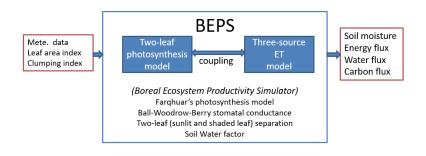
Supporting Information for
Cotton yield estimate using Sentinel-2 data and an ecosystem model over the Southern US
Submitted to MDPI Remote Sensing
Liming He ^{1*} and Georgy Mostovoy ¹
¹ Laboratory of Environmental Model and Data Optima, Laurel, MD, USA, 20707
*Corresponding author: Liming He (liming.he@gmail.com; liming.he@emdous.com)

19 S1 Summary of the BEPS model structure

The Boreal Ecosystems Productivity Simulator (BEPS) - hourly version, is a process-based 20 21 ecosystem model including water, energy and carbon budgets and soil thermal transfer modules 22 (B. Z. Chen, J. M. Chen, & W. M. Ju, 2007; J. M. Chen, Liu, Cihlar, & Goulden, 1999; J. M. Chen et 23 al., 2012; He, Chen, Liu, Bélair, & Luo, 2017; He et al., 2014). In this model, gross primary 24 productivity (GPP) is modeled by scaling Farquhar's leaf-level biochemical model (Farquhar, Caemmerer, & Berry, 1980) up to the canopy level using a "two-leaf' approach (J. M. Chen et al., 25 26 1999; Norman, 1982). The bulk stomatal conductances of the sunlit and shaded leaves for water vapor and CO₂ are calculated using a modified Ball-Woodrow-Berry (BWB) stomatal model (Ball, 27 Woodrow, & Beny, 1987). The Penman–Monteith equation (Monteith, 1965) is used to calculate 28 29 the evaporation of intercepted water from the canopy and the ground surface, and canopy transpiration from sunlit and shaded leaves is computed following Y. P. Wang and Leuning 30 31 (1998). The soil water dynamics is governed by the Richards equation (B. Chen, J. M. Chen, & W. Ju, 2007). The soil profile is stratified in five layers with depths of 0.05 m, 0.10 m, 0.20 m, 0.40 m, 32 33 and 1.2 m from top layer to bottom layer. In BEPS, the influence of soil water on GPP is modeled through the modified BWB equation following G. B. Bonan (1995) and Weimin Ju et al. (2006). 34


Although BEPS was initially developed for boreal ecosystems, it has been expanded and used for
temperate and tropical ecosystems in Asia (Matsushita & Tamura, 2002; Matsushita, Xu, Chen,
Kameyama, & Tamura, 2004), China (Feng et al., 2007), Germany (Q. Wang et al., 2004), and
other global applications (J. M. Chen et al., 2012; Z. Chen et al., 2017; He et al., 2018; He et al.,
2017; Luo et al., 2018).

40 We summarize a few parts of BEPS that are related to the GPP modeling in detail below (He et 41 al., 2014).

44

Supplementary Figure 1. (Fig. S1) A diagrammatic sketch for the BEPS model.

Background: the BEPS model

Chen J. et al. (1999), Liu J. et al. (2003), \underline{Ju} W. et al. (2006), Chen B. et al. (2007), Chen J. M. et al. (2012), He et al. (2014)

45 46

47 S2 Photosynthesis

The canopy-level photosynthesis (A_{canopy}) is simulated as the sum of the total photosynthesis of sunlit and shaded leaf groups (J. M. Chen et al., 1999):

50

54

$$A_{canopy} = A_{sun}(g_{sc_sun})L_{sun} + A_{sh}(g_{sc_sh})L_{sh}$$
(1)

51 where the subscripts "sun" and "sh" denote the sunlit and shaded components of the

photosynthesis (A) and leaf area index (LAI, or L). g_{sc} is the stomatal resistance for carbon

53 molecules. The sunlit and shaded LAI are separated by (J. M. Chen et al., 1999; Norman, 1982):

$$L_{sun} = 2\cos\theta \left(1 - e^{-0.5\Omega L/\cos\theta}\right)$$

$$L_{sh} = L - L_{sun}$$
(2)

55 where θ is the solar zenith angle, Ω is the clumping index.

