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Abstract: This study presents a comprehensive urban canyon pedestrian navigation scheme.
This scheme combines smart phone internal MEMS sensors, GNSSand beacon observations together.
Heading estimation is generally a key issue of the PDRalgorithm. We design an orientation fusion
algorithm to improve smart phone heading using MEMS measurements. Static and kinematic tests
are performed, superiority of the improved heading algorithm is verified. We also present different
heading processing solutions for comparison and analysis. Heading bias increases with time due to
error accumulation and model inaccuracy. Thus, we develop a related heading calibration method
based on beacons. This method can help correct smart phone headings continuously to decrease
cumulative error. In addition to PDR, we also use GNSS and beacon measurements to integrate a
fusion location. In the fusion procedure, we design related algorithms to adjust or limit the use of
these different type observations to constrain large jumps in our Kalman filter model, thereby making
the solution stable. Navigation experiments are performed in the streets of Mong Kok and Wanchai,
which are typically the most crowded areas of Hong Kong, with narrow streets and many pedestrians,
vehicles and tall buildings. The first experiment uses the strategy PDR + GNSS + beacon, in east–west
orientation street, in which 10 m positioning error is improved from 30% (smart phone internal
GNSS) to 80% and in south–north orientation street, in which 15 m positioning error is improved
from 20% (smart phone internal GNSS) to 80%. The second experiment performs two long-distance
tests without any beacons, in which the fusion scheme also has significant improvement, that is, 10 m
positioning error is improved from 38% to 60%.

Keywords: GNSS; PDR; MEMS; Kalman Filter

1. Introduction

At present, smart phones are widely used, some products of LOThave been developed and many
mobile phone applications have been provided in Google Play or Apple Store. Navigation applications
and location-based services are now becoming standard features in smart phones [1]. Positioning is a
key issue to resolve the business requirements of these products. Generally, most time GNSScan obtain
good positioning results in open-sky environment using professional devices; however, GNSS receiver
positioning capability degrades in harsh environment due to signal blockage and multipath. As a
consumption-level positioning device, smart phones, their sensors, chips and antenna have low quality;
thus, their positioning capability worsens, especially in urban canyon areas.

In recent years, some researchers have proposed combining other positioning methods, such as
inertial navigation, visual localisation and external signal-aided positioning techniques, with GNSS
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to improve pedestrian navigation capability and stability. In inertial navigation, INSmechanisation
and PDRare the most used inertial positioning algorithms; however, previous studies show that
mechanisation is easily affected by accumulative errors compared with the PDR algorithm. Thus,
in our study, we use the PDR algorithm and then fuse multiple data sources together. The four key
problems that need to be resolved in the procedure of PDR positioning are pedestrian heading, initial
location, step detection and step length.

Heading estimation is the most important issue of inertial navigation, especially in pedestrian
navigation areas. In the study in Reference [2], Afzal et al. used a relatively stable data-aided inertial
navigation device for the gravity and geomagnetic fields to consider the heading error as the estimated
quantity and they used EKFto achieve data fusion, thereby gaining reliable heading data. Sabatini
presented an orientation determination strategy using inertial and magnetic sensors based on Kalman
filer [3]. External interference sometimes degrades heading estimation precision; thus, researchers
have used algorithms to improve stability. In the study in Reference [4], Zhang et al. designed a
dual-linear Kalman filter for real-time orientation determination system using low-cost MEMS sensors,
magnetometer, gyro and accelerometer. The RMSE of the estimated attitude angles are reduced by
30.6% under magnetic disturbances. Accelerometer and magnetic-aiding sensors are used to limit
the drift errors resulting from the gyroscope data integration. Two sensor fusion methods, namely,
representative of the stochastic (EKF) and complementary (nonlinear observer) filtering have been
used and their precision is significantly more accurate than gyroscope data integration [5]. Some
algorithms have been used to improve the stability and accuracy of the heading; however, without
external correction, accumulation error can still occur due to hardware instability, external environment
variability and inaccurate algorithms. Meanwhile, the positioning of PDR is relative and its initial
location in absolute positioning systems, such as WGS84, is not given; the precision of the initial
location depends on positioning methods. GNSS measurement and signal-based control point are
the most used initial positioning methods. In our study, we obtain the initial location using GNSS,
’weak’ beacon and ’strong’ beacon methods. Step counter and step length estimation are also two key
elements. Many related studies exist in the literature. Li et al. proposed an effective multi-threshold
step detection algorithm to improve position accuracy [2]. Kang used the periodicity of walking
motion and sensitivity of gyroscope and proposed an algorithm that extracts the frequency domain
features from 3D angular velocities through FFTto identify whether the holder is walking irrespective
of the placement [6]. In the current work, we combine three-axis accelerometer signals to one to detect
the peak and valley and count step change. From our test, the algorithm can detect pedestrian step
movement accurately. The step length varies during the movement and it also depends on the field
situation, such as stairs, obstacles, doors and floor surface. The value of the step length is related to
a pedestrian profile (such as weight, height, age, sex and style of walking) [7]. Zhao proposed an
improved method of step length estimation based on an inverted pendulum model [8]. Ilkovičová
et al. proposed an approach that uses map matching to adjust the step length with different types of
movement [7]. Chen used an electromyography sensor for step detection and step length estimation
and performed several tests [1].

Signal-aided positioning technologies, like Beacon, WIFI, UWB, these are extensively used; in
this study, we employ Beacon. Beacon positioning uses a low-power Bluetooth technique, its RSSI
is a key parameter for wireless positioning. Several mathematical models have been established
to analyse the relation of RSSI and distance [9,10]. Wang compared three distance-based Bluetooth
positioning algorithms based on least square estimation, three-border and centroid methods for
wireless positioning [11]. Kleeman presented a scheme that logs the arrival times and amplitudes
of beacon pulses for position and orientation estimation using Kalman filtering [5,12]. Beacon RSSI
is mostly used to compute the distance between the receiver and beacon; although several models
have been proposed, there is still large error produced due to the effect of multipath and environment
interference. In sum, the well-known models used in previous studies are the free space propagation
model, log distance path loss model, Rappaport’s path loss model and Friis’ transmission model [13].
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According to our tests, these models depend on devices and environments. Thus, we simulate a loss
function model to compute the broadcasting distance using RSSI for our beacon.

