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Abstract: As an important land-surface parameter, vegetation phenology has been estimated from
observations by various satellite-borne sensors with substantially different spatial resolutions, ranging
from tens of meters to several kilometers. The inconsistency of satellite-derived phenological metrics
(e.g., green-up date, GUD, also known as the land-surface spring phenology) among different spatial
resolutions, which is referred to as the “scale effect” on GUD, has been recognized in previous studies,
but it still needs further efforts to explore the cause of the scale effect on GUD and to quantify the scale
effect mechanistically. To address these issues, we performed mathematical analyses and designed
up-scaling experiments. We found that the scale effect on GUD is not only related to the heterogeneity
of GUD among fine pixels within a coarse pixel, but it is also greatly affected by the covariation
between the GUD and vegetation growth speed of fine pixels. GUD of a coarse pixel tends to be closer
to that of fine pixels with earlier green-up and higher vegetation growth speed. Therefore, GUD of
the coarse pixel is earlier than the average of GUD of fine pixels, if the growth speed is a constant.
However, GUD of the coarse pixel could be later than the average from fine pixels, depending on the
proportion of fine pixels with later GUD and higher growth speed. Based on those mechanisms, we
proposed a model that accounted for the effects of heterogeneity of GUD and its co-variation with
growth speed, which explained about 60% of the scale effect, suggesting that the model can help
convert GUD estimated at different spatial scales. Our study provides new mechanistic explanations
of the scale effect on GUD.

Keywords: land surface phenology; scale effect; spatial heterogeneity; spring phenology; spatial
resolution; vegetation index; vegetation growth speed

1. Introduction

Land-surface phenology, reflecting the seasonality of vegetated land surface detected by remotely
sensed imagery, has attracted increasing attention in recent decades, as it provides an independent,
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long-term, globally sensed measure for assessing ecosystem responses to climate change [1–3].
Although significant progress has been made to detect phenology metrics, particularly the green-up
date (GUD), based on vegetation index (VI) time-series, there is still considerable inconsistency in the
detected land-surface phenology among different sensors [3–5], thus posing challenges in the precise
quantification of vegetation phenological changes and their responses to climate change at a large scale.
The inconsistency may be caused by differences in imaging condition, spectral response functions of
sensors and geometric registration. It can also be caused by the difference of spatial resolutions of
employing VI, data because sensors with different spatial resolutions observe vegetation at various
scales, ranging from individual species to complex landscapes that consist of various vegetation types
and phenological timings.

Previous studies have found that the value of a phenological metric at coarse resolution is not
necessarily equal to the average of the metric at fine resolution for the same footprint, which is known
as the “scale effect” [5,6]. Understanding how the scale effect influences land-surface phenology
detection is becoming a fundamental point for cross-scale comparisons and validation of phenology
metrics against field observations [5–7].

Generally, the scale effect arises from the heterogeneity of a land surface that contains various
compositions of plant species and/or land-cover types (both can be regarded as endmembers in spectral
mixture models), and these species or land-cover types differ in terms of phenological metrics [1,5,8–11].
Three main questions arise with regard to cross-scale comparisons and ground-based validation of
phenology metrics and their changes. (1) Is there a systematic difference in the detected phenology by
using VI datasets with different spatial resolutions? (2) What are the factors accounting for the scale
effect? (3) How do these factors contribute to the scale effect? Several studies have made valuable
attempts to answer these questions.

As for the first question, previous studies have confirmed differences in detected GUDs between
sensors with different spatial resolutions. Fisher and Mustard [12] compared the GUD from
Moderate-resolution Imaging Spectroradiometer (MODIS) with the average of GUD of corresponding
Landsat pixels. The difference between them ranged from 0 to more than 25 days, but no systematic
difference was found. Zhang et al. [5] compared GUD from 30-m Landsat-MODIS fused data with that
from 450-m Visible Infrared Imaging Radiometer data and found that the GUD at the coarser scale is
only about 30 percentile of the GUD in corresponding fine pixels. However, Peng et al. [7] showed
that the percentile value varied substantially across different landscapes and ecosystems. Obviously,
changes in the percentile values are expected because of the presence of spatiotemporal variations
in the distribution of GUD values of fine pixels within a coarse pixel. Therefore, the question of
whether there is a systematic difference in detected phenology by using datasets with different spatial
resolutions still needs to be clarified.

With regard to the second and third questions, surface heterogeneity of vegetation types (or
endmembers) of fine pixels within a coarse pixel is an obvious source of the scale effect. Several studies
found that there is a strong correlation between surface heterogeneity and the scale effect. Fisher and
Mustard [12] suggested that high spatial variability of vegetation within MODIS pixels may have
caused the difference between MODIS GUD and the average GUD of corresponding Landsat pixels.
This result was further supported by later studies. Zhang et al. [5] showed that the scale effect is
associated with the heterogeneity of GUD values, but did not describe a mechanism. Moreover, based
on a mixed pixel simulation experiment, Chen et al. [11] demonstrated that, in addition to changes in
fractions of endmembers and in GUD values of endmembers in a coarse pixel, the GUD of a coarse
pixel could be greatly changed by annual maximum values of fine VI times-series. These findings
suggest that the scale effect is not simply caused by the heterogeneity of vegetation types or GUD
values of fine pixels within a coarse pixel. Thus, despite previous exploration of potential factors
affecting the scale effect, the mechanism underlying it is still not clear.

