the mean and standard deviation values for dTm for each same
sampling block using the yearly dTm timeseries data. Therefore, the mean dTm values were compared
with the mean dTo values for the yearly timeseries at 8-day interval for each sampling block, if the
dTo values existed. In the data comparison, we used the metrics such as bias, root mean square error
(RMSE), and Pearson correlation coefficient (r). The bias and RMSE are defined as

Bias =
1
n

n∑
i=1

(Xi −Yi) (5)

RMSE =

1n
n∑

i=1

(Xi −Yi)
2


1
2

(6)

where X is the dTo value, Y is the dTm value, and n is the number of the observations in the timeseries.
When the dTo calculated from LST is used to validate the dTm simulated from the model, the dTo is

referred to as the reference data. Here we assume that the reference data are less erroneous compared
to the model outputs. However, because of satellite observation errors, uncertainties exist in MODIS
LST, NDVI, and all other products, which will affect the data validation results. More details about the
MODIS data uncertainties and the influences are discussed in Section 5.1.

4. Results

4.1. Maps of Hot and Cold Pixels

Using the 10-year average NDVI data and the stable vegetation cover map, we created maps of
hot and cold pixels at 8-day interval through the year. Figure 2 demonstrates some examples of the
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maps of the hot and cold pixels for different months from March to November. In the maps, we notice
that the hot pixels are primarily distributed in the western CONUS and the cold pixels are mostly in
the eastern CONUS. The area of hot pixels is relatively consistent over different seasons, although the
area is bigger in the growing season (May to October) than the non-growing season. The area of cold
pixels changes dramatically throughout the year. Because of the low productivity and snow cover,
there are much fewer cold pixels in the non-growing season (November to April). However, cold
pixels are abundant in the central, northeastern, southeastern, and the Pacific-western CONUS in the
growing season. At all locations where both hot and cold pixels existed, we extracted LSTc values from
the maps through the yearly timeseries, which was used to generate the maps of Th and Tc.
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4.2. Creation of dTo and dTm Timeseries

For each sampling block, we used the Th and Tc values to calculate the dTo values (Equation 4),
which were then compared with the dTm values extracted from the same block. However, there were
only a small number of blocks that contained 30 or more hot pixels and cold pixels, located mainly in
the West Coast area, encompassing the states of Washington, Oregon, Idaho, and California (Figure 3a).
Thus, we created the dTo timeseries at 8-day interval throughout the year only for the blocks on the
West Coast (Figure 4).

Although there were rarely good sampling blocks in other areas except for the West Coast, we
were able to combine two blocks that are close to each other. We used one block containing ≥30 hot
pixels and another nearby block containing ≥30 cold pixels to calculate dTo values. In the South-Central
CONUS, mainly in Kansas, Oklahoma, and Texas, we found several pairs of blocks containing more
than 30 hot or cold pixels that can be combined to derive dTo (Figure 3b). To reduce the impact of the
air temperature difference between two different blocks, we combined the blocks of hot and cold pixels
from the same longitude. That is, when we selected a block of hot pixels in the west side of the region,
we chose a nearby block of cold pixels directly to the east. This way, we calculated dTo values based
two blocks and generated dTo timeseries at 8-day interval throughout the year (Figure 5).

The complete dTo timeseries consists of 46 observations (or 8-day intervals) for each sampling
block. However, due to possible snow impacts on the MODIS data, we exclude the observations from
the winter season (December to February). Therefore, the timeseries covers 35 observations from the
8th to 42nd 8-day interval (26 February to 2 December).
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4.3. Agreement between dTo and dTm in the West Coast Region

Figure 3a shows the locations of the sampling blocks in the West Coast region. There are 16 blocks
that meet the two requirements as the samples for generating dTo timeseries: (1) each block contains
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at least 30 hot pixels and at least 30 cold pixels, and (2) the annual timeseries contains at least 2/3 of
the total 35 observations (i.e., at least 24 observations) for each block. The timeseries plots of dTo and
dTm for each block on the West Coast are shown in Figure 4. Comparing the temporal dTo and dTm

timeseries, we found good agreement between the two variables. The overall magnitudes of dTo and
dTm values are very close, although dTo shows more temporal variations than dTm. Both dTo and dTm

also demonstrate strong seasonal patterns that show higher values in the summer with a peak between
day of year 170–200 (late June to middle July) and lower values in spring and autumn. Most blocks
present high agreement between dTo and dTm, particularly some blocks such as W07, W11, W15, and
W16 showing very high agreement. Some blocks, however, show noticeable difference between dTo

and dTm, for example, W01, W03–W06, and W13. The discrepancy between dTo and dTm for those
blocks is probably caused by the difference in the land cover types and elevations between hot and
cold pixels. Uncertainties in the MODIS NDVI and LST data may be another reason for the unstable
dTo values, which are discussed in more detail in Section 5.1.