56 The net rate of CO₂ assimilation (either A_{sun} or A_{sh}) is calculated as (Farquhar et al., 1980):

57
$$A = \min(A_c, A_j) - R_d$$
(3)

58
$$A_{c} = V_{c \max} f_{V} \left(T_{l}\right) \frac{C_{i} - \Gamma}{C_{i} + K_{c} \left(1 + O_{i} / K_{o}\right)}$$
(4)

59
$$A_{j} = \frac{I \cdot J_{\max} f_{J}(T_{l})}{I + 2.1 J_{\max} f_{J}(T_{l})} \cdot \frac{C_{i} - \Gamma}{4C_{i} + 8\Gamma}$$
(5)

where A, A_{cr} and A_{i} are the net photosynthetic, Rubisco-limited and light-limited gross 60 photosynthetic rates μ mol m⁻² s⁻¹, respectively. R_d is the daytime leaf dark respiration, V_{cmax} is 61 the maximum carboxylation rate at 25 °C ($V_{cmax,sun}$ and $V_{cmax,sh}$ for sunlit and shaded leaves, 62 respectively). J_{max} is the electron transport rate at 25 °C. C_i and O_i are the intercellular CO₂ and 63 oxygen concentration, respectively. Γ is the CO₂ compensation point without dark respiration, K_c 64 and K_0 are the Michaelis-Menten constants for CO₂ and oxygen respectively. I is the incident 65 photosynthetically active photon flux (mmols m⁻² s⁻¹). $f_{V}(T_{i})$ and $f_{i}(T_{i})$ are the leaf temperature (T_{i}) 66 response functions for V_{cmax} and J_{max} respectively. In the model, the J_{max} is estimated from V_{cmax} 67 (Medlyn et al., 1999): 68

$$J_{\rm max} = 2.39 \cdot V_{\rm cmax} - 14.2 \tag{6}$$

In the current BEPS, $f_{V}(T_{l})$ and $f_{l}(T_{l})$ share the same formula:

71
$$f(Tl) = \frac{hkin \cdot e^{\frac{eakin (T_l - T_{opl})}{rugc \cdot T_{opl} \cdot T_l}}}{hkin - eakin \cdot \left(1 - e^{\frac{hkin (T_l - T_{opl})}{rugc \cdot T_{opl} \cdot T_l}}\right)}$$
(7)

72 Where, T_{opt} (301 K) is the optimum temperature for maximum carboxylation, and maximum

electron transport, rugc (universal gas constant) = 8.314 J mole⁻¹ K⁻¹, hkin is the enthalpy term

- 74 (200000.0 J mol⁻¹), eakin represents the activation energy for electron transport, or
- 75 carboxylation (55000.0 J mol⁻¹).

76 S3 N-weighted V_{cmax} and J_{max} for sunlit and shaded leaves

The N-weighted V_{cmax} is derived according to J. M. Chen et al. (2012):

$$V_{c \max,sun} = V_{c \max,0} \chi_n N_0 \frac{k \left[1 - e^{-(k_n + k)L} \right]}{(k_n + k) \left(1 - e^{-kL} \right)}$$

$$V_{c \max,sh} = V_{c \max,0} \chi_n N_0 \frac{\frac{1}{k_n} \left(1 - e^{-k_n L} \right) - \left(1 - e^{-(k_n + k)L} \right) \frac{\Omega}{(k_n + k)}}{L - 2\cos\theta \left(1 - e^{-kL} \right)}$$
(8)

78

- 79 where $V_{cmax,0}$ is the leaf maximum Rubisco capacity at the top of the canopy at 25°C, χ_n is the
- ratio of measured Rubisco capacity to leaf N (Dai, Dickinson, & Wang, 2004; dePury & Farquhar,
- 1997), N_0 is the N content at the top of the canopy; $k = G(\theta)\Omega / \cos\theta$, $G(\theta)$ is the projection
- coefficient, usually taken as 0.5 for spherical leaf angle distribution, k_n is the leaf N content decay
- rate with increasing depth into the canopy, taken as equal to 0.3 after dePury and Farquhar(1997).

