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Abstract: In recent years, deep learning has led to a remarkable breakthrough in object detection in
remote sensing images. In practice, two-stage detectors perform well regarding detection accuracy
but are slow. On the other hand, one-stage detectors integrate the detection pipeline of two-stage
detectors to simplify the detection process, and are faster, but with lower detection accuracy.
Enhancing the capability of feature representation may be a way to improve the detection accuracy
of one-stage detectors. For this goal, this paper proposes a novel one-stage detector with enhanced
capability of feature representation. The enhanced capability benefits from two proposed structures:
dual top-down module and dense-connected inception module. The former efficiently utilizes
multi-scale features from multiple layers of the backbone network. The latter both widens and
deepens the network to enhance the ability of feature representation with limited extra computational
cost. To evaluate the effectiveness of proposed structures, we conducted experiments on horizontal
bounding box detection tasks on the challenging DOTA dataset and gained 73.49% mean Average
Precision (mAP), achieving state-of-the-art performance. Furthermore, our method ran significantly
faster than the best public two-stage detector on the DOTA dataset.

Keywords: remote sensing; one-stage detector; top down module; receptive field

1. Introduction

Object detection in optical remote sensing images is widely applied into many key fields such as
environmental monitoring, geological hazard detection, precision agriculture, etc. [1]. With the rapid
development of remote sensing technology, the number of remote sensing images has been growing
dramatically and the quality of images has been improved rapidly. In the meanwhile, the task of object
detection is increasingly complicated, which may face a large amount of object categories and complex
target scenes. The conventional analytical methods are hard to meet growing diversified needs. In this
case, the introduction of Convolutional Neural Networks (CNN) [2], the performance of which has
been widely proved on general object detection [3,4], attracts growing attention from remote sensing
field. In general, these detectors can be divided into two main categories: the two-stage detection and
the one-stage detection framework.
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The two-stage detection method consists of two steps: the pre-processing step for region proposal
and the classifying step. At the first step, region proposals that contain potential objects instead
of background are generated from one image through an algorithm by using Selective Search
(SS) [5]. The second step includes determination for the label and regression for the bounding box.
Category-specific classifiers will be used to determine the labels of those region proposals. In addition,
the bounding box will be corrected more precisely through box regression.

The two-stage detection and their extensions like Region-CNN (R-CNN) [6], Fast R-CNN [7],
Faster R-CNN [8], and Feature Pyramid Networks (FPN) [9] make great progress on general object
detection. However, two-stage detection has inherent defects: since numerous region proposals are
required, training and testing are getting slow.

The one-stage detectors, such as You Only Look Once (YOLO) [10], Single Shot MultiBox Detector
(SSD) [11], and Retina-Net [12], straightforwardly predict label confidences and locations of all
possible objects on the feature maps from one image. After removing the region box, one-stage
detection gains great improvement in detection speed but gets relatively poor detection accuracy
on detecting multi-scale and multi-class targets. To address this issue, enhancing the capability of
feature representations is effective to improve the performance of one-stage detector. SSD predicts
objects from multiple layers with multi-scale features. This strategy neglects semantic information
of features from shallow layers and does not solve the problem of poor performance for detecting
small objects yet. FPN introduces a top-down structure to fusion features from different layers and
brings about more semantic information of features. However, fusing features layer by layer is not
effective enough to represent context information. Based on SSD, Receptive Field Block Net (RFBNet)
[13] introduces receptive field Block (RFB) ahead of prediction module. RFB simulates the mechanism
between the human population Receptive Field (pRF) size and eccentricity in the human visual system,
which effectively produces multi-scale receptive fields. However, branches of RFB structures are
independent, which results in the loss of correlation of features.

Compared with natural scenes, object detection in remote sensing images suffers from
fundamental challenges like changeable-scale objects, small objects in dense-target scenes. Figure 1
illustrates the instance size distribution of typical remote sensing dataset DOTA [14] and natural
dataset VOC [15]. It is clear that the DOTA dataset is dominated by instances under 100 pixels while
the instances in VOC dataset are widely distributed between 0 to 500 pixels. In addition, there are both
some extremely small and huge objects in remote sensing scenes. For example, a bridge can be as small
as 15 pixels and as large as 1200 pixels, which is 80 times larger than the smaller one. The enormous
differences among instances make the detection task more challenging because models must be flexible
enough to handle extremely tiny and giant objects.