In this study, we systematically investigated the factors that may influence the scale effect and
further developed a multivariate scale-effect model to account for bias of GUD among different spatial
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resolutions. Our aims were two-fold: (1) to assess whether there are systematic differences in GUD
among different scales caused by those factors; and (2) to identify the mathematical relationship
between the scale effect and the factors.

2. Theoretical Analyses of the Scale Effect of VI on GUD Detection by Using
Two-Endmember Scenarios

2.1. Defining GUD in VI Time-Series

We determined GUD by using Zhang’s logistic method [13], because it has been employed in
MODIS land-surface phenology products [2]. To be exact, we first used the four-parameter logistic
function to fit the VI time-series during a rising period, which is from the start of a year to the date
when the annual maximum VI occurs:

VIfit(t) =
C

1 + ea+bt
+ d (1)

where t is the day of year (DOY), and VIfit(t) is the fitted VI value at t. The parameter c represents the
difference between annual maximum and minimum VI values, and d is the background VI value. The
parameter a controls the translation of the time-series and parameter b is associated with the rate of
VI increase.

Then, from the fitted logistic curve of Equation (1), the curvature (K) of VIfit(t) can be calculated as:

K =
VIfit(t)

′′(
1 +

(
VIfit(t)

′
)2

)3/2
(2)

Thus, the GUD is defined as the date when the rate of change of the K reaches its first local
maximum value. Note that VIfit(t)

′ and VIfit(t)
′′ are the first and second order derivatives of VIfit(t)

with respect to t, K is thus independent of the constant addition item d (the background values of VI
times-series). As a result, GUD is determined by the parameters a, b, and c.

2.2. Defining the Scale Effect of VI on GUD Estimation

The GUD at a coarse pixel (GUDcoarse) was directly estimated from the VI time-series of the coarse
pixel. To compare GUDcoarse with the GUD of fine pixels (GUDfine) at a same footprint, we aggregated
GUDfine covered by the coarse pixel through averaged approach (calculating the unweighted average
of GUDfine) as suggested by Peng et al. [7]. The result was noted as GUDfine−ave. Thus, we evaluated
the scale effect of GUD using the difference between GUDcoarse and GUDfine−ave, expressed as:

Bias = GUDcoarse −GUDfine−ave (3)

Given that GUD is estimated from the logistic function, we can infer that GUDcoarse is controlled
by its own fitting parameters acoarse, bcoarse, and ccoarse, and the GUDfine−ave is determined by the fitting
parameters (i.e., afine, bfine, and cfine) of fine VI time-series. Then, we used the linear mixing model of VI
times series to link the parameters at different scale, that is, the VI at a coarse pixel (VIcoarse) is assumed
to be a linear mixture of the total number of VIs at fine pixels within the coarse pixel, expressed as:

VIcoarse =
1
n

∑n

i=1
VIi

fine (4)

where n is the number of fine pixels within the coarse pixel. Although the normalized difference
vegetation index (NDVI) value of a coarse pixel tends to be slightly lower than the average of NDVI of
corresponding fine pixels [14], it only introduces small errors when modeling the coarse VI time-series
(i.e., EVI time-series) from fine pixels by a linear mixture model [6,15,16]. Based on Equation (4),
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parameters acoarse, bcoarse, and ccoarse of a coarse VI time-series are closely related to the corresponding
fine VI time-series and their parameters (i.e., afine, bfine, and cfine). Thus, the bias value in Equation (3)
is a function (f ) of the controlling parameters of fine pixels, expressed as:

Bias = f (afine, bfine, cfine) (5)

2.3. Factors Influencing the Scale Effect on GUD Estimation

To clarify the key factors influencing the scale effect of GUD estimation, we first investigated the
two-pixel mixture case. As suggested in Section 2.2, the scale effect can be expressed as:

Bias = f (afine,1, bfine,1, cfine,1, afine,2, bfine,2, cfine,2) (6)

Considering that the parameters a, b and c are less intuitive, we replaced them by using GUD,
length of the period (MP) from GUD to maturity date (MD) and greenness change (GC). Here, the
maturity date was calculated as the date when the rate of change of the curvature of a logistic function
fitted by VI time series reaches the second local maximum value from the start of a year [13]. The GC is
defined as the difference between minimum VI before GUD and annual maximum VI (See Figure 1).
According to Shang et al. [17], the parameters a, b, and c can be expressed by GUD, MP, and GC,
as (details are given in Appendix A):

a = log_e
(
5 + 2 √6

)
×

(
1 +

2GUD
MP

)

b =
−2× loge

(
5 + 2

√
6
)

MP
c = GC (7)

The meanings of the parameters GUD, MP and GC are easy to understand. The MP and GC
represent the growth speed of VI, defined as the amount of increasing in VI per unit time, at the
horizontal axis (time required) and vertical axis (the range of VI). Therefore, the Bias in the left of
Equation (1) can be represented as a function of GUD, MP and GC, and Equation (6) can be rewritten as:

Bias = f (GUDfine,1, MPfine,1, GCfine,1, GUDfine,2, MPfine,2, GCfine,2) (8)

Previous studies have suggested that the scale effect is mainly caused by the difference among
fine pixels within a coarse pixel [5,6,18]. Based on Equation (8), we therefore assume that the bias is
mainly influenced by the difference in the parameters between two fine pixels (i.e., ∆GUDfine, ∆MPfine,
and ∆GCfine). Thus, Equation (8) becomes:

Bias = f
(
∆GUD f ine, ∆MP f ine, ∆GC f ine

)
(9)

The three factors (∆GUDfine, ∆MPfine and ∆GCfine) are considered as the biophysical factors that
influence the GUD at coarse pixels, which is illustrated in Figure 1.
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Figure 1. Illustration of three factors (∆GUDfine, ∆MPfine, ∆GCfine) for a composite case in which the
coarse pixel contains two fine pixels. Two fine pixels were represented as the double-logistic curves to
illustrate the whole vegetation index (VI) time-series of vegetation. MD refers to the maturity date.

2.4. Form of Function f in Equation (9)

We divided the function f in Equation (9) into two parts: (1) the bias caused only by ∆GUDfine,
and (2) the bias caused by heterogeneity of growth speed at a given ∆GUDfine, expressed as:

Bias = bias∆GUDfine + bias∆MPfine,∆GCfine |∆GUDfine (10)

For simplicity, we assume that the effects of ∆MPfine and ∆GCfine on Bias are independent of each
other, so Equation (10) can be rewritten as:

Bias = bias∆GUDfine + bias∆MPfine |∆GUDfine + bias∆GCfine |∆GUDfine (11)

To be strict, the effects of ∆MPfine and ∆GCfine may not be independent and thus there may
be interactions between ∆MPfine and ∆GCfine at a certain ∆GUDfine. However, incorporating the
interaction effect could make the scale-effect model more complicated and difficult to parameterize. We
thus employed the three main items in Equation (11) and investigated the performance of the model in
explaining the scale effect.

We explored the possible function forms of each item in Equation (11) by conducting simulation
experiments for three scenarios. In scenario I, we simulated two VI curves for the fine pixel 1 and
pixel 2 with different GUD but identical MP and GC. We assumed that GUD for pixel 1 was fixed
DOY 110, whereas the GUD of pixel 2 varied between DOY 90 and 130 (the GUD difference changes
from −20 to 20 days), which was used to analyze variation in ∆GUDfine (Figure 2a). This scenario
shows that bias∆GUDfine values varies with ∆GUDfine in a quadratic function (Figure 2d):

bias∆GUDfine = c1∆GUD2
fine (12)

where c1 is the fitting parameter. Negative bias in Figure 2d suggests an advanced GUDcoarse caused
by the scale effect, indicating that ∆GUDfine between fine pixels will lead to an earlier GUDcoarse.
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pixel 2. The dashed lines represent the proposed function forms (Equations (12) and (13)) used to fit
these bias values. (g–i) Fitting performance of each function form, respectively.

In scenario II, we investigated the effect of ∆MPfine on bias (bias∆MPfine |∆GUDfine ) at different levels
of ∆GUDfine (Figure 2b). The MP in pixel 1 was fixed at 75 days, whereas that of pixel 2 changed from
55 to 95 days to simulate different ∆MPfine values (−20 to 20 days). In addition, we set the GUD of pixel
1 from DOY 90 to 130 and fixed the GUD in pixel 2 at DOY 110 to simulate different levels of ∆GUDfine

(−20, −10, 0, 10, 20 days). As shown in Figure 2e, at a given level of ∆GUDfine, the bias caused by
∆MPfine approximately follows a linear function. In addition, a greater effect of ∆MPfine on bias is
observed when ∆GUDfine is larger (Figure 2h). Scenario III (Figure 2c) was the same scenario II but for
∆GCfine. Similarly, we obtained linear functions between the bias and ∆GCfine (Figure 2f). Based on
these observations, we used the following equations to describe their effect in scenarios II and II:

bias∆MPfine |∆GUDfine = c2∆GUDfine × ∆MPfine

bias∆GCfine |∆GUDfine = c3∆GUDfine × ∆GCfine (13)

where c2 and c3 are the fitting parameters.
The linear fitting using Equation (13) achieved R2 values of 0.941 and 0.969 for these variables

(Figure 2h,i); the former (∆GUDfine × ∆MPfine) showed a negative slope and the latter (∆GUDfine ×

∆GCfine) had a positive slope. Note that a smaller MP and a greater GC both indicate a greater growth
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speed. The form of Equation (13) suggests that the synchronous change of GUD and growth speed (i.e.,
positive sign of ∆GUDfine × ∆GCfine) can delay GUDcoarse and vice versa.