85 S4 Surface evaporation and Canopy level transpiration

86 The latent heat (LE) is simulated as:

$$LE = \lambda \left(T + E_l + E_g \right) \tag{9}$$

88 where λ is the latent heat of vaporization. *T* is the transpiration rate from canopy (kg m⁻² s⁻¹), *E*_l 89 and *E*_g are evaporation rates of intercepted water from canopy and ground surface (kg m⁻² s⁻¹), 90 respectively.

91 The canopy level transpiration is obtained by:

92
$$T = T_{sun}(g_{s-sun})L_{sun} + T_{sh}(g_{s-sh})L_{sh}$$
(10)

where T_{sun} and T_{sh} are the average transpiration rates for sunlit and shaded leaves, respectively. The nonlinear relationship between T_{sun} (T_{sh}) and L_{sun} (L_{sh}) is considered in the parameters used to calculate T. g_s is stomatal resistance for water molecules. g_s/g_{sc} = 1.6. Following Y. P. Wang and Leuning (1998), transpiration from sunlit leave is calculated as (W. Ju, Wang, Yu, Zhou, & Wang, 2010):

98
$$T_{sun} = \frac{D_a + \Delta (T_{s,sun} - T_a)}{r_{sun}} \frac{\rho C_p}{\gamma}$$
(11)

99

where D_a is the atmospheric vapor pressure deficit (kPa). Δ is the rate of change of the saturated vapor pressure with temperature (kPa °C⁻¹). $T_{s,sun}$ and T_a are temperatures at sunlit leaf surface and air temperature (°C), respectively. ρ is the air density (kg m⁻³). C_p is the specific heat of air at constant temperature (1010 Jkg⁻¹°C⁻¹), and

104
$$r_{sun} = r_b + r_a + 1 / g_{s_sun}$$
 (12)

105 where r_a and r_b are aerodynamic and boundary layer resistance (s m⁻¹), respectively, and γ is 106 the psychrometric constant (kPa °C⁻¹). To calculate T_{sh} , $T_{s,sh}$ (temperature at shaded leaf surface) 107 and $g_{s,sh}$ are used to replace $T_{s,sun}$ and $g_{s,sun}$ in eq. (11) and (12).

108 The evaporation from soil E_g is estimated using the Penman–Monteith equation (Monteith, 109 1965):

110
$$\lambda E_{g} = \frac{\Delta \left(R_{g} - 0\right) + \rho C_{p} V P D_{g} / r_{a_{g}}}{\Delta + \gamma \left(1 + r_{soil} / r_{a_{g}}\right)}$$
(13)

111 where R_g is the net radiation in the ground, VPD_g is Vapor pressure deficit at the ground level, 112 r_{a_g} is the aerodynamic resistance of ground surface, r_{soil} is the soil resistance for evaporation. In

113 Sellers et al. (1996),

114
$$\mathbf{r}_{soil} = \exp\left(8.2 - 4.2 \cdot \theta_1 / \theta_s\right) \tag{14}$$

115 where θ_1 is volumetric soil VWC in first layer (m³ m⁻³), and θ_s is value of θ at saturation (m³ m⁻³). 116 The r_{soil} from Sellers et al. (1996) is a rough estimate that is derived from bare soil surface 117 (Sellers, Heiser, & Hall, 1992). The evaporation can be overestimated if this equation is used 118 since it does not consider the organic layer in the soil horizons. In BEPS, we used 4* r_{soil} in the 119 BEPS model.

120 The evaporation from intercepted water from sunlit and shaded leave E_l are estimated similarly 121 using eq. (13) to (14), but without the term for stomatal resistance (i.e., $r_s=0$).