To handle these problems above, this paper attempts to enhance the ability of feature
representation by proposing two novel structures: Dual Top-Down Module (DTDM) and
Dense-connected Inception (Dense Inception) module. DTDM is merged into top layers of the
backbone network, with limited extra computation under control, and replaces the top layers of
the backbone network with two top-down modules branches. For one branch, the features from
the last several layers are integrated from upper layers to lower layers and delivered directly to the
prediction module. For the other, the top layers of the backbone network are combined to generate
the fusion feature and replace the top layer. By combining different level features—low-level local
detailed features and high-level global semantic features—the ability of feature representation is
significantly enhanced and the performance on small objects is improved. Inspired by the dense
structure of DenseNet [16], this paper proposes Dense Inception with dense-connected branches of
different atrous layers, to combine features from branches with stronger correlation and more effective
field, yielding more efficient integrated features. Dense Inception further enhances the ability of feature
representation of each feature map, which is useful for detecting changeable-scale objects.



Remote Sens. 2019, 11, 2095 30f17

0.018

s DOTA
0.016 VOC

0.014

0.012

frequency
o
o
=2
o

o
o
S
<3

0.006

0.004 I
|

0.002 J
0 200

100 300 400 500 600 700 800
object length

Figure 1. Comparison of instance size distribution of DOTA and VOC datasets.

Our detection framework effectively improves the model’s ability of feature representation.
With adding newly proposed structures, our detector achieves state-of-the-art performance among
published articles on the public DOTA dataset. In this paper, our contributions can be briefly
summarized as follows:

1.  We propose a novel top-down module, DTDM, to combine multi-scale features from fusion layers
of multiple layers. The multi-scale features from different layers can be effectively merged to
detect multi-scale objects in complicated scenes.

2. Weintroduce a Dense Inception module to extract features more efficiently. The new structure can
generate features that cover larger and denser receptive field size, as well as effectively integrating
contextual information.

The rest of paper is organized as follows: Section 2 introduces proposed modules in detail.
We compare DTDM modules with several relative modules. In Section 3, we conduct our experiment
and list compared experiments. In addition, some experiment details are shown for further
comprehension. The result of all experiments as well as their analysis are presented in Section 4.
In Sections 5 and 6, we draw the conclusions from our work and make the plan for further work.

2. Methods

In this section, we describe the architecture of DTDM module and Dense Inception. Furthermore,
we also compare proposed modules with relative structures. Finally, the whole pipeline structure of
the model is presented in detail.

2.1. DT DM

CNN module consists of a series of convolution layers with filters, Pooling, Fully Connected layers
(FC) and Softmax function. The backbone network of detectors is based on CNN modules, in which
many convolution layers cascade and generate various feature maps with size descending. The features
from high layers have large receptive fields and strong semantics, with great robustness to variations
like illumination but at the cost of geometric details. In contrast, the features from lower layers have
small receptive fields and rich geometric details, but possess much less semantic information. Classic
detectors based on deep CNN like R-CNN, Fast R-CNN, Faster R-CNN and YOLO, merely make use
of the top layer of CNN modules for feature representation. However, a single feature map is not
enough to extract the various features with multi-scale and multi-level feature information.
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To handle this contradiction, there are some explorations on multi-level object detection: detecting
at multiple CNN layers or detecting with combined features of multiple CNN layers. The former,
like FPN in Figure 2a, combines predictions from multiple feature layers to handle multi-scale
objects. The latter, like Top-Down Module (TDM) [17] in Figure 2b, is generally implemented by
skip connections: skip selected layers and feed the output of lower layers as the input to upper layers.
It proves that both explorations have made progress to a large extent. In order to achieve the best
combination of feature information, it is natural to implement both strategies. Since the two methods
above separately work at different stages of detection: detecting at multiple CNN layers was applied
in prediction or detecting with combined features in extracting semantic information. This paper
proposed DTDM to detect with combined features and merged the structure into the backbone network
Visual Geometry Group Net (VGG16) [18].