Smart phone internal GNSS has high sensitivity for signal acquisition. Thus, its positioning
capability will be seriously degraded in harsh environments. Although sufficient navigation satellites
are available, the problem of multipath remains serious. Some multipath elimination algorithms, such
as shadow matching and ray-tracking methods, have been proposed. Wang used a 3D city model
to reduce the problem of multipath and improve the cross-street positioning error of an Android
smart phone [14]. The ray-tracking method, which is based on frequency-domain characteristics, is
a multipath propagation algorithm that has been proposed to distinguish LOS and NLOS signals
and reduce GNSS errors [15]. Although some multipath elimination algorithms can be used in
smartphone applications, high-accuracy positioning results remain difficult to obtain due to low-quality
positioning chip, a lack of professional antenna and memory limitation of smart phones. Thus, GNSS
positioning locations will still experience dragging and disturbance. In this study, we develop a
related adjustment algorithm and evaluate GNSS observation noise to adjust GNSS measurement
weight. Then, we utilise the advantages of different types of measurement and fuse them together.
Previous studies have presented several integration or fusion solutions, such as EKF, UKF and
PF, in combining different positioning techniques and use them together to improve smart phone
navigation capability [16–20]. These algorithms use a loose or tight combination of measurements or
positions to improve positioning precision [14,21–23]. In this study we integrate PDR, beacon, GNSS
observations to obtain a comprehensive navigation strategy using a designed EKF model.

Although previous studies have presented several pedestrian navigation strategies, most are
experimental and immature, especially in a harsh street environment. Thus, this study presents a
comprehensive strategy for fusing smart phone internal GNSS, MEMS sensors and beacon observations
so to improve pedestrian positioning capability and stability in an urban canyon area. The contributions
of this study are as follows.

(1) Smart phone heading is vital to pedestrian navigation. In this study, we process and
compare multiple heading methods and utilise their advantages to construct a comprehensive
heading fusion strategy that combines the measurements of smart phone internal sensors’ and
external beacon.

(2) Most researchers have used beaconfor positioning due to its high precision and easy installation
characteristics. In this study, we develop related algorithms and workflow in using beacon
RSSI to construct ground truth and calibrate smart phone heading continuously, in this manner,
IMU cumulative error and impact of environment disturbance can be reduced, which improves
positioning accuracy.

(3) We research multiple fusion positioning algorithms, such as UKF, EKF and PF, to integrate GNSS,
inertial navigation and beacon positioning results. Then, we design a noise evaluation algorithm
and fusion strategy to construct a comprehensive solution. Tests verify that the algorithm works
well in a consumption-level positioning device, such as a smart phone.

(4) In this study, we perform tests in Hong Kong’s streets, which are a typical urban canyon.
Hong Kong is a crowded city with many pedestrians and vehicles, high-density tall buildings
and narrow streets. At present, the positioning capability of most consumption-level navigation
devices in Hong Kong is poor, often producing large errors. Thus, tests and research to improve
positioning capability in such a harsh environment is important.

This paper is organized as follows: Section 1 describes smart phone heading, step
counter, step length, beacon and GNSS navigation-related information; Section 2 presents the
methodology, containing PDR theory, heading computation and fusion from MEMS sensors and
beacon RSSI and positioning results from the fusion of PDR, GNSS and beacon; heading tests and
navigation tests are performed in Section 3; discussion is presented in the Section 4; and finally,
Section 5 concludes the paper.
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2. Methodology

2.1. PDR Algorithm

In the PDR algorithm, pedestrian plane location can be computed by previous location combined
with moved distance and pedestrian heading.{

Ncurrent = Nprevious + cos(ϕheading) ∗ Smoved
Ecurrent = Eprevious + sin(ϕheading) ∗ Smoved

(1)

where Ncurrent is the north coordinate of the current location, Ecurrent is the east coordinate of the
current location, Nprevious is the north coordinate of the previous location, Eprevious is the east coordinate
of the previous location, ϕheading is the pedestrian walking orientation of the procedure and Smoved is
the moved distance from the previous epoch to the current location.

2.2. Coordinate System and Initial Position for Localization

In our scheme, we use WGS84 and HK1980 as the coordinate systems. WGS84 is a global geodetic
coordinate system that can provide absolute positioning coordinates in global area. Google Maps also
uses the WGS84 coordinate system. Given the algorithm requirements, we also use HK1980, which is
a local plane grid coordinate system. In our strategy, the initial position can be obtained using three
methods. Once a pedestrian is near the weak beacon, the observations for this beacon is used to decide
the initial position. However, without a weak beacon, GNSS observation and middle and strong
beacon positioning results are used to decide the initial location. In view of the strong and middle
beacon positioning, we design a comprehensive intersection algorithm using the received RSSI.

2.3. Step Detection

Step detection is vital in pedestrian navigation. It affects the moved distance directly and
ultimately decides the PDR positioning accuracy. Thus, far, many step detection algorithms have been
proposed. In our strategy, we attempt to detect the signal peak and valley using the summarised
three-axis accelerometer measurements to count the step number. Figure 1 shows the statistical
information of the three-axis accelerometer measurements for step detection.

SignalVectorMagnitude =
√
(acc2

xi
+ acc2

yi
+ acc2

zi
) (2)

Figure 1. Three-axis accelerometer measurements. The black and green lines denote the accelerometer
measurement time series in the X- and Y-directions, respectively; and the red line represents the
accelerometer measurement in the Z-axis. The blue line indicates the comprehensive time series of the
three axes, which is calculated using Formula (2).