122 S5 Simulation of stomatal closure with rising CO₂ concentration in BEPS.

- 123 Leaf stomata control the exchanges of water vapor and CO₂ between plants and the
- atmosphere. Under high atmospheric CO₂ concentration, stomatal density and hence
- 125 conductance may decrease (Franks & Beerling, 2009). BEPS inherits the Ball-Woodrow-Berry
- 126 (BWB) equation to model stomatal conductance (g_s , µmol m⁻² s⁻¹) (Ball et al., 1987):

127
$$g_s = g_0 + m \cdot h_s \cdot p \cdot \frac{A}{C_s}$$
(15)

- where g_0 is a small value, the stomatal conductance at the light compensation point, m is a plant
- species dependent coefficient, h_s is the relative humidity at the leaf surface, p is the atmospheric
- 130 pressure, A is the photosynthesis rate, and C_s is the molar fraction of CO_2 at the leaf surface.

The important influences of soil water on *g* and *A* are not mechanistically included in the original
BWB formulation. Following G. B. Bonan (1995) and Weimin Ju et al. (2006), we modify it as

133 follows:

134
$$g_s = g_0 + f_w \cdot m \cdot h_s \cdot p \cdot \frac{A}{C_s}$$
(16)

135 where f_w is a soil water stress factor, which we assume to be a function of soil water content.

136 In Weimin Ju et al. (2006), the fw is modeled as:

137
$$f_{w} = \sum_{i=1}^{n} f_{w,i} w_{i}$$
(17)

138 where fw,i is the soil water availability factor in layer i, and calculated as:

139
$$f_{w,i} = \frac{1.0}{f_i(\psi_i)f_i(T_{s,i})}$$
(18)

140 where $fi(\psi i)$ is a function of matrix suction ψi (m) (Zierl, 2001):

141
$$f_{i}(\psi_{i}) = \begin{cases} 1.0 + \left[\frac{\psi_{i} - 10.0}{10.0}\right]^{\alpha}, & \psi_{i} > 10\\ 1.0, & else \end{cases}$$
(19)

142 where α is suggested to be a function of plant type (J. M. Chen et al., 2012).

The effect of soil temperature on soil water uptake is described as follows (Gordon B. Bonan,1991):

145
$$f_{i}(T_{s,i}) = \begin{cases} \frac{1.0}{1 - \exp(t_{1}T_{s,i}^{t_{2}})} & T_{s,i} > 0\\ \infty & else \end{cases}$$
(20)

- where t_1 and t_2 are two parameters determining the sensitivity of water uptake by roots to soil temperature. In the BEPS, $t_1 = -0.02$ and $t_2 = 2.0$.
- 148 To consider the variable soil water potential at different depths, w_i is calculated as:

$$w_{i} = \frac{R_{i}f_{w,i}}{\sum_{i=1}^{n} R_{i}f_{w,i}}$$
(21)

where R_i is the root fraction in layer *i*. 150

152 and / or V_{cmax}) assuming there is no change in f_w , m, h_s , p, and C_s .

153 The BWB equation can simulate the stomatal closure due to CO₂ fertilization. Assuming that

there is no change in f_w , m, h_s , p, V_{cmax} and PAR, there is an associated increase in intercellular 154 155 CO_2 concentration (C_i) for an increase in C_s . Since A is often limited either by Rubisco or by

Electron-transport rate, the increase in A will be not proportional to C_{s} ; or in other words, the

156 ratio of A to C_s will remain the same or decrease with rising C_s . As a result, the g_s in the left side 157

of BWB equation will remain the same or decrease (leading to stomatal closure) with rising C_s 158

(Baldocchi, 1994). 159

- The BWB equation is used in many climate models, such as those in Coupled Model 160
- 161 Intercomparison Project Phase 5 (CMIP5,
- http://www.nature.com/ngeo/journal/v6/n6/fig_tab/ngeo1801_T1.html) and TRENDY (Sitch et al., 162
- 2008) to study the global transpiration decrease (or increase of water use efficiency) due to CO₂ 163

fertilization (Frank et al., 2015; Swann, Hoffman, Koven, & Randerson, 2016). 164