As is presented in Figure 2c¢, the input was fed into two branches: for one branch, feature maps of
decreasing sizes from different layers were upsampled to the same size and concatenated together.
For the other branch, it integrated a top-down network with lateral connections. High level semantic
features were transmitted back by the top-down network and combined with the bottom-up features
from intermediate layers. Then, the outputs of both branches were further processed via element-wise
summation for prediction.
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Figure 2. The top-down module in several structures. (a) Feature Pyramid Networks; (b) Top-Down
Module; (c¢) Dual Top-Down Module.

2.2. Dense Inception

At the beginning of deep learning, CNN was used to extract feature from one image.
Although CNN made a breakthrough on the performance of object detection, it still needs to be
enhanced. In order to improve the image representation performance, very deep convolutional
network have been proved efficient. However, the deepening of convolutional network brought about
serious side effects: the high computational cost and huge amount of parameters.

One alternative is increasing the depth and width of the network with limited extra computational
cost. Considering this motivation, the inception architecture [19] achieved great performance at
relatively low computational cost. Figure 3 shows three typical multi-branch convolution layers.
Inception architecture attempted to extract multi-scale feature information by launching multi-branch
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convolution layers with different convolution kernels. In the multi-branch CNN architecture of
inception, all kernels were sampled at the same center. To further enhance the representation ability of
CNN, the atrous convolution was first introduced [20] to apply multi-scale kernels, which is equivalent
to convolving the input with up-sampled filters for a large receptive field. In many scenes like aerial
image, there were various objects in multiple sizes. To deal with this situation, the feature maps
must cover multi-scale receptive fields. Thus, RFBNet made use of multi-scale dilated convolution
layers to adapt to multi-scale kernels of CNN, which covers multi-scale receptive fields and makes it
significantly useful for extracting multi-level information. Furthermore, the introduction of residual
connection can accelerate the training of inception network significantly [21]. However, each branch
in RFBNet is independent of one another, resulting in the lack of correlation of semantic information
from extracted features. To rethink the structure of RFBNet, there is another alternative to integrate
multi-branch information ahead of delivery together to the prediction module. Inspired by the dense
structure in densenet in semantic segmentation, this paper proposes a novel structure, called Dense
Inception, in which the output of small-kernel CNN branch is concatenated to the input to the other
bigger-kernel ones. In addition, there is a lateral connection from the original feature map to the
output of the module. The combined features were further processed and delivered to the prediction
module. The new module not only increased the receptive field of features but also made features of
each branch more relational, which is greatly useful for detecting multi-scale objects. Figure 4 presents
the structure of Dense Inception in detail.
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Figure 3. Three typical structures of multi-branch convolution layers. (a) Inception resnet v2; (b) Aspp;
(c) Receptive Field Block.

There are two strategies on Dense Inception: cascading and parallel modes. The cascading
mode defines the cross-layer dense-connected structure. The lower atrous layers are connected to
upper atrous layer, which can generate large receptive fields. As for parallel mode, multiple atrous
layers accept the same input. It means that the output is indeed a sampling of the input with
different scales of receptive fields. The module not only inherits the advantage of aspp by using
multiple atrous-convolved feature representation, but also makes better use of inner relationship of
multiple layers.



Remote Sens. 2019, 11, 2095 60of 17

?~ |
-
concatenation + 1x1 conv | e

3x3 conv
rate=1

B

3x3 conv 3x3 conv

rate=3
© ©
A A
A F & 5
[ G

5x5conv  3x3 conv
rate=5

Figure 4. The structure of Dense Inception.