In summary, given that the GUD is derived from the VI curve in the logistic-form, results of the
simulation experiments suggest that heterogeneity of ∆GUDfine leads to an earlier GUDcoarse, and
this advance in GUDcoarse is further adjusted by the relationship between ∆GUDfine and ∆MPfine or
∆GCfine, which can enhance or offset the negative bias in GUDcoarse depending on the reversal and
synchronous changes between the GUD and growth speed. Further, it can be deduced that the detected
GUD of a coarse pixel is closer to the fine pixel with an earlier GUD and a faster growth speed (shorter
MP and greater GC).

By combining Equations (11)–(13), we achieved the final model for estimating the scale effect of
GUD for the two-endmember case:

Bias = c1∆GUD2
fine + c2∆GUDfine × ∆MPfine + c3∆GUDfine × ∆GCfine (14)

Following the function form, we generalized Equation (14) for the multi-endmember case by using
variance and covariance (i.e., varGUD, covMP,GUD, and covGC,GUD instead of ∆GUD2

fine, ∆GUDfine ×

∆MPfine, and ∆GUDfine × ∆GCfine, respectively):

Bias = c1varGUDfine + c2covMPfine,GUDfine + c3covGCfine,GUDfine (15)

Next, we describe a series of experiments designed to test Equations (14) and (15).

3. Experimental Design

3.1. Simulation Experiments Based on PhenoCam Sites Data

3.1.1. Phenology Observations

We collected some typical vegetation greenness annual curves from eight phenological camera
observation sites (Table 1) provided by the PhenoCam website [19] (https://phenocam.sr.unh.edu/

webcam/). PhenoCam data were used because digital photographs at the ground were cloud-free and
were taken repeatedly at a high temporal frequency (e.g., 0.5 h). We calculated the green chromatic
coordinate (GCC) and used it as the indicator of land-surface greenness, according to previous
studies [20–22]:

GCC =
G

R + G + B
(16)

where R, G, and B represent digital numbers at the red, green, and blue bands, respectively. We
generated the time-series of GCC to represent the annual greenness change of vegetation at each site
(Figure 3).

Table 1. Details of the eight sites where data were gathered for GCC curves used for the simulation. The
abbreviations of vegetation types are switchgrass (SG), miscanthus (MC), grassland (GR), deciduous
needleleaf (DN), deciduous broadleaf (DB), mixed vegetation (MX), shrubs (SH), and tundra (TN).

Site ID Site Name Type Year Longitude Latitude GUD MP GC

WG uiefswitchgrass SG 2014 −88.197 40.064 118.2 28.0 0.073
MC uiefmiscanthus MC 2012 −88.198 40.063 116.2 28.2 0.082
UP uiefprairie GR 2011 −88.197 40.064 98.1 45 0.112
TG torgnon-ld DN 2013 7.561 45.824 156.0 16.9 0.087
BV bitterootvalley DB 2014 −114.091 46.507 110.3 51.8 0.065
CO canadaOBS MX 2012 −105.118 53.987 86.4 88.1 0.054
CC contactcreek SH 2012 −155.923 58.208 154.6 32.7 0.033
CV coville TN 2011 −155.563 58.803 141.7 92.3 0.030

https://phenocam.sr.unh.edu/webcam/
https://phenocam.sr.unh.edu/webcam/
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TG torgnon-ld DN 2013 7.561 45.824 156.0 16.9 0.087 
BV bitterootvalley DB 2014 −114.091 46.507 110.3 51.8 0.065 
CO canadaOBS MX 2012 −105.118 53.987 86.4 88.1 0.054 
CC contactcreek SH 2012 −155.923 58.208 154.6 32.7 0.033 
CV coville TN 2011 −155.563 58.803 141.7 92.3 0.030 
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We used the PhenoCam data to test the two-endmember model in Equation (14). For this, we 
repeatedly chose two curves from the eight GCC curves (Figure 3) at each time, which generated a 
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Figure 3. Green chromatic coordinate (GCC) curves of eight vegetation sites derived from PhenoCam
data. The vegetation type at each site (identification (ID) in parentheses) is listed in Table 1.

3.1.2. Testing the Two-Endmember Model

We used the PhenoCam data to test the two-endmember model in Equation (14). For this, we
repeatedly chose two curves from the eight GCC curves (Figure 3) at each time, which generated a
total of 28 combinations. In each combination, we first mixed the two curves (GCCfine) with equal
proportions to simulate the GCC curve of a coarse pixel (GCCcoarse) according to Equation (4). We then
calculated ∆GUDfine, ∆MPfine, and ∆GCfine between the two GCCfine curves. The bias, as an indicator
of the scale effect (Equation (3)), was calculated as the difference between the GUD of GCCcoarse

and the average of GUD of the two GCCfine curves. The model includes three influential factors
(∆GUDfine, ∆MPfine, and ∆GCfine), so for comparison, we also performed linear fitting at each time by
only employing one factor. Finally, the bias values in all 28 combinations were fitted by the proposed
two-endmember model and the one factor linear model, respectively. Because different equations
may have different numbers of parameters, we calculated the adjusted R2 and root-mean-square error
(RMSE) for evaluations.