S6 Calculations of radiation at Sunlit- and Shaded- leaf groups 165

We refer to "Appendix A. Algorithms for net radiation of vegetation and ground surface" by B. 166

- 167 Chen et al. (2016) for radiation calculation.
- 168

S7 Calculations of Sunlit- and Shaded- leaf temperatures 169

For a sunlit or shaded leaf, its temperature (T_1) is calculated as below during an iteration. 170

171
$$T_{l} = T_{a} + \frac{R_{n} - VPD_{a} \cdot \rho_{a} \cdot Cp_{ca} \cdot p^{*}}{\rho_{a} \cdot Cp_{ca} \cdot (G_{h} + \Delta \cdot p^{*})}$$
(22)

- where, T_a is the air temperature in °C, R_n is the net radiation of sunlit- or shaded- leaf calculated 172
- from S1.6, VPD_a is water vapor deficit at the reference height, ρ_a is the density of air at 0 °C, 173
- Cp_{ca} is specific heat of moist air above the canopy, G_h is the total conductance for heat transfer 174

from the leaf surface to the reference height above the canopy, Δ is the rate of change (slope) of the saturated vapor pressure with temperature (kPa °C⁻¹),

177
$$p^* = \frac{G_w + G_{ww} \cdot (X_{cs} + X_{cl})}{psychrometer}$$
(23)

178 where, G_w is the total conductance for water from the intercellular space of the leaves to the

179 reference height above the canopy, G_{ww} is the total conductance for water from the surface of

180 the leaves to the reference height above the canopy, Psychrometer is the psychrometric

181 constant (0.066), X_{cl} and X_{cs} are the fractions of canopy covered by liquid water and snow.

184 S8 Forcing data and model parameters.

Climate reanalysis data are the outputs of an Earth system model that assimilates various 185 186 archived observations. Global reanalysis data are the best available datasets for this study. 187 MERRA-2 (Modern-Era Retrospective Analysis for research and Applications, Version 2) data from GSFC, NASA are used to drive BEPS to simulate GPP and ET in 2017 (Rienecker et al., 2011). 188 The data have a spatial resolution of 0.625° (longitude) by 0.5° (latitude) and a temporal 189 resolution of one hour. To drive BEPS, relative humidity, wind speed, and air temperature at 2 m 190 191 above the surface, surface atmosphere pressure and incoming solar shortwave flux, and total precipitation at the surface level are spatially interpolated to the 20 m grid. The precipitation 192 data from MERRA are corrected by global gauge-based NOAA Climate Prediction Center 193 "Unified" (CPCU) precipitation product (CPCU). Recent validation suggests that MERRA2 datasets 194 have relative small errors comparing to a few other reanalysis datasets (Draper, Reichle, & 195 196 Koster, 2018; Eyre & Zeng, 2017; Reichle, Draper, et al., 2017; Reichle, Liu, et al., 2017; Simmons

197 et al., 2017).

198 To simulate the CO2 fertilization effect, the CO2 concentration data are from

199 https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.

200

201 S9 Previous validations of BEPS

202 Recent validations of GPP against eddy covariance measurements suggest that BEPS can explain

203 more than 80% of the daily GPP variance at flux tower sites (Gonsamo et al., 2013; Sprintsin,

204 Chen, Desai, & Gough, 2012). When soil water stress is properly addressed, BEPS explains 56-

205 90% of the hourly GPP variance for maximum LAI values ranging from 2.1 to 8 (B. Chen et al.,

206 2016). In 2018, the BEPS-simulated GPP is validated against eddy covariance measurements

from 124 flux tower sites (FLUXNET2015 Dataset in Tier 1; <u>http://fluxnet.fluxdata.org/</u>) at the site

208 level; validation suggests that BEPS simulates annual GPP well with a coefficient of

determinations (R^2) of 0.81, a RMSE of 347 g C m⁻² yr⁻¹, and a bias of 172 g C m⁻² yr⁻¹ (He et al.,

210 2018).

