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Abstract: Specific knowledge about the characteristics of coastal land use along the sea–land direction
helps to better understand the spatial heterogeneity of coastal land use, which could offer scientific
support for rational land management and the sustainable development of the coastal zone. However,
the traditional methods including buffering or the regional method are hard to extract detailed spatial
structure and location correlations of coastal land use along the sea–land direction. Therefore, we
developed a model, called sequence–based clustering of coastal land use pattern (SCCLUP), to mine
the coastal land use sequence patterns (CLUSPs) along the sea–land direction. As a case study in the
major coastal zone of Bohai Bay and the Yellow River Delta from 1990 to 2010, we found that: (1) The
land use showed a sequential distribution along the sea–land direction. And the land use closed to
shoreline and inland boundary had relative stable sequential location along the sea–land direction.
However, the middle land uses had dynamic sequential locations that led to multiple CLUSPs; (2)
due to the increasing percent of construction land, the artificial level of CLUSPs was continuously
increasing and new CLUSPs tended to distribute around port areas. Different CLUSPs with similar
land use sequential relationships tended to have similar land use structure along the sea–land
direction; (3) the land uses sequential location along the sea–land direction revealed the actual
distance of land use to the shoreline and had a tight correlation with environmental factors (salinity,
water, and landform). The land use with large increasing and wide adaptivity (like construction land)
had a large impact on the changes of CLUSPs in the study area. Therefore, strong control should be
provided for the excessive expansion of land use like construction land to limit the over changes in
land use pattern along the sea–land direction. Additionally, the spatial heterogeneity of land use
along the sea–land direction should be considered to a better understanding of anthropic impacts on
the coastal zone.

Keywords: PAM; sea–land direction; land use change; sequence pattern; temporal and
spatial heterogeneity

1. Introduction

The coastal zone, which plays a key role in the Earth system, is a unique place surrounded by
the ocean, atmosphere, and earth [1–3]. Being influenced by terrestrial factors and marine factors
and land–ocean interactions (LOIs), the coastal zone exhibits regular spatial characteristics along
the sea–land direction, including the physiographic gradient, physiochemical gradient, and biogenic
gradient. In geomorphologic and hydrological terms, the coastal zone is divided into different parts
from sea to land [3,4]. Simultaneously, salinity and soil moisture content decrease with increasing
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distance from the sea [5]. Additionally, affected by physiographic factors, biogenic factors, and
physiochemical factors, coastal land use (landscape) also shows a regular spatial distribution pattern
with increasing distance from the sea [6–8]. For example, water bodies and residential areas appeared
the most notable seaward [8]. However, the land use adaption to an environment gradient leads to
the wide distribution of some land uses along the sea–land direction and add more uncertainty of the
land use gradient along the sea–land direction. Meanwhile, due to climate difference [9,10], landform
difference, and different anthropic disturbance [8,11], the land use may be changed with the different
coastal regions. Additionally, the possible land use gradient along the sea–land direction may also have
some variations. In fact, climate change and anthropic disturbances have large impacts on the coastal
landscape. In terms of sea level rise due to climate change, low–lying coastal areas, particularly those
areas closest to the coast, are at risk of coastal erosion and may even disappear in the future due to the
sea level rise [1,12,13]. Due to high anthropic disturbance, large areas of coastal wetland and farmland
have been drained and converted to other anthropic land use [14,15]. In the end, the land uses spatial
pattern along the sea–land direction may be changed [16] and the uncertainty of the land use gradient
becomes further worse with a regional difference and dynamic factors (climate change and anthropic
disturbance). How to distinguish the regular land use spatial pattern along the sea–land direction is
the key precondition for research on the coastal land use gradient and help to understand the impacts
from anthropic disturbance on the land spatial pattern along the sea–land direction. Knowledge about
the impacts from anthropic disturbance could offer scientific support for rational land management
and the sustainable development of the coastal zone.

The field study is one of the most reliable methods to investigate the spatial distribution of coastal
land use along the sea–land direction. According to the samples obtained from sequential locations
along the sea–land direction, it was found that salt vegetation often shows predictable patterns of
zonation along with salinity and soil moisture content gradient due to the interaction of land and
sea [17–19]. Meanwhile, the salinity gradient may change with the land-use type from vegetable fields
to tidal flats, corresponding to long-term cultivated soil to newly deposited natural sediments [6].
In this sense, the coastal land use spatial pattern may indicate the coastal environment gradient factors
like salinity and soil moisture content gradient along the sea–land direction [20]. However, due largely
to the time and human costs, field study is difficult to apply to research on land use in large areas.
Remote sensing data with wide-range, high spatial resolution, and long-time series realize land use
study on the large areas and long periods. Additionally, remote sensing-based land use pattern research
has become popular and has been widely applied in the coastal areas.