Formula (2) presents how we use the three-axis accelerometer measurements in detecting the
moved step. Previous studies have used single-axis measurements to count the steps and assumed
that pedestrians always keep their smart phones horizontally. However, when pedestrians moving,
they need to avoid other pedestrians and obstacles; thus, keeping their smart phones horizontally
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are difficult. On this basis, we use three-axis measurements to detect the signal peak and valley and
then decide a step.

2.4. Step Length

Step length is an important element in PDR positioning. It depends on the pedestrians and some
external factors, such as pedestrian height, step frequency, walking posture and ground slope. Previous
studies have proposed several step length estimation methods [24,25]. Table 1 lists some main step
length estimation methods:

Table 1. Step length algorithms in previous studies.

Formula Parameters Reference

SL = k ∗ H H is the height and k is equals to 0.415
for male and 0.413. Pratama

SL = k ∗ 4
√

accmax − accmin

accmax and accmin represents the maximum
and minimum vertical acceleration

values in a single stride,
k is a constant model parameter.

Weinberg

SL = k ∗ H ∗
√

SF

H and SF represents the height of the
subject and step frequency and
k is a model parameter that is

tuned to 0.3139 for male
and 0.2975 for female.

Tian

SL = k ∗ 3
√

∑N
k=1 |acck |

N

acck is the acceleration measured on
a sample in a single step

and N is the number of samples
corresponding to each step.

Kim

SL = (0.7 + a(H − 1.75) + b(SF−1.79)H
1.75 )c

SL and SF represents the step length
and step frequency H is the height

of the pedestrian which is
manually inserted in this step model,

a, b and c are model parameters for each person
and can be calibrated by pre-training.

Ruizhi Chen

SL = h ∗ (a ∗ fstep + b) + c
h and fstep represents the pedestrian height

and step frequency a, b and c
are pre-trained parameters.

Valerie Renaudin

Most models use pedestrian height, step frequency and accelerometer measurements in
constructing an algorithm. On the basis of our comparison and combinations of known algorithms,
we use two strategies to adjust the step length. In the first step, we use the traditional model in
adjusting the step length [26].

SL = (0.7 + a(H − 1.75) +
b(SF− 1.79)H

1.75
)c (3)

where SL is the step length; SF is the step frequency; H is the height of the pedestrian; and a, b and c
are the model coefficients, with values of 0.371, 0.227 and 1, respectively. In the first step, once a weak
beacon signal is received and the pedestrian walks in a straight line without a large turn, we use the
beacon distance and change the step numbers to adjust the step length, as shown as follows:

SL =
∆dWeakBeacons

∆Steps
(4)

Figure 2 presents the manner in which the weak beacon is used to adjust the step length. In this
process, the key point is to assess whether the pedestrian walks in a straight line; if a large turn exists,
then the actual walking route is not a straight line. The number of steps is smaller when walking
in a straight line in comparison with a path with turns; hence, the step length in a straight line is
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also shorter. In the procedure, the main work is to design an algorithm for assessing the presence of a
large turn. We use moving window to record a series of gyroscope integration headings to analyze the
turning angle of the procedure. On the basis of the example in Figure 2, we adjust the step length in
B–C and ignore A–B.

   C
Weak Weak Weak

   AB

Step = N Step = M Step = W

Figure 2. Step length adjustment strategy using a weak beacon. The pedestrian walks from weak beacon
A (step number is W) to B (step number is M) and C (step number is N). From A to B, the pedestrian
walks along the black line; from B to C, the pedestrian walks along the red line.

2.5. Heading Computation Using MEMS Sensors’ Measurements

Most smart phones integrate MEMS sensors. Thus, traditionally, we can use the following
equations to calculate smart phone heading via accelorometer and magnetometer measurements.
Roll γ can be obtained by X- and Z-axis accelerometer measurements (AccX and AccZ ):

γ = arctan 2(−AccX, AccZ) (5)

Pitch θ can be computed using X−, Y− and Z−axis accelerometer measurements:

θ = arctan 2(AccY,
√

AccX2 + AccZ2) (6)

Magnetic north ψm and true north ψnorth can be obtained by combining γ, θ and
magnetometer measurements:

ψm = arctan(−
Mb

ycos(γ)−Mb
zsin(γ)

Mb
xcos(θ) + Mb

ysin(θ)sin(γ) + Mb
zsin(θ)cos(γ)

) (7)

ψnorth = ψm + ∆ψ (8)

where Mb
X, Mb

Y and Mb
Z denote the X-, Y- and Z-axis values in the body coordinate system of the

magnetometer; ∆ψ represents ‘magnetic declination’, which can be obtained from the IGRF model.
Formulas (1)–(4) describe the manner in which the internal MEMS sensor measurements of a smart phone
can be processed to obtain the heading. The heading has big bias compare with the true pedestrian
direction due to sensor error, environment interference and orientation bias of pedestrians and smart
phones [27,28]. Thus, we use gyroscope, accelerometer and magnetometer measurements to obtain a
fusion solution via Kalman filter to improve the heading precision in our strategy. In addition to the
Kalman filter, we also use other algorithms, such as complementary filter and gyroscope integration
heading. Comparison and analysis results of the different heading solutions are presented in next section.