211

215	Baldocchi, D. (1994). An Analytical Solution for Coupled Leaf Photosynthesis and Stomatal Conductance
216	Models. Tree Physiology, 14(7-9), 1069-1079.
217	Ball, J., Woodrow, L. E., & Beny, J. A. (1987). A model predicting stomatal conductance and its
218	contribution to the control of photosynthesis under different environmental conditions. In J.
219	Biggins (Ed.), Progress in Photosynthesis research (Vol. 4, pp. 221-224): Nijhoff, Dordrecht.
220	Bonan, G. B. (1991). A biophysical surface energy budget analysis of soil temperature in the boreal
221	forests of interior Alaska. Water Resources Research, 27(5), 767-781. doi:10.1029/91WR00143
222	Bonan, G. B. (1995). Land Atmosphere Co2 Exchange Simulated by a Land-Surface Process Model
223	Coupled to an Atmospheric General-Circulation Model. Journal of Geophysical Research-
224	Atmospheres, 100(D2), 2817-2831. doi:Doi 10.1029/94jd02961
225	Chen, B., Chen, J. M., & Ju, W. (2007). Remote sensing-based ecosystem-atmosphere simulation scheme
226	(EASS)—Model formulation and test with multiple-year data. <i>Ecological Modelling, 209</i> (2–4),
227	277-300. doi: <u>http://dx.doi.org/10.1016/j.ecolmodel.2007.06.032</u>
228	Chen, B., Liu, J., Chen, J. M., Croft, H., Gonsamo, A., He, L., & Luo, X. (2016). Assessment of foliage
229	clumping effects on evapotranspiration estimates in forested ecosystems. Agricultural and
230	Forest Meteorology, 216, 82-92. doi: <u>http://dx.doi.org/10.1016/j.agrformet.2015.09.017</u>
231	Chen, B. Z., Chen, J. M., & Ju, W. M. (2007). Remote sensing-based ecosystem-atmosphere simulation
232	scheme (EASS) - Model formulation and test with multiple-year data. Ecological Modelling,
233	<i>209</i> (2-4), 277-300. doi:DOI 10.1016/j.ecolmodel.2007.06.032
234	Chen, J. M., Liu, J., Cihlar, J., & Goulden, M. L. (1999). Daily canopy photosynthesis model through
235	temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124(2-3), 99-
236	119. doi:Doi 10.1016/S0304-3800(99)00156-8
237	Chen, J. M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., & Chan, D. (2012). Effects of foliage clumping
238	on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles,
239	26. doi:Artn Gb1019. Doi 10.1029/2010gb003996
240	Chen, Z., Chen, J. M., Zhang, S., Zheng, X., Ju, W., Mo, G., & Lu, X. (2017). Optimization of terrestrial
241	ecosystem model parameters using atmospheric CO2 concentration data with the Global Carbon
242	Assimilation System (GCAS). Journal of Geophysical Research: Biogeosciences, n/a-n/a.
243	doi:10.1002/2016JG003716
244	Dai, Y. J., Dickinson, R. E., & Wang, Y. P. (2004). A two-big-leaf model for canopy temperature,
245	photosynthesis, and stomatal conductance. Journal of Climate, 17(12), 2281-2299. doi:Doi
246	10.1175/1520-0442(2004)017<2281:Atmfct>2.0.Co;2
247	dePury, D. G. G., & Farquhar, G. D. (1997). Simple scaling of photosynthesis from leaves to canopies
248	without the errors of big-leaf models. <i>Plant Cell and Environment, 20</i> (5), 537-557. doi:DOI
249	10.1111/j.1365-3040.1997.00094.x
250	Draper, C. S., Reichle, R. H., & Koster, R. D. (2018). Assessment of MERRA-2 Land Surface Energy Flux
251	Estimates. Journal of Climate, 31(2), 671-691.
252	Eyre, J. E. J. R., & Zeng, X. B. (2017). Evaluation of Greenland near surface air temperature datasets.
253	Cryosphere, 11(4), 1591-1605.
254	Farquhar, G. D., Caemmerer, S. V., & Berry, J. A. (1980). A Biochemical-Model of Photosynthetic Co2
255	Assimilation in Leaves of C-3 Species. Planta, 149(1), 78-90. doi:Doi 10.1007/Bf00386231