In the inception module, the branches were organized in parallel. Multiple atrous layers were fed
with the same inputs and the inputs were indeed sampled with various scales of receptive fields. As for
single branch, there exists one theoretical issue called ‘gridding’ [22]. During atrous convolutional
operation, much feature information will be lost: for a feature map in dilated convolutional operation
with kernel size k and dilation rate 7, only k x k out of (k+r) x (k + r) in the region were used for
the computation. When r became large, the information sampled by atrous convolution would be
weakly correlated, which would cause severe loss of local information. The cascading atrous layers
with increasing dilation rate can solve the problem. The progressive concatenation of atrous layers
made the top atrous layers accept more complete information from the input.

In Dense Inception, the atrous layers are organized both in cascading and parallel modes. Since
the atrous layer of larger dilation rate accepts the output of the other atrous layers of smaller dilation
rate, it can efficiently produce larger receptive fields. The final output of Dense Inception is a feature
map derived from multi-scale and multi-rate atrous convolutions. The details are presented as follows:

Firstly, in order to decrease and regularize the channel numbers of the input, we placed a1 x 1
convolution layer between each branch and the original feature map, respectively. For one branch,
the head was followed by different convolution layers of increasing kernel sizes. After the multi-size
kernel convolution layer, we put the corresponding atrous convolution layer whose rate is identical
with the kernel size of previous layer. Finally, we adopted the shortcut design from inception from
Resnet and the original feature was fed for concatenation with outputs from each branch.

2.3. Structure of Detector

Considering the demand of both precision and speed, we chose lightweight network VGG16 as our
backbone network. VGG16 is a classic lightweight network which is adopted by lots of state-of-the-art
detectors, especially by those high-speed ones. However, lightweight detector is popular for its
“light” but relatively weak ability of detecting multi-scale and multi-class targets. As is shown in
Figure 5, we removed the last FC layer of VGG16 to decrease the parameters of original network as
well. Layer convl, conv2, conv3 of VGG16 were reserved and later layers were replaced by DTDM.
In consideration of the resolution and feature representation of layers, we chose conv4_3 as a base
feature map. Therefore, the conv4_3, conv7 and conv7_2 were combined via concatenation, and then
the fusion feature map replaced original conv4_3 with the network once again. The corresponding
feature size was 38 x 38, 19 x 19 and 10 x 10, respectively. In particular, the Dense Inception was
placed after the fusion feature map from DTDM, con4_3 and conv?7 to extract more effective features
for prediction. In addition, the later layers were set the same as that in RFBNet.



Remote Sens. 2019, 11, 2095 7 of 17

,,,,,,,,,,P,TPM ,,,,,,,, Prediction
: - -

Backbone VGG16

Input image
300x300

El

(©): concatenate @ : upsample
777777777777777777777777 ’ (#): Eltw Sum - : Dense Inception

38|

Fu5|ona|
feature

e

Figure 5. The pipeline of the whole detector.

3. Experiment Settings

3.1. Dataset

Remote sensing datasets differ from general datasets and possess their own characteristics.
Multi-scale targets have a wide range: the size of objects varies from meters to hundreds of meters.
Extremely uneven distribution of targets: the detected image may contain hundreds of objects or
nothing valid.

Compared with other public optical remote image datasets, including UCAS-AOD [23],
NWPU VHR-10 [24] and VEDALI [25], DOTA covers the most categories and the largest quantity scale.
The other datasets have a lack of category or number of instances in Earth Vision, making themselves
far from achieving simulation of the complicated realistic aerial scene. We conduct our experiment
on the aerial images DOTA dataset. It contains 2806 aerial images and the size of images ranges
from 800 x 800 pixels to 4000 x 4000 pixels. In detail, the dataset consists of 188,282 instances over
15 categories, including plane, ship, storage tank (ST), baseball diamond (BD), tennis court (TC),
ground track field (GTF), harbor, bridge, large vehicle (LV), small vehicle (SV), helicopter (HC),
roundabout (RA), swimming pool (SP), soccer ball field (SBF) and basketball court (BC).

The DOTA dataset has been divided into three subsets: training, validation and testing subsets,
in which only the labels of training and validation subsets are public. Thus, we train and evaluate
our detectors in the training and validation subset, respectively, and then submit our testing results
on testing subsets to the public official website for comparing our detection performance with other
published ones. In particular, it is difficult to directly train the network on the raw images with huge
size. Therefore, the raw images in training and validation subsets are cropped at the size of 800 x 800
with the stride of 600.