2.6. Improved Heading Algorithm Combining Accelerometer, Gyroscope, Magnetometer Measurements

In the previous section, we have introduced how to calculate smart phone heading using
accelerometer and magnetometer measurements. In Android smart phones, the heading can be
obtained in real time from APIs. However, consumption-level sensors have low stability and precision,
the heading always has a larger error compared to its actual direction. In this part, we present a
fusion algorithm, which integrates accelerometer, gyroscope, magnetometer measurements by Kalman
filter and complementary filter to improve pedestrian heading precision. The Formulas (5)–(8) show
the heading computation method by accelerometer and magnetometer measurements, in this part,
we design a Kalman filter model to estimate smart phone heading and gyroscope bias on the bias
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of gyroscope measurement and the heading HeadingAccMag (processed by Formulas (5)–(8)) [29].
Following presents the detail information of Kalman filter model:

Measurement equation:

HeadingAccMag =
∣∣∣1 0

∣∣∣ ∣∣∣∣∣XHeading
XGyroBias

∣∣∣∣∣+ ξk (9)

State equation:

Xk+1 =

∣∣∣∣∣1 dt
0 1

∣∣∣∣∣Xk +

∣∣∣∣∣dt
0

∣∣∣∣∣ψGyroRatek +

∣∣∣∣∣ωk
δk

∣∣∣∣∣ (10)

Xk is the estimation state vector, it contains two state parameters XHeading and XGyroBias; XHeading
is the real-time heading of smart phone, XGyroBias is gyroscope integration bias. HeadingMag is the
heading computed by the Formulas (5)–(8) using accelerometer and magnetometer measurements,
ψGyroRatek is gyroscope angle update rate. ξk is measurement noise, ωk, δk are state noises, which
are got from our previous statistic based on sensors’ characteristics and Allan variance analysis of
our test smart phone. where HeadingAccMag is the heading computed by using accelerometer and
magnetometer measurements; XHeading and XGyroBias are the estimated state parameters, in which the
former is the real-time heading of the smart phone and the latter is the gyroscope integration bias; ξk is
the measurement noise; ψGyroRatek is the gyroscope angle update rate; and ωk and δk are state noises
obtained from our previous statistics based on the sensor characteristics and Allan variance analysis of
our test smart phone [30,31].

We know gyroscope measures angle update rate, in this study, we compute smart phone heading
combining gyroscope integration angle and initial orientation, we named it HeadingGryoIntegration,
the initial angle used the filtered heading (HeadingFiltered) got from a previous Kalman filter estimation.

HeadingGyroIntegration = HeadingFiltered +
∫ Tk+1

Tk

ωidt (11)

ωi is gyroscope outputted angle change rate, Tk and Tk+1 are start epoch and end epoch separately.
Once we had the two smart phone heading estimations HeadingFiltered and HeadingGyroIntegration,
we used following algorithm to fuse them [5,32]:

HeadingMEMS = Coe f f × HeadingGyroIntegration + (1− Coe f f )× HeadingFiltered (12)

Coe f f is the fusion coefficient, we set it to 0.96 in our solution.

2.7. Beacon Positioning and Heading Computation

We classify the beacon signals as ‘weak’, ‘middle’ and ‘strong’ on the basis of the signal
transmitting power, which is not a fixed value and depends on the brand of beacon. In our solution,
each group contains the three types of beacon. Figure 3 shows the beacon positioning and the heading
computation method used in this study. The broadcasting distance of the weak beacon is no more than
5 m; thus, most of the time, pedestrians should be close to receive a weak beacon signal. Meanwhile,
the broadcasting ranges of the middle and strong beacons are far more than that of the weak beacon.
Moreover, overlapping areas exist; a smart phone can receive nearly all the surrounding signals of
strong and middle beacons. On the basis of these beacon characteristics, we design related algorithms
to compensate position and heading biases.

Generally, RSSI is widely used for computing the transmitting distance between pedestrians and
base station. Many researchers have used RSSI in studying Bluetooth, WiFi and UWB positioning. In this
study, we receive beacon RSSI and use the loss function to compute the transmitting distance, which
is used for the positioning of the weak beacon. Signal strength is easily influenced by multipath and
environment interferences. Thus, the transmitting distances of the middle and strong beacons are difficult
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to evaluate using the RSSI–distance model. Figure 4 presents the received RSSI situation of our test results.
We installed three types of beacon in our test field (that is, each site contains one weak, one middle and
one strong beacon) and the pedestrian went across them. From the figure, the blue line (weak beacon) is
evidently short. Thus, a smart phone can only receive a weak beacon signal in a nearby location; once the
pedestrian leaves, the smart phone will lose track of the signal. Most RSSI is in the range of (−90 dBHZ,
−80 dBHZ). The signal from the weak beacon is obviously weak and has smaller fluctuations compared
with the middle and strong beacons. The green line (strong beacon) and the red line (middle beacon)
nearly have the same change situations, in which the maximum signal strength exceeds−50 dBHZ. Three
signal peaks and three signal valleys of the strong and middle beacons are evident in the graph. The RSSI
increases as the pedestrian comes close to the strong or middle beacon. Upon leaving, the RSSI begins
to decrease. Thus, on the basis of the increase and decrease of the RSSI, the program can know when
pedestrians are leaving from one beacon to another. The beacons in this study were installed in known
locations; thus, the true walking direction can be computed.

Figure 3. Beacon (strong, middle and weak) installation strategy and signal transmitting ranges.
The three types of beacon are installed on each site.

0 50 100 150 200 250 300

Cou n t

� 90

� 80

� 70

� 60

� 50

R
S

S
I(

d
B

)

St rong Beacon

Middle Beacon

Figure 4. Received RSSI change situation. The blue, red and green lines denote the RSSI of the weak,
strong and middle beacons, respectively. The signal is received by a smart phone and a pedestrian goes
across the three sites. Each site is installed with one weak, one middle and one strong beacon.

2.8. Heading Fusion Combining Improved MEMS Heading and Beacon Heading

In the previous sections, we have compared and analysed different heading processing results,
described how the heading precision can be improved using MEMS sensor observations via the
designed algorithm and constructed beacon heading using its RSSI. In this section, we present our
heading calibration strategy, Algorithm 1 is the pseudocode that introduces the basic workflow.
A key point in the procedure is to determine if it is the actual heading error or the true orientation bias
between smart phone and pedestrian. Then, the program decides whether to calibrate the heading error.
Once a large bias between the smart phone heading and the pedestrian’s actual walking direction is
produced, program cannot calibrate the smart phone orientation with beacon heading at that time.
In our strategy, we set thresholds and use a filtered MEMS sensor heading to limit the use of beacon
heading in correcting the smart phone heading. Although the accuracy of the calibration cannot be
always guaranteed, the continuous correction decreases the cumulative error and the influence of
external disturbances.
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Algorithm 1: Heading fusion algorithm
Input:
1. Improved MEMS heading HeadingMEMS, got from previous model
2. Weak beacon heading HeadingWeakBeacon
3. Strong beacon heading HeadingStrongBeacon
4. TurnAngle, got from turning angle algorithm in real-time
5. HeadingLastEpoch, smart phone heading in last epoch
Initialize: HeadingSmartphone = HeadingMEMS;
Output: Smart phone heading HeadingSmartphone
if ′Strong beacon′ heading detected then