3.1.3. Testing the Multi-Endmember Model Based on SIMMAP Simulated Data

We tested the multi-endmember model by using the data simulated by the SIMMAP (simulación
de mapas) software [23]. The software can generate landscape spatial patterns that contain various
categories of different degrees of landscape fragmentation based on the modified random cluster
method. The degrees of landscape fragmentation were control by parameter p, which was defined as
the initial probability that a pixel was marked. The larger the p parameter, the smaller the number of
patches and the more homogeneous the surface (as shown in Figure 4). More detailed descriptions and
download links of SIMMAP can be found on the website: http://www2.montes.upm.es/personales/
saura/software.html.

We first generated three images (1000 × 1000 pixels) as fine resolution images with different
degrees of landscape fragmentation, controlled by the parameter p in SIMMAP (p = 0.45, 0.50, 0.55;
Figure 4). In each image, we included the eight vegetation types with equal proportion, and for each
type a PhenoCam GCC curve (Table 1) was assigned. We then scaled up the three fine resolution images
to coarser with aggregation rates of 3 × 3, 4 × 4, . . . , 20 × 20 pixels (Figure 5a,b) based on Equation (4).
GUDcoarse, corresponding GUDfine−ave, and three model parameters (i.e., the variance and covariance)
were then calculated from coarse and fine resolution images (Figure 5c,d). The bias values were thus

http://www2.montes.upm.es/personales/saura/software.html
http://www2.montes.upm.es/personales/saura/software.html
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calculated as the difference of GUDcoarse and GUDfine−ave. Finally, we tested our multi-endmember
model on bias at each scale respectively. Note that we randomly split all of the pixels into two-thirds
for training (determining the three coefficients in Equation (15)) and one-third for validation.
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3.2. Testing the Multi-Endmember Model Based on Landsat-MODIS Fused EVI2 Data

We further employed the same satellite data used by Zhang et al. [5] to test the multi-endmember
model. The GUDfine image (Figure 6) was estimated form Landsat-MODIS fused EVI2 (a two-band
EVI [24]) in 2014 with a spatial resolution of 30 m and a frequency of 3 days. The study area was in
central Iowa, USA, and mainly includes nine land-cover types: corn, soybean, hay, other crops, grass,
forests, shrubs, non-vegetated areas, and open water/wetlands. More detailed information regarding
the data was reported by Zhang et al. [5].Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 20 
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Figure 6. The GUD detected from fine resolution MODIS-Landsat fused EVI2 images.

Likewise, we simulated coarser satellite images by up-scaling the EVI2 data from 30 m to 150, 210,
270, 330, 390, and 450 m, which corresponds to aggregation rates of 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13,
and 15 × 15, respectively. During this process, we excluded some pixels with missing observations or
inaccurate phenology estimations, as suggested by Zhang et al. [5]. Up-scaling operations can avoid
the errors caused by geometric registration, atmospheric effect, and sensor differences, which allowed
us to focus on the scale effect rather than other factors. We again randomly selected two-thirds of the
pixels as training data and the remaining pixels were used for validation.

4. Results

4.1. Performance of the Two-Endmember Model

Performance of the two-endmember scale-effect model on 28 mixed GCC curves is shown in
Figure 7. It can be seen that the two-endmember model achieved good performance (R2

adj = 0.826,
RMSE = 5.53 days), suggesting its ability to account for the scale effect (Figure 7a). Linear models
with only one factor performed poorly, with R2

adj < 0.2 and RMSE > 12 days (Figure 7b–d). These
investigations emphasized that integrating the three influential factors with a proper function form is
very important for explaining the scale effect.
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Figure 7. (a) Model fitting using the two-endmember model (Equation (14)) and (b–d) linearly fitting
using only one of the three influential factors. Note that the bias is unrelated to the sign of the factor in
three linear factor models, so we used the absolute values of the factors in (b–d) to not account for their
signs. ** p < 0.01, * p < 0.05.

4.2. Performance of Multi-Endmember Model Based on SIMMAP Simulated Data

We showed the changing patterns of the average of bias (bias) values at different scales for the
training and validation datasets, respectively (Figure 8a,d). The average of bias (negative values)
decreases as scale becoming coarser under all conditions of landscape fragmentation (p = 0.45, 0.50,
and 0.55), suggesting a greater scale effect for larger differences of spatial resolution between images.
Moreover, we found larger absolute values of bias in the image with higher landscape fragmentation
(i.e., lower p values), which suggests that the scale effect is more obvious in heterogeneous areas.
We used the proposed multi-endmember model to fit the bias values and achieved R2 > 0.6 for all
landscapes, both for training and validation data (Figure 8).
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Figure 8. (a,d) The average of bias values change as the training and validation dataset scale (size of
the aggregated window) changes; (b–f) Performance of the multi-endmember model at different scales
for training and validation datasets in terms of the R2 and root-mean-square error (RMSE, days) values.