The buffer method, dividing the study area into predefined subzones, is one of the most popular
ways to extract the land use spatial pattern along the sea–land direction [17–22]. Based on the buffer
of the coastal zone along the sea to land, Hou et al. (2011) found remarkable sea–land gradient
characteristics of land use following the changes of distance to coastline [8]; in the coastal zone of
Jiangsu Province, China, Xu et al. (2012) also found a low–high–low pattern of land use diversity
(indicated by counts of land-use types) along the sea to land. However, land use intensity (calculated
by the Land Use Intensity Comprehensive Index (LUICI), which reflects the influence degree of human
activities) showed a high–middle–low pattern along the sea to land [21]. For example, in the coastal
zone of China, Di et al. (2015) found that there was a significant sea–land gradient for land use intensity,
which was low in the island and near-shore areas, but high in the regions that were 4–30 km away from
the coastline [22]. From the above, we can know that land use structure, land use diversity, and land use
intensity of the coastal zone have regular spatial distribution along the sea–land direction. However,
the spatial relationships between different land use, including spatial location relationships and spatial
distance relationships along the sea to land, were rarely discussed. Moreover, the buffer method has
some human subjectivities with the definition of the subzone, and it is also difficult to distinguish the
spatial relationship between land uses inside of one subzone. Therefore, a new method to distinguish
the land use spatial pattern contained the spatial relationships along the sea–land direction is needed.
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The Digital Shoreline Analysis System (DSAS) is an effective tool to analyze the dynamics of the
shoreline along the sea–land direction [23,24]. However, DSAS mainly focuses on the dynamics of land
use in the narrow region approaching the shoreline, such as the intertidal zone or tidal zone [25,26].
The supratidal zone or area far from the shoreline in the coastal zone are usually ignored due to the
short transect line and the spatial relationships among different land-use types on the transect line
have not been discussed. Therefore, we extended the length of the transect line to the boundary of the
land part of the coastal zone to explore the characteristics of land use along the sea–land direction
for the whole coastal zone. In this way, the transect line is regarded as one small coastal zone and
the land use pattern along the sea–land direction in smaller scale could be explored easily by the line
features. In the end, based on the powerful ability of the clustering to mine effective information from
complex data, we developed a model called sequence-based clustering of coastal land use pattern
(SCCLUP) to mine the major coastal land use sequence patterns (CLUSPs) that indicated the sequential
location relationship between land-use types along the sea–land direction. We also selected the coastal
zone of Bohai Bay and the Yellow River Delta (YRD), China as a case study to explore the spatial
distribution of coastal land use along the sea–land direction. The case study area contains one famous
bay (Bohai Bay) and one of the largest estuaries (YRD), which has come to be considered as China’s
“third engine” [27]. Meanwhile, this region has experienced dramatic land use change due to anthropic
disturbance, like sea reclamation [11]. Large areas of marshland and the tidal flat have been converted
to residential land, ports, and shrimp ponds along the coast [28]. Cultivated land has also suffered a
noteworthy loss. In the local area of the YRD, the vegetation distribution patterns in the salt marshes
have changed from a zonal pattern to a mosaic pattern due to sea reclamation [15]. Therefore, this case
study area is a typical region to explore the differences in land use along the sea–land direction and the
changes caused by human activities.

The major objectives of this study were to (1) present a model to mine the major CLUSPs that
indicated the spatial location relationship between land-use types along the sea–land direction; (2)
explore the temporal and spatial pattern of land use along the sea–land direction; and (3) analyze the
uncertainty of land use spatial pattern along the sea–land direction.

The remainder of the paper is organized as follows: Section 2 introduces the framework of
methodology and the model of SCCLUP. Section 3 introduces the background of the study area and
the preprocessing of land use data used in the study. Section 4 presents the result of CLUSP along the
sea–land direction from 1990 to 2010 and the spatial and temporal changes of them. Section 5 discusses
the relationships between CLUSP and environmental factors (distance to shoreline, salinity, water, and
landform). Additionally, the uncertainty of land use spatial pattern along the sea–land direction is
discussed accordingly. Section 6 concludes the paper.