- Feng, X., Liu, G., Chen, J. M., Chen, M., Liu, J., Ju, W. M., . . . Zhou, W. (2007). Net primary productivity of
 China's terrestrial ecosystems from a process model driven by remote sensing. *Journal of Environmental Management*, *85*(3), 563-573.
- Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., . . . Weigl, M. (2015). Water-use
 efficiency and transpiration across European forests during the Anthropocene. *Nature Climate Change*, 5(6), 579-+.
- Franks, P. J., & Beerling, D. J. (2009). Maximum leaf conductance driven by CO2 effects on stomatal size
 and density over geologic time. *Proceedings of the National Academy of Sciences of the United States of America, 106*(25), 10343-10347. doi:10.1073/pnas.0904209106
- Gonsamo, A., Chen, J. M., Price, D. T., Kurz, W. A., Liu, J., Boisvenue, C., . . . Chang, K. H. (2013).
 Improved assessment of gross and net primary productivity of Canada's landmass. *Journal of Geophysical Research-Biogeosciences*, *118*(4), 1546-1560. doi:10.1002/2013jg002388
- He, L., Chen, J. M., Gonsamo, A., Luo, X. Z., Wang, R., Liu, Y., & Liu, R. G. (2018). Changes in the Shadow:
 The Shifting Role of Shaded Leaves in Global Carbon and Water Cycles Under Climate Change. *Geophysical Research Letters*, 45(10), 5052-5061.
- He, L., Chen, J. M., Liu, J., Bélair, S., & Luo, X. (2017). Assessment of SMAP soil moisture for global
 simulation of gross primary production. *Journal of Geophysical Research: Biogeosciences, 122*,
 doi:10.1002/2016JG003603. doi:10.1002/2016JG003603
- He, L, Chen, J. M., Liu, J., Mo, G., Bélair, S., Zheng, T., . . . Barr, A. G. (2014). Optimization of water
 uptake and photosynthetic parameters in an ecosystem model using tower flux data. *Ecological Modelling*, 294(0), 94-104. doi:<u>http://dx.doi.org/10.1016/j.ecolmodel.2014.09.019</u>
- Ju, W., Chen, J. M., Black, T. A., Barr, A. G., Liu, J., & Chen, B. (2006). Modelling multi-year coupled
 carbon and water fluxes in a boreal aspen forest. *Agricultural and Forest Meteorology*, 140(1-4),
 136-151. doi:10.1016/j.agrformet.2006.08.008
- Ju, W., Wang, S., Yu, G., Zhou, Y., & Wang, H. (2010). Modeling the impact of drought on canopy carbon
 and water fluxes for a subtropical evergreen coniferous plantation in southern China through
 parameter optimization using an ensemble Kalman filter. *Biogeosciences*, 7(3), 845-857.
- Luo, X. Z., Chen, J. M., Liu, J. E., Black, T. A., Croft, H., Staebler, R., . . . McCaughey, H. (2018). Comparison of Big-Leaf, Two-Big-Leaf, and Two-Leaf Upscaling Schemes for Evapotranspiration Estimation Using Coupled Carbon-Water Modeling. *Journal of Geophysical Research-Biogeosciences*, 123(1), 207-225. doi:10.1002/2017jg003978
- 287 Matsushita, B., & Tamura, M. (2002). Integrating remotely sensed data with an ecosystem model to 288 estimate net primary productivity in East Asia. *Remote Sensing of Environment, 81*(1), 58-66.
- Matsushita, B., Xu, M., Chen, J., Kameyama, S., & Tamura, M. (2004). Estimation of regional net primary
 productivity (NPP) using a process-based ecosystem model: How important is the accuracy of
 climate data? *Ecological Modelling*, *178*(3-4), 371-388.
- Medlyn, B. E., Badeck, F. W., De Pury, D. G. G., Barton, C. V. M., Broadmeadow, M., Ceulemans, R., . . .
 Jarvis, P. G. (1999). Effects of elevated [CO2] on photosynthesis in European forest species: a
 meta-analysis of model parameters. *Plant Cell and Environment, 22*(12), 1475-1495. doi:DOI
 10.1046/j.1365-3040.1999.00523.x
- Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology,
 19, 205-224.
- Norman, J. M. (1982). SIMULATION OF MICROCLIMATES. In H. Jerry (Ed.), *Biometeorology in Integrated Pest Management* (pp. 65-99): Academic Press.
- Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P. P., Koster, R. D., & De Lannoy, G. J. M.
 (2017). Assessment of MERRA-2 Land Surface Hydrology Estimates. *Journal of Climate, 30*(8),
 2937-2960.

- Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P. P., & Partyka, G. S. (2017). Land
 Surface Precipitation in MERRA-2. *Journal of Climate*, *30*(5), 1643-1664.
- Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., . . . Woollen, J. (2011).
 MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. *Journal of Climate*, *24*(14), 3624-3648.
- Sellers, P. J., Heiser, M. D., & Hall, F. G. (1992). Relations between Surface Conductance and Spectral
 Vegetation Indexes at Intermediate (100m2 to 15km2) Length Scales. *Journal of Geophysical Research-Atmospheres, 97*(D17), 19033-19059.
- Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., ... Bounoua, L. (1996). A
 revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation.
 Journal of Climate, 9(4), 676-705. doi:Doi 10.1175/1520-0442(1996)009<0676:Arlspf>2.0.Co;2
- Simmons, A. J., Berrisford, P., Dee, D. P., Hersbach, H., Hirahara, S., & Thepaut, J. N. (2017). A
 reassessment of temperature variations and trends from global reanalyses and monthly surface
 climatological datasets. *Quarterly Journal of the Royal Meteorological Society, 143*(702), 101 119.
- Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., . . . Woodward, F. I. (2008).
 Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle
 feedbacks using five Dynamic Global Vegetation Models (DGVMs). *Global Change Biology*, 14(9),
 2015-2039.
- Sprintsin, M., Chen, J. M., Desai, A., & Gough, C. M. (2012). Evaluation of leaf-to-canopy upscaling
 methodologies against carbon flux data in North America. *Journal of Geophysical Research- Biogeosciences, 117.* doi:Artn G01023
- 325 10.1029/2010jg001407
- Swann, A. L. S., Hoffman, F. M., Koven, C. D., & Randerson, J. T. (2016). Plant responses to increasing
 CO2 reduce estimates of climate impacts on drought severity. *Proceedings of the National Academy of Sciences of the United States of America*, *113*(36), 10019-10024.
- Wang, Q., Tenhunen, J., Falge, E., Bernhofer, C., Granier, A., & Vesala, T. (2004). Simulation and scaling
 of temporal variation in gross primary production for coniferous and deciduous temperate
 forests. *Global Change Biology*, 10(1), 37-51.
- Wang, Y. P., & Leuning, R. (1998). A two-leaf model for canopy conductance, photosynthesis and
 partitioning of available energy I: Model description and comparison with a multi-layered
 model. *Agricultural and Forest Meteorology*, *91*(1-2), 89-111. doi:Doi 10.1016/S0168 1923(98)00061-6
- Zierl, B. (2001). A water balance model to simulate drought in forested ecosystems and its application to
 the entire forested area in Switzerland. *Journal of Hydrology, 242*(1-2), 115-136.