3.2. Baseline

Considering the giant size of remote sensing images and some particular usage scenarios with
real-time demand of detection, we preferentially choose a one-stage state-of-the-art detector with
high detection speed. Therefore, we choose RFBNet as our baseline for its excellent balance between
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detection accuracy and computation. REBNet is one of the best one-stage detectors which achieves the
state-of-the-art performance among very deep detectors while keeping the real-time speed.

3.3. Evaluation Metric

For evaluation metrics, we adopt the same mean Average Precision (mAP) calculation as for
PASCAL VOC. The most commonly used metric for evaluating the performance of detection algorithms
is Average Precision (AP), derived from precision and recall. For a given annotated image, the output
form a detector denotes (b, 1, p);indexed by i, where b, |, and p separately represents predicted box
location, label and confidence of target i. A predicted instance regarded as TP (True Positive) must
meet the following conditions: the predicted label [ is the same as the ground true label I; the iou
(Intersection Over Union) between predicted bounding box b and the ground truth one by exceeds the
preset threshold (commonly defined as 0.5):

area(b(bg)
I0U(b,bg) = W. 1)

Here, area(b (N bg)and area(b ] by ) respectively denotes the intersection and union of the predicted
and ground truth BBs. The other ones that do not meet above two conditions are regarded as False
Positive (FP). In addition, if there are no more than one FP for one by, the b with max p will still be
regarded as TP while the other ones will be regarded as FPs. For one special category, all relative TPs
and FPs are counted from the whole testing images. Based on the TP and FP, the precision P(«) and

recall R(a) are defined as follows:
TP

P(a) = TP+ EP’ 2)
TP
R(lx) = m/ (3)

where FN and « respectively denote the number of false negatives and the confidence threshold.
The precision P(«) and recall R(«x) can be determined as a function of the confidence threshold «.
By computing the average value of Precision over Recall with different Recall value ranging from
0 to 1, the AP can be obtained. Finally, the mean AP (mAP) of all categories is defined as the final
detection indicator.

3.4. Experiment Details

In our experiment, our training strategies mostly follow the RFBNet, including hard negative
mining, data augmentation, some hyperparameters like default box scale and ratios. For better
initialization for parameters, our model is trained from a pre-trained VGG model. In addition, all our
training experiments are implemented on a Nvidia Tesla P100 GPU (Santa Clara, CA, USA) with batch
size 16 for 240 k iterations. In particular, when compared with other published models, our detectors
are evaluated on Nvidia 2080Ti GPU.

When testing our detector on a testing subset of the DOTA dataset, we directly set each
raw image as our input. A sliding window of 800 x 800 scans the input image with a stride of
150 x 150 to generate a set of image patches. Then, the detector detects objects on each patch
and outputs detecting results. The outputs are merged to make up the final results of raw whole
image. The Non-maximum suppression (NMS) with IoU threshold is set as a 0.3 to filter overlapped
boxes. In particular, we implement our detector based on the Pytorch framework and will open the
code at https:/ /github.com/pioneer2018/dtdm-di. For fair comparison, we preserve the most of
original RFBNet.
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4. Results

In this section, we set groups of ablation experiments to evaluate our detector and compare our
detector with some state-of-the-art detectors. We first show the impact of each part of DTDM and
evaluate the effectiveness of merged DTDM. Then, the evaluation of Dense Inception is presented.
In particular, all ablation experiments are conducted via cropped val dataset, while the final detector is
evaluated via official test dataset for comparison with state-of-the-art detectors. The results of DOTA
dataset here are obtained by submitting our predictions to the official DOTA evaluation server. All
results of experiments are shown and clarified in following subsections. Some visualization results of
detection on DOTA dataset are shown in Figure 6. The figure shows that our model performs well on
detecting multiple categories, especially in small and multi-scale objects in dense-targets scenes like
ship, storage-tank and car.