2. Methodology

The methodology consists of preprocessing of data and the model of SCCLUP. In the preprocessing
of data, the coastal zone is sampled into regular transect lines perpendicular to the shoreline, and the
land-use features on the transect lines are numbered sequentially to indicate the land use spatial
location along the sea–land direction. SCCLUP is a data mining model to mine the typical land use
sequential patterns along the sea–land direction. The overall framework of the methodology is shown
in Figure 1.
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Figure 1. The overall framework of the methodology.

2.1. Preprocessing of Data

The transect lines of the coastal zone are defined by the length of the line and the distance between
lines. In this study, the length of the transect line is defined as the width of the coastal zone along the
sea–land direction. The distance between adjacent lines indicates the sample scale of the coastal zone
along the horizontal direction. The smaller value of the distance, the narrower coastal zone regarded
by the transect line. In this study, the distance is defined as the value of spatial resolution of the original
remote sensing image of the land use data. Another method is defined as the minimum value of the
size of the minimum feature in the study area. In this way, all land-use features would be covered by
the transect lines. Based on the construction of coastal transect lines in DSAS, we developed software
to construct the transect lines in this study.

The land use data of the coastal transect line (Figure 2) is extracted by manual interpretation based
on the predefined land use classification system. In order to distinguish the sequential relationship
between land-use types, land-use features on the transect lines were numbered sequentially along the
sea–land direction. However, some land-use types (like construction land) on one line may occur more
than once, which may lead to uncertain sequential relationships between different land-use types (e.g.,
construction land and forestland). Therefore, we number the land-use types based on the value of the
defined average number in the transect. The average number of one land-use type was the average
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value of the total numbers of this land-use type. If different land-use types with the same average
number were equal, the sequential relations among these land-use types were decided by the start
number of the largest land-use segments in one line. Finally, the numbers were sorted by the average
number for each land-use type, and the sorted number is defined as the final sequence number. The
process of numbering the land-use types in one line is illustrated in Figure 3.
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2.2. The SCCLUP Model

SCCLUP consists of three parts including the clustering method, defining the cluster centers and
numbers, and sequence-based similarity index for coastal land use.

2.2.1. Clustering Method—Partitioning around Medoids (PAM)

PAM is a well-known clustering algorithm for being simple and fast, which aims to find the k
medoids and assigns every object to the nearest medoid that is the object with the shortest distance
to the other objects in the cluster [29,30]. Compared with K-means, PAM is more robust, with few
impacts from noisy data [31]. Therefore, we chose PAM as the clustering algorithm.

2.2.2. Defining the Cluster Centers and Numbers

However, like most clustering algorithms, PAM requires a predefined cluster number of k and
cluster centers (medoids) those are difficult to choose. Researchers have presented various clustering
strategies [32–35], but no consensus has been reached even on the definition of a cluster. One simple
and effective method was proposed to recognize the clusters (cluster centers and numbers) [36–38].
The key idea of the method is that cluster centers are surrounded by neighbors with lower local
density and that they are at a relatively large distance from any points with a higher local density [39].
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This method is widely used in many clustering studies [40–43]. Therefore, we used the idea of the
above method to choose the proper cluster centers and numbers. The clusters are mainly determined
by two quantities: local density ρi (Equation (1)) and its distance δi (Equation (2)) from points of higher
density. Both these quantities depend only on the distances dij between data points, which are assumed
to satisfy the triangular inequality. The local density ρi of data point δi is defined as:

ρi =
∑

j

χ
(
di j − dc

)
(1)

where ρi is the local density of point i; dij is the distance between point i and point j, and dc is a
predefined cutoff distance. χ(x) = 1 if x < 0 and χ(x) = 0 otherwise:

δi = min
j:ρ j>ρi

(
di j

)
(2)

where δi is the minimum distance between point i and any other point with a higher density. For the
point with the highest density, the δi is the maxj (dij).

Generally, the value of δi much larger than the typical nearest neighbor distance for points with
local or global maxima in the density. The cluster centers are defined as points with anomalously large
δi. The anomalous points (cluster centers) are easily observed by the scatter points graph of δi and
ρi. Additionally, a hint for choosing the number of centers is provided by the plot of γi (Equation (3))
sorted in decreasing order and the γi is defined as:

γi = ρi ∗ δi (3)

However, the proper candidates of cluster centers may have multiple choices. Therefore,
an alternative method for choosing the optimal candidates of k is needed. The most widely
used approaches for cluster validation are based on internal cluster validity indices [44,45].
The Davies–Bouldin (DB) [46] Index (Equation (4)) is probably one of the most widely used indices [44],
and was chosen as a validation index in this study. DB estimates the cohesion based on the distance
from the points in a cluster to its centroid and the separation based on the distance between the
centroids [47]:

DB(k) =
1
k

k∑
i=0

max
j=1∼k, j,i

(wi + w j

ci j

)
(4)

where DB(k) is the value of DB for cluster number k. wi or wj is the average distance of sample points
to the center of cluster center i (ci) or cluster j (cj). cij is the distance between cluster ci and cj. The value
of DB(k) is smaller, the clustering result of k will be better.