HeadingSmartphone = HeadingWeakBeacon;
else

HeadingSmartphone = HeadingMEMS;
end
if ′Strong beacon′ heading detected then

if | HeadingStrongBeacon − HeadingLastEpoch|< 30 then
HeadingSmartphone = HeadingStrongBeacon;

else
if HeadingStrongBeacon > 270 ∧ HeadingLastEpoch < 90 then

if |(360− HeadingStrongBeacon)− HeadingLastEpoch|< 30 then
if Turnangle < Threshold then

HeadingSmartphone = HeadingStrongBeacon;
else
end

else
end

else
if HeadingStrongBeacon < 90 ∧ HeadingLastEpoch > 270 then

if |(360− HeadingStrongBeacon)− HeadingLastEpoch|< 30 then
if TurnAngle < Threshold then

HeadingSmartphone = HeadingStrongBeacon;
else
end

else
end

else
if |HeadingMEMS − HeadingStrongBeacon|<|HeadingLastEpoch −

HeadingStrongBeacon| ∧ |HeadingMEMS − HeadingStrongBeacon|< 40 then
HeadingSmartphone = HeadingStrongBeacon;

else
end

end
end

end
else

HeadingSmartphone = HeadingMEMS;
end
if ′Weak beacon′ heading detected then

if Turnangle < Threshold then
HeadingSmartphone = HeadingStrongBeacon;

else
end

else
end
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2.9. GNSS/DGNSS Positioning and Noise Evaluation

In urban canyon environment, GNSS observations can also be obtained via smart phone. However,
the positioning result can be easily disturbed by the surrounding environment, such as multipath,
pedestrian interference and moving vehicles. Thus, a large jump is often produced, from the statistics
of previous tests, we find the jump in the harsh environment, like Hong Kong streets, it often exceeds
several meters, even more than 100 m. So it leads evaluating absolute GNSS positioning accuracy
of smart phones is difficult and the positioning results cannot be used directly due to the degraded
accuracy. Fusing GNSS, PDR and beacon observations for improved positioning results is also
challenging. On the basis of these problems, we send the raw smart phone measurements (that is,
pseudorange, carrier phase and NMEA) to the server and develop related server-side algorithms to
improve GNSS positioning accuracy [33,34]. DGNSS position refers to the corrected position results.
In this study, we do not elaborate how GNSS precision can be improved in the server side. We use
DOPs, Android-reported GNSS precision and PDR observations to design related algorithms for
excluding large-jump observations and evaluating GNSS observation noise variance in handheld side.
Algorithm 2 gives the details of the algorithm.

Algorithm 2: GNSS measurement noise evaluation algorithm
Input:

1. Current or previous GNSS/DGNSS measurements

2. Current PDR and beacon measurements

3. Previous filtered position

Output: GNSS observation noise variance σ2
GNSS

while GNSS observation update do

if (HDOP < Threshold) ∧ (Precision < Threshold) then
MovedDistancek

GNSS = GNSSk
Now − GNSSk

Pre

MovedDistancek
PDR = PDRk

Now − PDRk
Pre

Biask = MovedDistancek
GNSS − MovedDistancek

PDR

if Weak beacon update then

Biask = ∆Posk,j
GNSS − ∆Posk,j

WeakBeacon

end

if Length O f Bias > Threshold then

σGNSS =
√

BiasT∗P∗Bias
N , where P is the weight matrix, N is the length of Bias

end

else
Exclude current epoch GNSS measurements.

end

end

2.10. Integration of PDR, Beacon and GNSS

In this section we integrate the PDR position with the beacon and GNSS/DGNSS observations to
obtain a fusion position using EKF [35–37]. PDR theory indicates that the current location of a smart
phone can be calculated by its previous location combined with moved distance and heading, which
depend on the detected number of steps and estimated step length. However, estimation error and
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bias with pedestrian’s true walking direction exist in smart phone heading. Thus, we calculate the
current pedestrian location as follows:

Nk+1 = Nk + (1 + Sk) ∗ DPDRk ∗ cos(ϕk) + dωN
Ek+1 = Ek + (1 + Sk) ∗ DPDRk ∗ sin(ϕk) + dωE
Sk+1 = Sk + dωs

ϕk+1 = ϕk + dωϕ

(13)

where Nk+1 and Ek+1 are the current north and east coordinates, respectively; Nk and Ek are the
previous north and east coordinates, respectively; sk is the distance scale factor; D is the pedestrian’s
moved distance; ϕk is the smart phone heading; and dωN , dωE, dωs and dωϕ are the north coordinate
error, the east coordinate error, the scale factor error and the heading error, respectively. We set the
state vector as

Xk =
∣∣∣dNk dEk dSk dϕk

∣∣∣T (14)

where dNk is the north error, dEk is the east error, dsk is the scale factor error of the moved distance
and dϕk is the heading error. The state equation is:

dNk+1 = dNk + DPDRk ∗ cos(ϕk) ∗ dSk − DPDRk ∗ Sk ∗ sin(ϕk) ∗ dϕk
dEk+1 = dEk + DPDRk ∗ sin(ϕk) ∗ dSk + DPDRk ∗ Sk ∗ cos(ϕk) ∗ dϕk
dSk+1 = dSk
dϕk+1 = dϕk

(15)

Measurement vector:
Z =

∣∣∣∆N ∆E
∣∣∣T (16)

∆N and ∆E denote coordinate bias in north and east direction respectively.
If only the GNSS position is updated, then we set the observation as