4.1. Ablation Experiments

4.1.1. DTDM

Since DTDM consists of two parts: we evaluate the impact of each part of DTDM. It can be
shown in Table 1 that the baseline network RFBNet performs poorly on some categories like small
object: SV (small vehicle), HC (helicopter), large object: GTF (ground track field), and various-scale
object: bridge. When each part of DTDM is integrated into the model, respectively, there is obvious
improvement on bridge, SV (small vehicle), and RA (Roundabout). In contrast, there is a much
greater increase on HC (helicopter) for integration with part A, while a big improvement on bridge,
RA (Roundabout) for integration with part B. When we apply merged DTDM into our model, we obtain
an even better result than that of each part of DTDM. Finally, our model is 2.35% mAP better than a
baseline network, which verifies the effectiveness of DTDM.

Table 1. Quantitative comparison of baseline and dual top-down module (DTDM) on the DOTA dataset.
The images of subset are cropped as 800 x 800 size. The best result in each category is highlighted
in bold.

plane BD  bridge GTF SV LV ship TC
87.9 82.7 46.5 62.1 574 77.7 84.6 90.9

BC ST SBF RA  harbor SP HC mAP
76.9 54.8 61.2 54.8 76.8 482 503 67.52

plane BD  bridge GTF SV LV  ship TC
886 829 508 638 623 777 841  90.9

BC ST SBF RA  harbor SP HC mAP
753 555 60.3 60.8 79.3 489 53.8 69.00

plane BD  bridge GTF SV LV ship TC
88.4 81.2 50.2 65.7 60.3 779 844 90.8

BC ST SBF RA  harbor SP HC mAP
74.8 559 59.9 66 80.4 53.2 51.1 69.34

plane BD  bridge GTF SV LV  ship TC
889 796  56.1 66.4 631 763 85 90.8

BC ST SBF RA  harbor SP HC mAP
749  56.3 59.5 66.8 80.8 54.7 49  69.87

baseline val-clipped

baseline+ DTDM part A val-clipped

baseline+ DTDM part B val-clipped

baseline+ DTDM val-clipped
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Figure 6. Some visualization results detected on the DOTA dataset. The red bounding boxes represent
the location of objects and the green ones represent the label.
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4.1.2. Dense Inception

Table 2 shows that there is obvious improvement among most categories. In particular, the
improvement is concentrated mainly on large-scale objects (GTF) and changeable-scale ones (bridge,
ST, RA). As has been analyzed in Section 2.2, atrous convolution causes some loss of local information
and decreased correlation of adjacent pixels. We apply dense connection instead of larger atrous
rate to atrous convolution. This structure yields a larger receptive field with more effective semantic
information, which is helpful for detecting large-scale and changeable-scale objects. Furthermore, the
integration of Dense Inception and DTDM leads to better performance at 70.37% mAP. Compared to a
baseline network, there is a 2.87% mAP increase, while, compared to DTDM and RFBNet, there is a
0.5% mAP and 1.46% mAP increase, respectively.

Table 2. Quantitative comparison of baseline and Dense Inception on val subset of the DOTA
dataset.The images of subset are cropped as 800 x 800 size. The best result in each category is

highlighted in bold.
plane BD  bridge GTF SV LV  ship TC
879 827 46.5 62.1 57.4 777 846  90.9
baseline val-clipped
BC ST SBF RA  harbor SP HC mAP
769 548 612 5438 768 482 503 6752
plane BD bridge GTF SV LV  ship TC
88.5 80.1 49.2 66.3 59 777 845 908
baseline+Dense Inception val-clipped