2.2.3. Similarity Index of Coastal Land Use Sequence Patterns

To calculate the similarity of coastal land use sequence patterns between coastal sampling lines,
we proposed an index called the Sequence Similarity Index (SSI) (Equation (5)) based on the longest
common subsequence (LCS) [48,49]:

Si j =
LCSi j

Ci
(5)

where Sij is the clustering distance from line i to line j. In this study, we chose 1/Sij as the clustering
index; LCSij is the longest common subsequence between line i and line j; and Ci is the number of
land-use types in line i.
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3. Study Area and Data

3.1. Study Area

The study area (37◦28′ to 39◦29′N, 117◦15′ to 119◦17′E) (Figure 4), located in the west of Bohai
Sea in Northern China, is a muddy coastal plain including Bohai Bay and the Yellow River Delta.
The length of the coastline is approximately 1700 km. The elevation is between 0 and 15 m. Mean
annual precipitation varies from 520 mm to 660 mm, and the mean annual temperature ranges from
11 ◦C to 13 ◦C. Many rivers and streams run across the plain, including the Luanhe River, Yongding
River, Haihe River, Ziya River, and Yellow River. The dominant soil types are alluvial soil, saline soils,
bog soil, and cinnamon soil. The typical vegetation is halophytic plant communities predominated by
herb and shrub species [50,51]. The area is one of the most important economic regions in China with
large ports, such as Tangshan Port, Tianjin Port, and Huanghua Port.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 20 
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3.2. Data

The research period was from 1990 to 2010, when the economy developed rapidly in our study
area, and the time interval was set to a decade. The land-use data were interpreted from US Landsat
TM satellite data with a spatial resolution of 30 m × 30 m. The types and sources of image data used
are shown in Table 1. Most of the images were cloud-free. According to the existing coastal land
use classification systems [8,22,52] and land use characteristics of the study area [11], we defined our
land use classification system as shown in Table 2. In order to ensure the accuracy of the land use
data, we used both the machine and manual interpretation to extract the land use data in the study
area. Firstly, according to the samples, we used the minimum distance classification to extract the
preliminary classification result. The preliminary classification results extracted from the minimum
distance classification method were roughly and had some image classification errors (e.g., omission
error and commission error). Then, in order to eliminate these classification errors, we corrected them



Remote Sens. 2019, 11, 2024 8 of 19

through visual interpretation based on the fine spatial resolution image data (Google Imagery) and
individual experience. In the end, we used the confusion matrix to check the land use accuracy. Four
hundred polygon samples (50 samples for each land-use type) were selected to test the accuracy. The
true values of the 400 test samples were determined according to the historical high-resolution images
from Google Earth and archived files. The overall accuracy of the land-use data for 1990, 2000, and
2010 was 85.1%, 87.7%, and 89.2%, respectively. Tidal flat, salt water, fresh water, construction land,
forest land, and cultivated land had a higher accuracy, with 92.1%, 91.5%, 91.2%, 90.1%, 89.8%, and
88.7%, respectively. Unused land and grassland had relatively lower accuracies, with 86.8% and 85.2%,
respectively. Compared with the results from the land-use database of the Resources and Environment
Scientific Data Center, Chinese Academy of Sciences [53,54], our land use result had higher accuracy.

Table 1. Image data.

Year (Sensor Type) Path/Row (Date)

1990 (TM5) 121/33 (1990.05.15), 121/34 (1990.06.16), 122/32
(1990.10.29),122/33 (1990.09.11), 122/34 (1990.10.29)

2000 (TM5) 121/33 (2000.06.11), 121/34 (2000.10.17), 122/32
(2000.06.18),122/33 (2000.08.21), 122/34 (2000.08.21)

2010 (TM5) 121/33 (2010.09.11), 121/34 (2010.09.11), 122/32
(2010.03.10),122/33 (2010.04.27), 122/34 (2010.04.27)

Table 2. The land use classification system based on [8,22,52].

Type (Abbreviation) Explanation

Cultivated Land (CL) Refers to the land used available to plant crops including paddy field and dryland
Construction Land (CoL) Refers to the urban and rural residential areas, transportation land and oil field.