Table 2 presents the statistics of the comparison between dTo and dTm for the sampling blocks in
the West Coast region. The overall difference between dTo and dTm is low as measured with the bias
(1.0 K), RMSE (3.6 K), and r value (0.89). Of all sampling blocks in this region, W15 in California shows
the best agreement between dTo and dTm, which has a bias of 0.8 K, RMSE of 1.6 K, and r of 0.98.

Table 2. Agreement between modeled and observed dT values for the sample blocks in the West
Coast region.

Block Mean of dTo (K) Mean of dTm (K) Bias (K) RMSE (K) r n

W01 11.54 8.71 2.82 5.14 0.797 35
W02 9.99 10.14 −0.16 2.74 0.862 28
W03 6.98 9.75 −2.77 5.93 0.389 32
W04 9.74 14.35 4.61 4.97 0.953 35
W05 10.79 6.96 −3.83 6.16 0.614 29
W06 11.13 11.03 0.10 4.70 0.680 29
W07 12.97 11.71 1.26 2.73 0.935 31
W08 11.93 14.05 2.12 3.38 0.910 29
W08 13.17 12.17 1.01 3.18 0.918 24
W10 11.68 10.63 1.06 3.96 0.772 35
W11 13.39 11.91 1.48 2.23 0.966 35
W12 10.65 10.26 0.39 3.01 0.855 35
W13 6.92 11.20 −4.28 5.18 0.814 35
W14 14.18 10.80 3.38 3.75 0.953 35
W15 13.31 12.51 0.79 1.57 0.978 35
W16 13.33 11.66 1.67 1.94 0.980 35

Median for all blocks 11.61 11.12 1.03 3.56 0.886 16

4.4. Agreement between dTo and dTm in the South-Central Region

For the South-Central region, because there were not enough hot and cold pixels within one
single block, we combined one block containing all hot pixels and another containing all cold pixels to
calculate dTo. Figure 3b shows six pairs of hot-pixel and cold-pixel blocks in this region to generate dTo

timeseries. All hot-pixel blocks are from the western part of the region, and all cold-pixel blocks are
from the eastern part.

Figure 5 shows the dTo and dTm timeseries plots, which demonstrate reasonably high agreement
between dTo and dTm for all six pairs of blocks. The overall magnitudes of dTo and dTm values are
very close, but the temporal variations of dTo are higher than dTm. Like dTm, dTo shows seasonal
patterns with peaks in the growing season and lower values in spring and autumn. Compared with
the West Coast region, the temporal dTo changes in the South-central region show more apparent
local variations. This is probably caused by the relatively long distance between two blocks used for
calculating dTo in this region. Table 3 provides the statistics of the agreement between dTo and dTm

timeseries for the sampling blocks, including the bias, RSME, and r between two variables for the six
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pairs of blocks. The overall difference between dTo and dTm is low, indicated by the bias (0.5K), RMSE
(1.8K), and r value (0.88).

Table 3. Agreement between modeled and observed dT values for the sampling blocks in the
South-central region.

Block Mean of dTo (K) Mean of dTm (K) Bias (K) RMSE (K) r n

SC01–SC02 13.91 14.23 −0.31 2.11 0.469 20
SC03–SC04 13.84 13.35 0.49 1.55 0.879 26
SC05–SC06 12.47 13.29 −0.82 1.62 0.885 26
SC07–SC08 14.02 13.38 0.64 1.83 0.800 26
SC09–SC10 14.24 11.93 2.31 2.99 0.878 34
SC11–SC12 12.47 11.92 0.54 1.70 0.906 32