BC ST SBF RA  harbor SP HC mAP
749 56.7 61.9 63.2 77.5 51.3 52.1 68.91

plane BD bridge GTF SV LV  ship TC
88,5 79.8 55.4 67.6 62.1 78 846 90.8

BC ST SBF RA  harbor SP HC mAP
755  57.5 61.7 65.3 80.9 522 55.6 70.37

baseline+DTDM+Dense Inception  val-clipped

4.2. Comparison with the State-Of-The-Art

Besides the official baseline given by DOTA team, we also compare with You Only Look Once
9000 (YOLOV2) [26], Region-based Fully Convolutional Networks (R-FCN) [27], REBNet, FPN, Image
Cascade Network (ICN) [28], and IoU-Adaptive R-CNN [29], all of which once achieved excellent
accuracy of detection. Table 3 presents detailed detection performance of those detectors of DOTA
dataset both in detection accuracy and speed. We obtain first place among the published articles on
DOTA at 73.49% mAP. In addition, our detector achieves best detection accuracy in about half of
the categories. Compared with the baseline network, our model increases mAP by 2.66% for overall
detection performance and we have achieved better results in all categories except BD. Compared with
IoU-Adaptive R-CNN and ICN, which achieve best performance among all published methods, our
detector gains better detection result. In the perspective of detection speed, our method gains much
faster speed with 11 FPS than other two-stage detectors like loU-Adaptive R-CNN with 5 FPS.

Figure 7 presents some visualization results of detection in different scenes where the figures of the
left side and right side, respectively, represents the visualization of the baseline network and our model.
It can be seen that both the baseline method and our method perform well in Figure 7a,b. Figure 7c-h
present the fact that our method performs much better in detecting small-scale and changeable-scale
objects. In addition, in target-dense scenes, our model can cover many more objects than the baseline
network does.
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Table 3. Comparative experiments of our method and some classic methods on the horizontal bounding
boxes (HBB) task in original test subset of DOTA dataset. The best result in each category is highlighted
in bold.

SSD [11] YOLOv2[26] R-FCN[27] RFBNet[13] FPN[9] ICN[28] IoU-Adaptive R-CNN [29] Ours

plane 57.85 76.90 81.01 87.96 88.70 89.97 88.62 88.36
BD 32.79 33.87 58.96 84.46 75.10 77.71 80.22 83.90
bridge 16.14 22.73 31.64 38.50 52.60 53.38 53.18 45.78
GTF 18.67 34.88 58.97 66.31 59.20 73.26 66.97 67.24
SV 0.05 38.73 49.77 72.10 69.40 73.46 76.30 76.80
LV 36.93 32.02 45.04 73.31 78.80 65.02 72.59 77.15
ship 24.74 52.37 49.29 81.74 84.50 78.22 84.07 85.35
TC 81.16 61.65 68.99 90.64 90.60 90.79 90.66 90.77
BC 251 48.54 52.07 84.53 81.30 79.05 80.95 85.55
ST 47.47 33.91 67.42 64.69 82.60 84.81 76.24 75.77
SBF 11.22 29.27 41.83 55.94 52.50 57.20 57.12 54.64
RA 31.53 36.83 51.44 56.41 62.10 62.11 66.65 60.76
harbor 14.12 36.44 45.15 69.96 76.60 73.45 74.08 71.40
SP 9.09 38.26 53.3 75.23 66.30 70.22 66.36 77.99
HC 0.0 11.61 33.89 60.62 60.10 58.08 56.85 60.94
FPS - - - 14 - - 5 11
mAP 29.86 39.20 52.58 70.83 72.00 72.45 72.72 73.49

(a) airplane (b) airplane

(c) storage tank (d) storage tank

Figure 7. Cont.
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(e) ship (f

=

ship

(g) roundabout (h) roundabout

Figure 7. Some results visualization detection. The left side: results of the baseline network. The right
side: results of our model. The red bounding boxes represent the location of objects and the green ones
represent the label.

5. Discussion

The above experiment results show that, compared with other published methods, our detector
achieves higher mAP than other one-stage detectors and outperforms other two-stage detectors both
in detection accuracy as well as speed on the DOTA dataset. From the perspective of both detection
accuracy and speed, our detector achieves state-of-the-art detection performance. With the integration
of DTDM and Dense Inception, we further enhance the baseline network, excellent one-stage detector
RFBNet, by 2.66% mAP with a little loss in detection speed. In particular, DTDM enhances the ability
of the feature representation of the backbone network to a large extent, which mainly improves the
performance of detecting small and changeable-scale objects. In addition, Dense Inception further
improves the detection accuracy by effectively increasing the receptive field, which is beneficial for
detecting objects in complicated remote scenes. Compared to the work of Azimi et al. [28] and Yan et
al. [29], which get the best detection performance among published methods, our method achieves
even better detection accuracy and speed.