Z =
∣∣∣NGNSS − NPDR EGNSS − EPDR

∣∣∣T (17)

If the DGNSS updated, then the observation is switched to:

Z =
∣∣∣NDGNSS − NPDR EDGNSS − EPDR

∣∣∣T (18)

If the weak beacon detected, then the measurement vector switches to

Z =
∣∣∣NWeakBeacon − NPDR EWeakBeacon − EPDR

∣∣∣T (19)

Otherwise, if the weak beacon, GNSS and DGNSS are not updated, then the measurement vector
switches to

Z =
∣∣∣NPrediction − NPDR EPrediction − EPDR

∣∣∣T (20)

The measurement equation coefficient matrix C is

C =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣ (21)

Measurement equation:
Zk = C ∗ Xk + ∆k (22)
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Zk and Xk denote measurement and state estimation value in epoch k respectively, ∆k is the related
measurement noise vector.The preceding filtering model is updated by a time interval of 1000 ms,
regardless whether the pedestrian is static. The pedestrian position should be updated. The position is
calculated as follows:{

Nk+1 = Nk + dNk + DPDRk ∗ (1 + dSk + Sk) ∗ cos(ϕk + dϕk)

Ek+1 = Ek + dEk + DPDRk ∗ (1 + dSk + Sk) ∗ sin(ϕk + dϕk)
(23)

3. Evaluation and Experiment

In the previous section, we have introduced the algorithms we developed and used in this study.
Although we aim to use these algorithms in real environment and hope to improve pedestrian
navigation capability and stability, most smart phones currently integrate MEMS sensors; particularly,
Google provides APIs for developers to obtain multiple sensor measurements in real-time. On the
basis of our requirements and real conditions, we develop a related real-time navigation application
that can run in most mainstream Android smart phones. We also develop a server-side application to
improve GNSS positioning precision and support smart phone navigation. In this study, we focus on
smart phone side algorithms.

In this part, we design field experiments to verify our application and evaluate the proposed
algorithms. We present three experiments; the first one, we perform smart phone heading test in
static and kinematic the two modes. The second experiment, we install several beacons in the test
field and use the GNSS/DGNSS + PDR + beacon fusion scheme to verify its navigation capability.
Whereas in the third experiment, we use the GNSS/DGNSS + PDR fusion strategy without any beacons.
The following subsections will describe and discuss these tests in detail.

3.1. Navigation Application Development

The main workflow of smart phone application is shown in Figure 5.

Figure 5. Workflow of the proposed multisensor fusion strategy based on Android smart phones.
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Figure 5 presents the basic architecture of the proposed multisensor fusion strategy, which mainly
contains the following parts:

(1) MEMS sensor measurement processing. In this part, the program reads measurements from
smart phone internal sensors (particularly, accelerometer, gyroscope, magnetometer, barometer
and thermometer) using Android APIs. Low-pass filtering algorithm is used to process
raw data. These data are used to detect step movement, estimate step length and calculate
smart phone attitude.

(2) GNSS observation synchronization and processing. Smart phone internal location can be obtained
Android APIs, calculated by GNSS and surround telecommunication base stations. However,
smart phones are not a professional geodetic GNSS receiver. Smart phones can track low SNR
and has high sensitivity; moreover, in a harsh environment, NLOS and multipath degrade smart
phones’ positioning capability and stability severely. PDR can only compute the relative position,
whereas GNSS can provide global WGS84 coordinates, that is, the absolute positioning. In our
solution, we want to combine PDR andGNSS; thus, improving GNSS position accuracy is vital.
On the basis of the requirements, a smart phone application sends a pseudorange, a carrier phase
and NMEA to our DGPS server to develop a related algorithm for improving GNSS positioning
accuracy and then send it back to the smart phone. Many smart phones do not output GNSS raw
measurements, except for Huawei P20 and Mate20.

(3) Beacon scanning and processing algorithms. In this part, we focus on beacon scanning,
construction of beacon heading, step length calibration and beacon positioning. Beacon scanning
is always running in the background of smart phones; thus, it can scan surrounding beacons
continuously nearly in real-time. Once a new signal is tracked, the RSSI series is used to
construct heading. Different heading construction algorithms are designed for the weak, middle
and strong beacons. In addition to the heading, the weak beacon is used to calibrate the step
length and PDR position.

(4) Positioning fusion algorithm and mapping. Positioning fusion is the key issue of our solution.
Here, we design an EKF model to integrate GNSS/DGNSS results, beacon location and PDR.
Once the filtered position is obtained, the location and walking trajectory can be updated and
displayed in Google Maps in real time.

3.2. Smart Phone Heading Test

We designed the heading test field in the playground of Chang’an University, where there were
several straight lines, which was convenient for reference in the procedure of the test. Figure 6
presents the heading experiments situation in test field. We measured the WGS84 coordinates of
the three endpoints (1,2,3) of straight lines by RTK and calculate the azimuths as the ground truths.
In the test field, ground is flat, sky is open, besides there is no obvious electromagnetic interference
in surrounding.

Figure 6. Left picture shows we measure the control point by RTK, the central picture presents the
smart phone static test, the right picture shows the tester holds the smart phone in kinematic test.
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The heading experiment contains two test cases, the first one we did along east-west orientation
straight line 1–2; the other one we did along the north-south orientation straight line 3–2. In 1–2
direction test, we performed 10 min static test and 10 min kinematic test. In static test, we put the
two test phones Huawei AL10 and Mate20 on a flat plate and kept them along the straight line
direction. In kinematic test, we fixed the two smart phones on the flat plate, held it and walked along
the reference line, walking smoothly, the speed was about 1.0 m/s. The azimuths of 1–2 and 3–2
were 87.97◦ and −11.5◦separately. In 3–2 direction test, we repeated the same procedure like 1–2
test. We corrected the local magnetic declination, checked from the website http://www.magnetic-
declination.com/, the bias was about −3.68◦. All tests were performed in nearly same situation,
the same tester, besides, the temperature had no obviously change. Each test lasted 10 min and
collected more than 20,000 records.