Salt Water (SW) Refers to the shrimp pond and salt pans

Fresh Water (FW) Refers to freshwater areas and water facilities including river, lake and reservoir
and ponds

Forest Land (FL) Refers to the land that is growing trees, shrubs and mangrove forests

Grassland (GL) Refers to the land that mainly grows herbaceous plant with vegetation covering
more than 5%

Tidal Flat (TF) Refers to the tidal zone between high tide and low tide along the coast
Unused Land (UL) Refers to the bare land that has not been used or is hard to be used.

The vector coastal transect lines (Figure 5A) were constructed by the designed software based
on the coastline in 2010. The distance between two adjacent coastal simplified lines was 200 m.
The distance was defined from the size of the smallest land-use feature in the study area. The line was
40 km long and separated into two parts equally by the coastline. In the end, we overlaid the vector
coastal simplified lines and the polygon land-use data to generate the land-use data of the coastal
simplified lines (Figure 5B–D).
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Figure 5. Coastal transect lines (A) and land use data from 1990 to 2010 (B–D).

4. Results

With the SCCLUP model, we have mined two CLUSPs, three CLUSPs, and four CLUSPs for
1990, 2000, and 2010, respectively. According to the CLUSPs for 1990, 2000, and 2010, we analyzed
the land-use changes along the sea–land direction to demonstrate the spatial location, sequential
relationships of the land use along the sea–land direction. Further analysis of temporal and spatial
changes of the land use spatial location and sequential relationships are also done.

4.1. Spatial Location and Relationship among the Land Uses along the Sea–Land Direction from 1990 to 2010

As a whole, the land uses to show a sequential distribution along the sea–land direction (Figure 6).
From 1990 to 2010, tidal flat and unused land have a stable sequential location and mainly distribute
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around places close to the shoreline along the sea–land direction. Forest land also has a stable
sequential location and mainly distribute around the farthest places from the shoreline. Unused
land and cultivated land have relative stable sequential locations. However, the unused land is only
behind salt water and cultivated land and is only in front of forest land along the sea–land direction.
The sequential locations of construction land, fresh water, and grassland are changed with the range
from the behind of unused land to the front of cultivated land. The dynamic sequential location of the
three land-use types leads to the major difference of land use sequential pattern along the sea–land
direction in the period of 1990–2010.
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Figure 6. The annual average sequential number of land use along the sea–land direction in the period
of 1990–2010.

As Table 3 and Figure 7 showing, although the land uses in CLUSPs from 1990 to 2010 have a
trend of sequential distribution along the sea–land direction, the uncertainty of sequential location of
land use along the sea–land direction is continuously increasing with dynamic sequential locations
of land use in CLUSPs for one year and among years from 1990 to 2010. The sequential locations of
tidal flat and salt water are also still stable. The uncertainty of the sequential location of the other
land-use types including unused land, fresh water, grassland, construction land, cultivated land, and
forest land is indicated by the dynamic sequential relationships between adjacent land uses along the
sea–land direction. For example, the unused land, cultivated land, and forest land with the relative
stable sequential location in the whole have alternations of sequential locations in CLUSPs along the
sea–land direction from 2000 to 2010. For CLUSP 3 in 2000, the cultivated land is behind of forest land.
In 2010, the unused land is behind of forest land and adjacent to the cultivated land with the farthest
distance from the shoreline. However, the range of the sequential number of the three land-use types
mentioned above is relative stable. Cultivated land and forest land had a small sequential location
range from 5 to 8. Both had a higher sequential number and tended to distribute around places far from
the shoreline. The sequential numbers of unused land were around 3–7 and 8/9 of them concentrated
around the 3–5 range.
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Table 3. CLUSPs from 1990 to 2010.

Year Cluster ID Sequential Pattern of Land Use along the Sea–Land Direction

1990
1 TF SW UL FW GL CoL CL FL
2 TF SW GL CoL UL CL FW FL

2000
1 TF SW UL FW GL CoL CL FL
2 TF SW GL UL CL FW FL CoL
3 TF SW CoL UL GL FL FW CL

2010

1 TF SW UL CoL FW GL CL FL
2 TF SW UL FW FL GL CL CoL
3 TF SW GL FW CoL FL UL CL
4 TF CoL SW FW UL CL FL GL
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Figure 7. The sequential number of each land-use type in the CLUSPs from 1990 to 2010.