Median for all pairs of blocks 13.88 13.32 0.52 1.76 0.879 6

We noticed the high RMSEs for some sampling blocks from both regions, which indicate high
random errors of the dTm for those sites, but the random error could also stem from the dTo calculated
from MODIS LST, especially when the satellite observations are contaminated by clouds, cloud
shadows, and snow etc. Our analysis was not able to distinguish between dTm random error and dTo

random error. Although we assume that the dTo based on land surface measurements has the least
error compared to the model outputs, satellite-based observations are subject to measurement error to
a certain degree. As we compared the timeseries plots of dTo and dTm (Figures 4 and 5), dTo showed
more temporal variabilities than dTm, which implied higher instability and inconsistency of the dTo

data. In this case, we tend to consider that the dTo contributes more random error to the RMSE values
than the dTm for some blocks.

5. Discussion

5.1. Uncertainties of dTo Estimates

In this study, we used dTo as a reference dataset to evaluate and validate dTm. However, because
dTo is derived from satellite data, there are several factors that may introduce uncertainties to the dTo

observations. First, the MODIS LST data are subject to measurement and estimation errors that can be
transferred to the dTo calculation. Second, MODIS NDVI data contain errors caused by background soil,
atmospheric effect, nonlinear relationship to vegetation fraction, and saturation for dense vegetation
cover, etc. Because NDVI values of 0.25 and 0.7 are the thresholds for identifying hot and cold pixels
in this study, errors in NDVI will result in confusion in the counts of hot and cold pixels within
the sampling block. Third, contaminations from clouds, cloud shadows, snow cover, and fires may
influence the quality of the LST and NDVI images. Although we created a suite of data masks based
on the MODIS reflectance QA and fire data to eliminate the poor-quality pixels, residuals of clouds,
cloud shadows, snow cover, and fires may still exist. Fourth, the difference in temperature between
different elevations may cause errors in the dTo estimation. For each sampling block, the hot and cold
pixels may be located at different elevations, which will induce bias in dTo estimates if the elevation
difference is substantial. Although this issue is partially resolved by using the lapse rate (Equation 3) to
correct the LST in the study, the lapse rate we used is a general rate. For a specific site, the lapse rate is
affected by the variations in the local temperature profile. Lastly, as the dTo values are calculated from
hot and cold pixels located at different sites within a sampling block, errors in dTo may be induced if
the hot and cold pixels are located at different LST gradients. The impact of the LST gradient is more
noticeable in the South-Central region where the dTo calculation uses the hot and cold pixels from two
separate blocks.

Among all those factors, uncertainty in LST is the most influential one in the accuracy of the dTo

calculation. Validation and evaluation of MODIS LST data have been well conducted and documented
previously [38–41]. For example, Coll et al., 2009 validated the MODIS LST (Collection 5) product over
rice fields in Spain and forest sites in Germany using the temperature-based and the radiance-based
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methods [42]. Their analysis showed an average bias of −0.3 to −0.4 K and RMSE of 0.6–0.7 K between
MODIS LST and in situ LST using the two validation methods. Guillevic et al., 2012 validated the
MODIS LST (Collection 5) product at an agricultural testing site in Illinois, USA, using a land surface
modeling approach that scaled up ground LST measurements from field and weather stations to
satellite data resolution [39]. They found an absolute error of 0.0 K and RMSE of 2.0 K for the MODIS
LST product. Li et al., 2014 evaluated MODIS LST product (MOD11_L2 and MYD_L2, Collection 5) in
an arid area of Northwest China and reported that the product underestimated the LST for the barren
surface sites, with biases varying from −3.13 K to 0.31 K and RMSEs varying from 1.04 to 3.16 K [43].
Krishnan et al., 2015 compared the MODIS LST (MOD11A and MYD11A, Collection 5) data with LST
measurements from infrared temperature sensors at micrometeorological tower sites and from aircraft
campaigns over a mixed grassland forest site in Tennessee, USA [44]. Their study showed that the
MODIS LST (including both daytime and nighttime data) had a bias of −0.56 K and RMSE of 2.84 K
compared to the tower-based LST records at the site. Since 2016, the newest collection (Collection 6)
MODIS LST data have been produced and are available for the user community. Collection 6 has
implemented refinements, resulting in better data quality than Collection 5. Duan et al., 2018 validated
the MODIS LST Collection 6 product using 38 validation sites over eight worldwide land cover
types [38]. They found good agreement between MODIS LST and radiance-based LST values, with
bias and RMSE values less than 1 K for most sites during the daytime and nighttime. As a summary of
the previous studies, the bias of the MODIS LST data is generally lower than 1 K, but the random error
can be up to 3 K. In our data analysis, as we calculated 10-year average LST, the temporal random
errors in LST can be reduced to a certain degree.