In the meantime, our detector performs relatively poorly in categories like bridge, GTF (ground
track field), ST (storage tank) and RA (roundabout). We think there are two factors mainly resulting
in this issue. On the one hand, Table 4 presents an extremely uneven number of the distribution of
categories. There are numerous vehicles (SV, LV), but far less objects like GTF (ground track field), SBF
(soccer ball field) and HC (helicopter). The sample lack of those categories makes it hard to fully train
the model for detecting them. On the other hand, it is difficult to detect multi-scale objects that cover
quite a wide range in size. Remote sensing images contain many special categories, which possess
lots of large-scale objects, and these objects are easily cut to several slices when testing on cropped
800 x 800 images. Incomplete objects bring extra difficulty to our detection model.
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Table 4. Labeled sample number distribution of all 15 categories from train and val subset of the
DOTA dataset.

plane BD  bridge GTF SV LV ship TC
10586 629 2511 469 31564 21356 37028 3127

ST SBF RA  harbor SP HC All
647 7917 479 578 8073 2176 703 127843

train + val DOTA subset

In addition, there are some misclassifications that cause some performance loss of detection.
In Figure 8, the confusion matrix obtained by our model presents classification details among 15
categories and backgrounds. The misclassifications are located between some categories, such as GTF
(ground track field) and SBF (soccer ball field), HC (helicopter) and plane, especially between objects
and bg (background). The improvement of classification performance will be considered in the future.

bg 0.9
plane [o.080
BD |0.142 0.8
bridge |o.310 0.003
0.7
GTF |o.196
SV |o0.192 0.6
LV [o.113
% ship [o.075 40.5
g TC |o.053 0.002
F 10.4
BC|o.155
ST |o0:330
40.3
SBF |0.271 0.007 0.013
RA [o0.271 0.012 1o0.2
habor |o.159 0.006
SP |0.305 10.1
HC |o0.113 o0.200
o o A L > > o U U F w o< 5 a o — 00
o S m E b O 2 F @ w o 8§ w I
© (O] [ [7p] <
Q <

bridge

Predicted label

Figure 8. Confusion matrix obtained by our model on the DOTA validation subset.

In future study, we will change our loss function in response to an unbalanced distribution
of samples and misclassifications among categories. The adaptive weight of each category will be
added to the loss function to adapt to particular categories with a lack of samples. The strategy to
learn semantic similarity directly from deep features [30] may be useful to decrease misclassifications.
In addition, we will try to introduce an image pyramid into data preprocessing before training to better
detect multi-scale objects. In addition, it has been proved that adding extra prior information to the
model is the key to help improve the achievement of some tasks [31,32]. We will attempt to redesign
our model to utilize other related prior information to enhance the detection.
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6. Conclusions

In this paper, we propose a powerful one-stage object detector. In order to improve the
performance while maintaining the high detection speed, we choose the lightweight network VGG16 as
our backbone network. However, the performance of a lightweight network on feature representation
remains to be enhanced and it is hard to adapt to the characteristics of remote sensing images. In order
to improve the performance of detectors in remote sensing images, especially on detecting a small and
changeable-scale, we choose to handle the problem by multi-layer feature fusion. In the meantime,
a deeper network means better capability of feature representation. Furthermore, we introduce Dense
Inception to deepen and widen the network with little computation cost. From all of the experiment
results, both methods contribute a lot to the improvement of detecting performance. On the one
hand, DTDM integrates multiple features from multiple layers via two branches. Each branch plays a
different role in the fusion of features and the experiment shows that the impact of two branches are
complementary for improving detection accuracy. On the other hand, Dense Inception adopts atrous
convolution with an increasing atrous rate. The structure of dense connection yields a larger receptive
field and avoids much loss of information, which brings an improvement in detecting multi-scale
and changeable-shape categories. For further work, we plan to apply our model to other lightweight
backbone networks like MobileNet-SSD to achieve more real-time detection speed.
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