According to the sequential distribution of land use along the sea–land direction, the sequential
relationships between adjacent land uses among the CLUSPs are also relatively stable. With the stable
sequential location along the sea–land direction, the sequential location behind that of tidal flat along
the sea–land gradient was usually that of Salt Water. Following salt water were mainly unused land
and grassland with rates of 44.44% (4/9) and 33.33% (3/9), respectively. For unused land, salt water
was often in front of it with the highest rate of 44.44% (4/9) and cultivated land was often behind it
with the highest rate of 44.44% (4/9). The land-use types before fresh water and construction Land
tended to be diverse, especially since construction land had seven land-use types. Fresh water had six
land-use types in front of it. Although there were four land-use types in front of grassland, the rate of
the four land-use types showed little difference. The land-use types behind fresh water, grassland,
and construction land tended to be diverse with five land-use types. The land-use types in front of
Cultivated Land and Forest Land tended to be simplified and were mainly unused land (44.44%, 4/9)
and cultivated land (44.44%, 4/9), respectively. Meanwhile, the land-use types behind cultivated land
and forest land also tended to be simplified with types and their rates. Cultivated land had only three
land-use types behind it. Forest land had four land-use types behind it and the rate of the four types
was only 11.11% (1/9), respectively.
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4.2. Temporal and Spatial Pattern of CLUSPs from 1990 to 2010

According to the percent of land use area (indicated by a length in this study) along the sea–land
direction, we extract the land use pattern along the sea–land direction from 1990 to 2010 (Figure 8).
Compared with the relative stability of land-use sequential location, the percent of land use areas in
CLUSPs is variation from 1990 to 2010. The percent of tidal flat and unused land are continuously
reducing from 1990 to 2010. Cultivated land and grassland are increasing in the period of 1990–2000
and reducing in the period of 2000–2010. Construction land and salt water are continuously increasing
from 1990 to 2010. Fresh water and forest land are relatively stable from 1990 to 2010. Additionally,
based on the continuous increasing or reducing percent of land use, we define the CLUSPs in 1990
as low-exploitation CLUSP (relative high percent of tidal flat and unused land, but the low percent
of construction land and salt water). The CLUSPs in 2000 is defined as middle-exploitation CLUSP
(relative middle percent of tidal flat and unused land, construction land, and salt water). The CLUSPs
in 2010 is defined as high-exploitation CLUSP (relative high percent of construction land and salt water,
but the low percent of tidal flat and unused land). Additionally, the CLUSPs with a similar sequential
pattern of land use have similar land use percent along the sea–land direction, for example, the CLUSP
1 in 1990 and CLUSP in 2000.
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Figure 8. Land use pattern for 1990 (A), 2000 (B), and 2010 (C) along the sea–land direction.

As Figure 9 shows, the CLUSPs have temporal and spatial heterogeneity along the coast. In 1990,
although the study area was mainly covered by Cluster 1 of the CLUSP, the coastal areas near to the
Tangshan Port, Tianjin Port, and Huanghua Port still have some other CLUSP (the Cluster 2 of the
CLUSP). In 2000, Cluster 1 of CLUSP was similar to Cluster 1 in 1990, is still the dominant CLUSP, and
covers the majority of the study area. The other two CLUSPs tend to distribute around the port areas,
particularly the Tangshan Port, Tianjin Port, and Huanghua Port where the new CLUSPs are taking
places. In 2010, the temporal and spatial heterogeneity of CLUSPs became more obvious. There are
four CLUSPs and all of them are scattering distribution along the coast. For example, Cluster 1 and
Cluster 2 of the CLUSP are sounded by the other CLUSPs along the coast. However, Cluster 4 of the
CLUSP still had an aggregated distribution and is mainly distributed around the port areas. From the
above, we can know that the land use pattern along the sea–land direction shows a diversifying trend
from 1990 to 2010, and the trend is more obvious in the port areas.
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Figure 9. Spatial distribution of clusters of the CLUSPs from 1990 to 2010.

Additionally, the CLUSP in Bohai Bay and the YRD have some differences. The YRD is mainly
covered by the relatively low-exploitation CLUSP with low percent of construction land. The sequential
pattern of land use between these CLUSPs in the YRD has small changes. In all, the land use
pattern along the sea–land direction in the YRD is relative stable. Compared with YRD, the relatively
high-exploitation CLUSPs are mainly located in Bohai Bay. The difference of land-use sequential
pattern along the sea–land direction tends to be more obvious with the more scattering distribution
of CLUSPs in Bohai Bay from 1990 to 2010. Furthermore, the change areas of CLUSPs are mainly
distributed in Bohai Bay.