5.2. Error Sources and Ranges of dTm Estimation

In the SSEBop model, the predefined dTm parameter is derived from the surface energy balance
equation under the average sky condition where latent heat flux and ground heat flux on a daily time
scale are assumed to be zero, and sensible heat is assumed to be maximum [14]. According to the
SSEBop formulation, the uncertainties of dTm depend not only on multiple assumptions, but also on
the errors of input parameters and variables, including net radiation (Rn) on the surface, aerodynamic
resistance to heat transfer (rah), air density (ρa), and specific heat air (Cp). Rn is the difference between
net shortwave radiation (Rns) and net longwave radiation (Rnl), which is the function of albedo
(α), incoming solar radiation (Rs), extraterrestrial solar radiation (Ra), minimum and maximum air
temperature (Tmin and Tmax), and elevation (z). Chen et al., 2016 summarized the error sources and
ranges of the input parameters and variables in the SSEBop algorithm [21]. For example, the error
ranges are 0.5–3% for α, 1.2–10% for Ra, 5–15% for Tmin and Tmax, and 0.6–3.6% for rah (0.6–3.6%) [21].
Based on the statistical analysis of the uncertainty and sensitivity of the SSEBop model using the eddy
covariance measurements at 42 AmeriFlux tower sites across the CONUS, dTm is sensitive to errors of
Ra, α, rah, Cp, Tmax, Tmin, and z, listed in order from the most to the least sensitive [21]. Their study
indicates that the reduction of errors from input variables (i.e., ETa and LST) and key parameters (i.e.,
dTm and Tmax) can significantly improve the SSEBop ETa calculation. Their study also suggests that
error of the dTm be constrained to be less than ±2 to ±5 K for the growing season and less than ±1 to
±2.5 K for the non-growing season in order to limit the relative error of ETa estimation lower than
20% [21]. Our current study on the evaluation of the dTm estimates with satellite-based dTo indicates
that the error of the dTm is generally lower than the basic requirements for the SSEBop model.

6. Conclusions

The high-quality ET product generated by the SSEBop model relies decisively on the accuracy
of the dTm estimates. In this study, we evaluated the dTm data using satellite observations including
NDVI and LST to identify hot and cold pixels and retrieved dTo from those pixels. We generated the
seasonal dTo and dTm timeseries for each sampling block across the CONUS and made comparisons
between the two variables. Only in the West Coast region was there a good number of sampling blocks
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containing enough hot and cold pixels for generating dTo timeseries. Meanwhile, in the South-Central
region, we used nearby sampling blocks that contain only hot or cold pixels to create the dTo timeseries.
As a result, the evaluation of the dTm product was conducted by comparing it with the dTo values for
all available sampling blocks in the West Coast and South-Central regions. The results showed high
agreement between the seasonal dTo and dTm timeseries in both regions. The quantitative comparison
between dTo and dTm indicated bias = 1.0 K, RMSE = 3.6 K, and r = 0.89 for the West Coast region,
and bias = 0.5 K, RMSE = 1.8 K, and r = 0.88 for the South-Central region. Through this analysis,
we conclude that the dTm estimation from the SSEBop model is reliable, which further assures the
desirable accuracy of the ETa estimation.

As one of the two key parameters in the SSEBop model, dT defines the hot/dry limit of the
model using theoretical calculations. The theoretical determination of dT enables the SSEBop model to
be operationalized and applied to regional and global scales by eliminating the need for manually
collecting the dry limit from images. However, the capability for the automation does not compromise
the accuracy of the parameter, which could have a marked influence on the magnitude of ETa estimation.
Using a commonly observed value of dT = 20 K for the peak growing season in the Southwestern United
States, an error of 2 K from dT estimation could translate into a 10% error in ET estimation [13,21].
Thus, reasonable agreement between theoretical and observed dT values, as discovered in this study,
will not only save time in ET modeling but also improve the consistency and reliability of the ET
estimation at multi-spatiotemporal scales.
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