4.3. Performance of Multi-Endmember Model Based on MODIS-Landsat Fused EVI2 Data

We presented the average of bias values at various scales of Landsat-MODIS fused EVI2 images
in Figure 9a,d. We found a similar decreasing pattern at the larger scale, as that in Figure 8, which
confirms a more considerable scale effect when the spatial resolution became coarser. We fitted these
bias values by using our multi-endmember model and achieved the performance with R2 > 0.56 and
RMSE < 2.3 days. Taking 450-m resolution as an example, we showed the scatter plot (1:1 line) of bias
and predicted bias in Figure 10. An R2 > 0.70 in the validation dataset was achieved by the proposed
model. Furthermore, in addition to the negative bias values, the model can also account for the positive
bias values (Figure 10), suggesting that the new model can explain the delayed GUDcoarse, which was
not well understood in previous studies [6].
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(a) training dataset (b) and validation dataset. ** p < 0.01.

5. Discussion

5.1. Conceptual Explanations of the Scale Effect

Previous studies attributed the scale effect of detected GUD to the heterogeneity of land cover or
GUD [5,6]. However, in this study, we found that the scale effect is explained by the heterogeneities
both of GUD and vegetation growth speed during spring. We further incorporated these factors into
the scale-effect model (Equation (15)) that we developed. The good performance of the model in a
series of experiments provided the rationale for clarifying these influential factors. Here, we further
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demonstrated in detail why the scale effect is influenced by these three factors and how they can be
used to explain some phenomena of caused by scale effect (i.e., the scale effect increases with up-scaling
and GUDcoarse maybe later than GUDfine−ave in some areas).

First, we graphically explain why the detected GUD at a coarse pixel is earlier than the average of
GUDs of all fine pixels within it, a phenomenon reported recently [5], and further why this tendency
is stronger with greater heterogeneity of GUD. We simulated two coarse pixels (pixels A and B in
Figure 11a,b) by the linear spectral mixture model, in which the average GUDs of fine pixels are
identical and all the VI curves of corresponding fine pixels have exactly the same shape (no difference
in GC and MP) but have differences in GUD and their proportions. The heterogeneity of GUD for pixel
B is larger than that for pixel A (bottom-right insets of Figure 11a,b). It can be observed that the VI
curve for pixel B with greater GUD heterogeneity obviously increases earlier in spring than pixel A,
and thus, pixel B has an earlier GUD (Figure 11c). Such an advance (negative bias) is mainly because
the larger number of fine pixels with earlier GUD in pixel B makes a greater contribution to VI values
of the mixed coarse pixel in spring, by the linear spectral mixture model. This simulation experiment
highlights that the spectral mixture process in VI can linearly propagate the heterogeneity of GUD
from the fine scale to the coarse scale, leading to a significant scale effect.
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lines in Figure 12e,f). Consequently, the fine pixel with greater 𝐾  values caused by greater growth 
speed (smaller MP or greater GC) contributes more in the 𝐾  mixing process, making the GUD of 
pixel B or C later than that of pixel A and closer to that of the later fine pixel with faster growth 
speed and greater 𝐾  value (Figure 12b,d). Combining Figures 11 and 12, it is clear that the 
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factors, the more significant the scale effect.  

Figure 11. A simulation experiment is designed to help understand the influence of heterogeneity of
GUD on scale effect. (a,b) Coarse pixels A and B consist of five fine VI curves with five different GUD
values but the same VI curve shape. However, the shape of the coarse VI curves is different from the
shape of fine VI curves. The heterogeneity of GUD is larger in pixel B than that in pixel A, as shown
by the histograms of fine pixel GUD in the bottom-right; (c) The VI curves for coarse pixels A and B
derived from the linear spectral mixture model, respectively. GUDcoarse, B is earlier than GUDcoarse, A

and they are both earlier than GUDfine−ave (the vertical dashed line in the right of GUDcoarse, A).

Next, we demonstrated why heterogeneity of MP and GC under the condition of GUD heterogeneity
can also influence the scale effect. We simulated three coarse pixels (pixels A, B, and C; black lines in
Figures 12a, 12b and 12c, respectively) consisting of two fine pixels with different GUDs (blue and
orange curves). The three coarse pixels have identical GUDs of corresponding fine pixels, but the later
green-up fine pixel (orange line) in pixels B and C has smaller MP or greater GC. It is clear that the
fine pixels with smaller MP or greater GC have greater amplitude of K′ (orange lines in Figure 12e,f).
Consequently, the fine pixel with greater K′ values caused by greater growth speed (smaller MP or
greater GC) contributes more in the K′ mixing process, making the GUD of pixel B or C later than
that of pixel A and closer to that of the later fine pixel with faster growth speed and greater K′ value
(Figure 12b,d). Combining Figures 11 and 12, it is clear that the heterogeneity of GUD, MP, and GC
leads to scale effect from the fine to coarse scales through the linear mixture process both in VI and K′,
meaning that the larger the heterogeneity of the three factors, the more significant the scale effect.
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less sensitive to scale effects, compared with the curvature method [11]. The scale effects on GUD 
estimated using the relative threshold method can also be explained by the three factors proposed 
in this study. 

Figure 12. A simulation experiment is designed to help understand the influence of heterogeneity of
growth speed on scale effect. (a–c) The coarse VI curves (black curves) mixed by two fine VI curves (blue
and yellow curves) with the same ∆GUDfine but different ∆MPfine or ∆GCfine (to represent different
growth speeds); (b–d) The corresponding change rate of curvature (K′) of these VI curves. The K′ of
coarse curves (black solid lines) is approximated by linear mixing of two K′ values of fine curves (black
dashed lines).