In order to verify the improved MEMS heading algorithm, we also present the results processed
by other three methods for comparison; raw heading is got from accelerometer, magnetometer
measurements and local magnetic declination; other two proposed methods, Kalman filter, its model
is presented in the Section 2.2, First-order Complementary filter, the detail please refer to these
studies [38,39]). The first case, we did a static test and a kinematic test along the straight line 1−2, the
reference azimuth was 87.97◦. Figure 7 presents the part of the results processed by the four algorithms.

Figure 7. The four graphs show test results along the straight line 1−2; the cyan line denotes raw smart
phone heading computed from accelerometer and magnetometer measurements; green, red and blue
lines represent the smart phone heading processed by Kalman filter, first-order complementary filter,
improved MEMS algorithm separately. (a) is Huawei Mate20 static test result, (b) is kinematic result.
(c,d) are static and kinematic results of Huawei AL10 respectively.

The second case, we also did a static test and a kinematic test along the straight line 3–2,
the reference azimuth was−11.5◦. Figure 8 presents part of the results processed by the four algorithms.

http://www.magnetic-declination.com/
http://www.magnetic-declination.com/
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Figure 8. The four graphs show test results along the straight line 3–2; the cyan line denotes raw
smart phone heading computed from accelerometer and magnetometer measurements; green, red and
blue lines represent the smart phone heading processed by Kalman filter, First-order Complementary,
improved MEMS algorithm separately. (a) is Huawei Mate20 static test result, (b) is kinematic result.
(c,d) are static and kinematic results of Huawei AL10 respectively.

Actually, numerous methods based on MEMS sensor’ measurements have been used in previous
studies to compute for the smart phone heading [40–42]. In Figures 7 and 8, we present the headings
processed by different strategies. These figures only give 300 epochs of the results for plotting, in total,
each test contains more than 20,000 results. The cyan line is the heading series processed by the
traditional method ( refer to Formulas (5)–(8)) using accelerometer and magnetometer measurements.
It is a basic and well-known method, it can also be obtained from Android API and it has low precision
and large bias. Except the raw heading, we present several heading solutions, red line, green line
and blue line represent the processed results of the Kalman filter, first-order complementary filter and
improved algorithm respectively.

3.3. Navigation Test Using GNSS + PDR + Beacon Fusion Scheme

This part mainly introduces the application and hardware used in the Mong Kok test. Table 2 lists
the detailed information.

The test field was conducted on 19 November 2018 near Mong Kok Metro Station. This location
is one of the busiest and crowded areas of Hong Kong, where many people would be walking in
the testing roads and several tall buildings are present. Prior to the test, we installed 12 groups of
beacons on the pre-planned lamp posts based on the test plan. Then, we installed our application in
Huawei P20, which has an Android operating system. Given the numerous shops and restaurants
in the study area, the tester sometimes needed to avoid pedestrians and obstacles, such as vehicles;
thus, the smart phone was easily swung during the test. Although our application designed attitude
transformation algorithms, we aim to avoid large vibrations to reduce attitude transformation errors
when estimating step detection, step length and heading. From the objective of usage, most time
pedestrian holds smart phone in horizontal when they need to navigate locations.Thus, our tester
attempted to hold the smart phone approximately horizontally. It’s still not in absolute horizontal
level, especially in walking, hand swinging, large vibrations existing in the procedure. So, it does not
mean the scheme does not work in non-horizontal. During the test, one tester started from Portland
Street and stopped in Argyle Street, walking along the test streets for more than three rounds to verify
the sustained navigation capability. Detailed information and analysis about this test will be presented
in the next section.
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Table 2. Related information of the hardware and software, Android smart phone and beacon
application for the Mong Kok test.

Application Beacon Smart Phone (Huawei P20)

Map: Communication way: BLE 4.0 Sensors:
Google Maps Broadcast power: −30~−40 dBm Gravity sensor

Operating system: Ambient light sensor Proximity sensor
Android Broadcast Frequency: 100~10,000 ms Front fingerprint sensor

Installed version: Transmitting distance: 3~100 m Hall sensor
>Android OS 4.3 Supporting OS: Gyroscope

Above iOS 7.0 and Android 4.3 Compass
Brand: Zhishi Color temperature sensor

GNSS: GPS, GLONASS and Beidou
Chip:

Huawei Kirin 970 CPU octa core
4 × Cortex A73 2.36 GHz
4 × Cortex A53 1.8 GHz

Memory:
GB RAM + 128 GB ROM

Operating system: AndroidTM 8.1

As shown in Figure 9a,b, many streets exist in the area, the distance between buildings is short;
thus, GNSS satellite signals can be easily blocked, which often degrades the positioning accuracy.
As shown in Figure 9c, one group of beacons is installed on a lamp post; it contains three beacons,
namely, weak, middle and strong beacons, on the basis of their signal transmitting power. In the
beacon settings, multiple signal transmitting power levels are from 1 to 5. We set levels 1, 3 and 5 as
the weak, middle and strong beacons, respectively. These beacons are 2.2 m above ground and face the
pedestrian walking side. Figure 9d shows the pose of test smart phone when tester moving. In most
time, tester hold P20 in hand and keep nearly horizontally.

Figure 9. (a) Test location and field surrounding environment. (b) Narrow test street with both sides
filled with tall buildings. (c) Group of beacons installed on a lamp post. (d) Graph showing the tester
hold the test phone P20.