5. Discussion

5.1. The Relationships between CLUSP and Environmental Factors (Distance to Shoreline, Salinity, Water, and
Landform)

We extracted the average land-use distance to the shoreline from 1990 to 2010 and compared
them with the sequential number (Figure 10). As Figure 10 shows, the land uses were sequentially
distributed along the sea–land direction and each land-use type had relative stable locations indicated
by both sequential number and average distance. Moreover, the trends of land-use locations along
the sea–land direction for sequential number and average distance were almost the same. Therefore,
the average sequential number could indicate the spatial distance of land use along the sea–land
direction. The CLUSP also reveal the spatial distance pattern of land use along the sea–land direction,
which may help to explore the seaward or landward trend of land use. The environmental factors
(salinity, water, and landform) [3–6,55] along the sea–land direction also had tight relationships with
the CLUSP. On one hand, the salinity, water, and geomorphologic gradient determined the vegetation
distribution in the sea–land direction [6,7,55]. Furthermore, the distribution of construction land,
such as settlements and ports, were also largely limited by geomorphologic and hydrologic factors.
Obviously, nobody wants to live in a low-lying area that is easily flooded and the locations of the
harbors also require special hydrologic conditions like water depth. Therefore, the environmental
factors were the basis of the CLUSPs in the sea–land direction. This was also the major reason why
tidal flat, salt water, and cultivated land had a stable sequential location along the sea–land gradient.
On the other hand, the CLUSP changes were also limited by the environmental factors along the
sea–land gradient. The landward areas have good geomorphologic and soil conditions and offer good
places for human living. Therefore, the major land-use changes happened around these areas, which
promoted changes in the CLUSPs from 1990 to 2010. However, in seaward areas, human activities,
such as sea reclamation for harbors and shrimp ponds, were largely affected by hydrologic conditions,
like seawater.
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Figure 10. The comparison of the distance (average distance from land use to the shoreline) and a
sequential number of land use along the sea–land direction from 1990 to 2010.

Marine factors, like tides, also affected the land-use change in the study area by erosion [56–58].
However, most of these changes mainly occurred around the places close to the shoreline where the
change was relatively small, so tides had a limited impact on the coastal land use sequence pattern.
Coastal morphology continually adapts to equilibrium as sea levels rise, leading to changes in the
landscape [59], which might have profound impacts on coastal land use sequence patterns in the future.

5.2. The Uncertainty of CLUSP along the Sea–Land Direction

The uncertainty of CLUSP included two parts. The first part is the uncertainty of the spatial
location of land use along the sea–land direction, like construction land. In the study area, Construction
Land had the widest range of sequential number (2–8) along the sea–land direction. Although the
area of salt water was continuous increasing, the spatial location of Salt Water was relatively stable.
Both spatial location and area of construction land had obvious changes those may lead to the more
diversity of CLUSPs. In fact, most of the new CLUSP were distributed around the port areas with high
artificial level. Furthermore, many land-use conversions had indirect and direct relationships with
the construction land (Tables 4 and 5). Therefore, the increased diversity of CLUSPs was mainly due
to the spatial changes of construction land. The wide adaptivity of construction land made it widely
distribute along the sea–land direction, which was also one important feature. Moreover, we also
could know that largely land-use conversions (like salt water) may not change the land use sequential
pattern along the sea–land direction and this may help to explore the stability of coastal land use
pattern of along the sea–land direction. Theoretically, the average of the sequential number of land
use may increase uncertainty. In Figure 10, the trend of sequential number and average distance for
construction were not inconsistent with each other. However, the spatial location and overall land use
pattern indicted by the average sequential number and distance were almost the same mentioned in
Section 5.1. The second part of uncertainty was about the spatial heterogeneity of CLUSP along the
coast. The works of literature [8,22,60] had extracted the sequential trend of major land use and briefly
analyzed the heterogeneity of them along the sea–land direction. However, the heterogeneity of CLUSP
along the coast was rarely discussed and it had actually existed (Figure 9). Moreover, heterogeneity of
CLUSP along the coast became salient in 2010 and a small coastal zone had contained multiple CLUSPs
(Figure 9). The high spatial heterogeneity of CLUSP not only revealed the anisotropic distribution
of land-use pattern along the sea–land direction but also indicated a spatial pattern of anthropic
activities. For example, the CLUSP 4 in 2010, mainly distributed around the port areas, was one
possible port-driven land use pattern along the sea–land direction. This typical land use pattern was
helpful to understand the specific impacts from anthropic disturbance on the land use pattern along
the sea–land direction and the spatial distribution of them along the coast. The better understanding
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of anthropic impacts on the coastal zone is one important part of coastal management and planning,
which largely promoted the sustainable development of the coastal zone [61,62]. The method of
subzone or subregion predefined by human subjectively would lose this high spatial heterogeneity
in subzone or subregion. And the reasonable distance between coastal transect lines was defined
accordingly to retain this high spatial heterogeneity in this study.