Our findings are based on the GUD detected by the curvature method. Here, we further used
the widely-used relative threshold method (10% and 20% relative threshold) to estimate GUD and
investigated whether the scale effect can still be accounted for by the three proposed factors (i.e.,
∆GUD, ∆MP, and ∆GC). We performed the same experiments as those in Figure 2, and found that
the relationship between the GUD bias and the three factors (Figure 13) was similar to those based on
the curvature method (Figure 2d–f). Nevertheless, we observed that the range of the change in the
bias with respect to those three factors based on the relative threshold method seems to be slightly
smaller than that based on the curvature method. For example, when ∆GUD varies between −20 and
20 days, the change of the bias values caused by ∆GUD are 3 and 2.5 days for the curvature method
and the relative threshold method, respectively (comparing Figure 2d–f with Figure 13). These small
differences are probably because the relative threshold method is slightly less sensitive to scale effects,
compared with the curvature method [11]. The scale effects on GUD estimated using the relative
threshold method can also be explained by the three factors proposed in this study.
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Figure 13. The same as Figure 2d–f, but using the relative threshold method. (a–c) bias∆GUDfine ,
bias∆MPfine |∆GUDfine , and bias∆GCfine |∆GUDfine change with the corresponding factors with 10% relative
threshold. (d–f) The same as Figure 13a–c, but using different relative threshold (20%). For comparison,
the range of Y-axis is consistent with that in Figure 2d–f.

We conducted an up-scaling experiment over the contiguous United States. Our results confirmed
the findings in Peng et al. [6] and also found that GUDcoarse occurred later in the processing of up-scaling
in some area, which indicates a positive bias (later green-up for coarse pixel; Figures 7 and 10). The
influence of growth speed of the fine-pixel VI curve may explain these observations. As we discussed
earlier, the scale effect is caused by two kinds of biases (Equation (10)), which are accounted for by the
heterogeneity of GUD and that of growth speed, respectively. The bias due to GUD heterogeneity is
systematically negative (earlier green-up for coarse pixel), but the sign of the second bias depends on
whether the change of GUD and growth speed is synchronous. In other words, when the growth speed
of vegetation with later GUD is significantly greater than that with early GUD, the heterogeneity of
growth speed will lead to a positive bias and even exceed the advanced effect caused by the negative
former bias, eventually resulting in a positive bias. Therefore, our study highlights the importance to
consider the heterogeneity of the growth speed of vegetation in the GUD up-scaling method, rather
than to only consider the heterogeneity of GUD. For example, the spatial variability in the threshold of
percentile method [5], observed by Peng et al. [7], may be caused by ignoring the heterogeneity of
growth speed.

5.2. Implications and Limitations

Understanding the scale effect of the VI on GUD detection is useful for cross-scale comparisons and
validation of satellite VI-derived phenology. Considering the coarse spatial resolution of commonly
used VI products, which ranges from 250 m to 8 km, heterogeneity inevitably exists for most of the
Earth’s land surface and consequently leads to significant discrepancy among cross-scale comparisons
and validations [5,25].

Our analyses suggest that it is helpful to reduce uncertainty to perform cross-scale phenology
validation or evaluation of remote-sensing retrieval of phenology based on observations of a
homogenous land surface in terms of the influential factors (i.e., the heterogeneity of GUD, MP,
GC). For a heterogeneous surface, a practical solution is to include the scale effect in the process
of comparison or validation. Table 2 lists a set of coefficients of the proposed scale-effect model
for both simulation data (taking p = 0.5 as an example) and Landsat-MODIS fused EVI2 data. The
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standardized coefficients indicate the different importance of each item, and the unstandardized
coefficients values are relatively stable across scales for different surfaces, suggesting the possibility of
estimating scale-derived bias, once we have developed the model for different surfaces. Accordingly,
the scale-derived bias estimation will provide a reference that excludes the scale effect or will help
estimate uncertainty.

Table 2. The model coefficients (c1, c2, c3) in simulation data (taking p = 0.5 as an example) and
Landsat-MODIS fused EVI2 data. Scale refers to the size of the aggregated window.

Type Scale
c1 c2 c3

Standardized Unstandardized Standardized Unstandardized Standardized Unstandardized

Simulation data
(p = 0.5)

3 −0.76 −0.035 −0.61 −0.031 0.29 14.5
4 −0.73 −0.035 −0.60 −0.030 0.30 14.6
5 −0.72 −0.035 −0.60 −0.030 0.31 14.7
6 −0.72 −0.035 −0.62 −0.029 0.30 15.0
7 −0.72 −0.036 −0.61 −0.030 0.30 14.8
8 −0.71 −0.037 −0.60 −0.032 0.32 13.6
9 −0.73 −0.036 −0.63 −0.030 0.33 14.7

10 −0.72 −0.035 −0.62 −0.029 0.33 14.9
12 −0.75 −0.036 −0.65 −0.029 0.31 15.0
15 −0.75 −0.036 −0.64 −0.029 0.34 15.2
17 −0.78 −0.037 −0.64 −0.029 0.33 14.4
20 −0.90 −0.036 −0.78 −0.029 0.28 14.8

Landsat-MODIS
fused data

5 −1.68 −0.037 −1.36 −0.032 0.23 1.61
7 −1.84 −0.039 −1.45 −0.033 0.27 1.69
9 −1.72 −0.039 −1.29 −0.033 0.25 1.71
11 −1.67 −0.038 −1.24 −0.032 0.24 1.58
13 −1.71 −0.039 −1.25 −0.033 0.25 1.69
15 −1.70 −0.040 −1.23 −0.034 0.26 1.78

In the temperature-limited biomes (e.g., temperate forests), green-up of a plant species mainly
depends on whether the accumulated spring temperature required for green-up is satisfied or not [26,27].
For a heterogeneous surface, the accumulated temperatures required by various species can be quite
different [28,29], which may lead to substantial GUD heterogeneity. However, such GUD heterogeneity
can vary among years due to temperature fluctuation, even if the vegetation community composition
remains unchanged. In years with a warmer spring, the more favorable temperature conditions and
faster temperature increase can make it easier to satisfy the requirements of accumulated temperature
for different species. Thus, GUD heterogeneity among species may be reduced in these years [30].
Accordingly, it is reasonable to speculate that the heterogeneity of GUD within a coarse pixel could be
smaller in years with a warmer spring than in those with a colder spring. Consequently, validation
performed in warmer spring years may be less affected by the scale effect. Therefore, we recommend
using data in warmer spring years to conduct validation. Moreover, such interannual variations of scale
effect caused by different GUD heterogeneity could further contribute to the phenological temporal
changes in heterogeneous areas. In particular, the advance of remotely sensed GUD under climatic
warming in recent decades [31] could have been partly underestimated, because the negative bias of
GUD caused by its heterogeneity in warmer years is smaller than the colder years. This point should
be addressed when analyzing the response of phenology metrics to climate change for ecosystems
detected by coarse VI products.

We recognize that our current scale-effect analyses still have some limitations. First, our analyses
used the logistic function to describe vegetation growth. However, VI time-series data may deviate
much from curve of logistic function in some cases (e.g., Figure 3) due to the constraints of various
environmental conditions on vegetation growth [32]. Fortunately, the performance of our model in
these cases seems to be acceptable (Figures 7 and 8). Further evaluations for scale effect in the case
with non-logistic VI curve are necessary in future studies. Second, our investigations were based on
up-scaled data rather than on coarse and fine data from different sensors. We did this because various
errors from different sensors could not be excluded in the scale-effect analyses, such as differences in
imaging conditions, band design and spectral response functions of sensors, and geometric registration,
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among others. Third, satellite-derived phenology metrics were detected from VI time-series data.
Some Vis, such as NDVI, have several known flaws, especially with sensitivity to soil background and
spring snowmelt, saturation at moderate to high greenness, and nonlinear scaling [33–35]. Clarifying
the effects of these complex confounding factors may be needed in future studies to further improve
our understanding of the scale effect of land-surface phenology.

6. Conclusions

Our analyses revealed that the scale effect of GUD was controlled by the heterogeneities of both
GUDfine and the vegetation growth speed (MPfine and GCfine) rather than land-cover or vegetation
types. We developed a multivariate scale-effect model (Equation (15)) to account for the GUD bias across
different scales. Using both simulated data and MODIS-Landsat fused EVI2 data, we confirmed that
the heterogeneity of GUDfine is the most important factor driving the scale effect and this factor directly
causes systematically negative bias (i.e., GUDcoarse is smaller than GUDfine−ave). The heterogeneity of
vegetation growth speed makes the GUDcoarse closer to the GUD of vegetation with faster growth, and
the direction of the effect (positive or negative bias) depends on whether there is synchronous change
in the GUD and growth speed. Our findings provide a mechanistic explanation of the correlation
between the scale effect and land-surface heterogeneity, as well as a reference to understand or further
convert GUD acquired at different spatial resolutions.
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Appendix A

For a logistic curve (Equation (A1)), based on the study of Shang et al. [17], the GUD derived from
the curvature method can be approximately represented as:

GUD =
loge

(
5 + 2

√
6
)
− a

b
, (A1)

Moreover, Equation (A1) can be converted to the following form:

VI(t) =
c

1 + eb(t+ a
b )

+ d, (A2)

where t = − a
b can represent the median point of the logistic curve, because of the symmetry of GUD

and maturity date (MD) at the median point. We can obtain MP (MD − GUD) as:

MP =

−a
b
−

loge

(
5 + 2

√
6
)
− a

b

× 2 =
−2 loge

(
5 + 2

√
6
)

b
. (A3)

By combining Equations (A1) and (A3), a and b can be easily solved as follows:

b =
−2 loge

(
5 + 2

√
6
)

MP
.
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a = loge

(
5 + 2

√

6
)
−GUD× b = loge

(
5 + 2

√

6
)
×

(
1 +

2GUD
MP

)
. (A4)

Parameter c represents the range from the maximum VI to the minimum VI. Thus, it can be
directly replaced by GC as follows:

c = GC. (A5)
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