Table 4. Land use transformation matrix, 1990–2000 (in km).

1990
2000

SW GL FW UL CoL TF CL Sea FL Total

CL 977.5 921.7 737.3 725.9 456.5 38.7 0 11.8 3869.4
UL 522.4 1416 322.8 571.2 423.4 7.5 396.7 27.1 3687.1
TF 1418.6 28.9 352.7 21.6 818.2 92.6 2732.6
FW 659.6 64.6 230.3 34.7 194.3 284.8 1468.3
Sea 204.5 13.3 252.2 16.8 486.8
SW 0.3 90.1 21.1 359.4 470.9
GL 3.7 165.8 1.5 1.8 0.2 35 208
FL 194.2 0.7 8.7 203.6

Total 3786.3 2625.4 1499.7 1448.8 1051.3 1032.6 825.9 817.8 38.9 13,126.7

Table 5. Land use transformation matrix, 2000–2010 (in km).

2000
2010

SW CoL CL UL Sea TF FW GL FL Total

Sea 359.2 2758 5.9 15 513.6 5.2 3656.9
TF 2045.1 105.2 19.7 197.9 737.7 2.7 3108.3
CL 1357 873.7 115.9 1.2 164.5 326.6 17.8 2856.7
UL 1213.3 116.6 898.4 9.7 103.1 191.8 229 0.3 2762.2
GL 548.6 233.7 1037.1 425.9 5.9 62 127.1 2440.3
FW 1822.8 49.2 156.4 97.1 20.5 43.9 4.6 0.4 2194.9
SW 808.8 421.3 108.9 21.6 43.2 0.1 1403.9
FL 2.2 43.7 2.6 48.5

Total 7346 4947.4 2582.5 960.7 790.7 709.7 418.3 565.6 150.8 18,471.7

6. Conclusions

In this study, we first developed a model, SCCLUP, to mine the major CLUSPs along the sea–land
gradient. Then, we selected the coastal zone of Bohai Bay and the Yellow River Delta as the case study
area to mine the major CLUSPs from 1990 to 2010. In the end, we mined two CLUSPs in 1990, three
CLUSPs in 2000, and four CLUSPs in 2010. According to the CLUSPs for 1990, 2000, and 2010, we found
the regular spatial location, sequential relationships of the land use along the sea–land direction and
their heterogeneous spatial distribution along the coast. The temporal and spatial changes of the
land use spatial location and sequential relationships were extracted. In addition, we discussed the
tight correlation between CLUSP and environmental factors (distance to shoreline, salinity, water, and
landform) and the major uncertainty of the spatial location of land use the sea–land direction and the
heterogeneity of CLUSP along the coast. The conclusions of this study were as follows:

(1) The land use showed a sequential distribution along the sea–land direction. The land use closed
to the shoreline (tidal flat, salt water, and unused land) and inland boundary (forest and cultivated
land) had relative stable sequential location along the sea–land direction. However, the land uses
located at the middle of the above had dynamic sequential locations that led to multiple CLUSPs
along the coast.

(2) The CLUSPs had temporal and heterogeneity spatial along the coast and the heterogeneity became
salient from 1990 to 2010. And due to the increasing percentage of construction land, the artificial
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level of CLUSP was continuously increasing and new CLUSPs tended to distribute around port
areas. Different CLUSPs with similar land use sequential relationships tended to have similar
land use structure along the sea–land direction.

(3) The land uses sequential location along the sea–land direction revealed the actual distance of land
use to the shoreline. Additionally, the sequential pattern of land use along the sea–land direction
had a tight correlation with environmental factors (salinity, water, and landform). The land use
with large land-use conversions (like salt water with continuous increasing) might not lead to
the changes of land use sequential pattern along the sea–land direction, and the construction
land with large increasing and wide adaptivity was the major factor in the study area. Therefore,
strong control should be provided for the excessive expansion of land use like construction
land to limit the over changes in land use pattern along the sea–land direction. Additionally,
the spatial heterogeneity of land use along the sea–land direction due to anthropic disturbance
should be considered to better understanding of anthropic impacts on the coastal zone. A better
understanding of anthropic impacts is one important part of coastal management and planning,
which largely promoted the sustainable development of the coastal zone.
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