Figure 10 shows our planned route in this test and the 12 lamp post locations. In each lamp
post, we installed a group of beacons that these beacons face the tester walking route, with a total
of 36 beacons; each group contains three beacons, namely, weak, middle and strong. We used these
lamp post coordinates and beacon ID to create an orientation library for the beacon heading search.
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From Figure 10, easy to see we constructed 18 headings, with two directions in each side. For example,
if pedestrian walks from the lamp post 1340 to 1341, the heading is 168.707◦, whereas if walking in the
opposite direction, the heading should be 348.707◦. Detailed information of beacon heading is listed in
Table 3. In our study, we aim to use beacon for positioning and heading calibration. We used an easy,
convenient and low-cost method to install the beacons on the basis of real test environment situation
and actual requirement; hence, we installed the beacons on the lamp posts in the best way possible.
Four standards are used in selecting the lamp posts to construct beacon heading as the ground truth.
(1) The two adjacent beacons must be in a straight line; thus, no turns exist in the walking route.
(2) The connecting line of two beacons and the tester walking route are approximately parallel. (3) The
distance of two adjacent lamp posts is no less 10 m and no more than 40 m due to the present algorithm
limitation. (4) The vertical distance from the lamp post to the walking route is no more than 8 m.
On the basis of these standards, we excluded 1349–1339 (has a large turn), 1352–1353 (exceeds distance
limitation) and 1344–1354 (not in a straight line). Finally, we used nine groups of beacon and calculated
the azimuths to construct the heading library for ground truth calibration. However, all the 12 groups
of beacons are used for positioning calibration.

Table 3. Beacon heading library for Mong Kok test.

Start Lamp Post ID End Lamp Post ID Azimuth (deg)

1339 1340 168.707
1340 1339 348.707
1340 1341 168.707
1341 1340 348.707
1341 1342 168.707
1342 1341 348.707
1342 1343 168.707
1343 1342 348.707
1343 1344 168.707
1344 1343 348.707
1350 1351 169.311
1351 1350 349.311
1351 1352 169.311
1352 1351 349.311
1353 1354 169.311
1354 1353 349.311
1350 1349 78.835
1349 1350 258.853

Figure 10. Lamp post locations (red circles) where the beacons are installed, tester walking route (blue
line) and beacon heading (green line). The numbers, such as ‘1339’, denote the code of the lamp post
for distinguishing the group code of beacons.

When using smart phone internal GNSS, one key issue is to evaluate its positioning precision,
which is difficult to determine in real time without any reference control points. Some previous
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studies indicate that DOPs, tracked satellite number and SNR have a direct relationship with
positioning accuracy. However, the change situation of these indicators in a harsh environment
is unknown. Figure 11 shows three statistical graphs of smart phone internal GNSS measurements,
that is, the graphs of GNSS position accuracy, satellite numbers used and DOPs obtained from the
recorded NMEA of the smart phone. In our study, we also aim to determine some relationship to
detect GNSS positioning accuracy using these indicators. Especially in an urban canyon area, open-sky
and harsh environment are sometimes mixed together, which easily makes GNSS produce a large
jump. The graph Figure 11a reports the GNSS precision, which is mostly in the range of 5–15 m. On t3e
basis of our comparison and analysis, the statistical precision is incorrect in expressing the absolute
positioning accuracy. Nevertheless, it can denote GNSS measurements dispersion to some extent and
can be used to exclude some large jump measurements. The graph in Figure 11b shows the statistics of
the number of satellites used. It shows that smart phones can use more than 20 satellites; hence, the
surrounding tall buildings do not block most of the satellites, which is sufficient for satellite navigation.
Figure 11c presents the PDOP, HDOP and VDOP statistic information, which is mostly below 6 and
with an acceptable geometry.

Figure 11. Precision of smart phone reported by Android API. (b) Satellite number obtained from
NMEA. (c) DOP information obtained from NMEA messages (blue, red and cyan denote PDOP, HDOP
and VDOP, respectively).

The test was performed surrounding Langham Place Shopping Mall, started from Portland Street
and ended in Argyle Street. The tester walked along Portland, Shandong and Shanghai Streets and
ended in Argyle Street. The tester walked for rounds in total, each round was approximately 520 m.

As shown in Figure 12 we plotted the internal GNSS positioning results (green line) and our fused
position (blue line). The red line connects all the beacon installation locations. Our application also
displays the ground truth for comparison. We interpolated the true trajectory coordinates using the
lamp post locations. (The lamp posts’ coordinates can be downloaded from a government website
https://www.landsd.gov.hk). The green line has a larger bias compared with the gray line and the
blue line is close to the gray line (Figure 12). Moreover, in Argyle Street (north street) and Shandong
Street (south street), GNSS navigation position has smaller biases compared with Shanghai Street (west
street) and Portland Street (east street). This finding may be due to the fact that Shandong and Argyle
Streets are wider and their sky is more open compared with Shanghai and Portland Streets.

https://www.landsd.gov.hk
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Figure 12. The green, blue, gray and red lines represent the smart phone outputted GNSS position,
the fused navigation position, the actual tester walking route and the connection of all installed beacon
positions, respectively. The blue marker expresses the real-time navigation position using the hybrid
positioning strategy.

3.4. Navigation Test without Beacon

In the previous section, we have presented a test case and validated the application using
GNSS + PDR + beacon scheme to verify the positioning capability and stability of our algorithm
and application. Installing beacons in every corner of streets is difficult and these beacons must
be maintained continuously. Hence, from a realistic point of view, if our solution can still improve
the positioning capability and stability without beacons, then it would be more valuable. Thus,
we conducted two other tests in Mong Kok and Wanchai. This section elaborates the two tests.

We performed the two tests on March 13, 2019 in Mong Kok and Wanchai and we installed
our application in Huawei P20. This time, we did not install any beacons. On the basis of our test
plan, we needed to collect data in longer routes to verify long-range navigation capability without
beacons. The designed test routes both exceeded 1600 m, crossing several crowded streets. The test
routes were sidewalks, most were close to buildings or under buildings and most streets are extremely
narrow, with width of no more than 30 m, even less. The surrounding buildings are higher than 50 m.
In Wanchai test, our tester held a smart phone started from Wanchai Metro Station, walked along
Jaffe and Hennessy Roads and went back to the starting point. In Mong Kong test, the tester started
from Mong Kong Metro Station walked along Shanghai Street to Yau Ma Tei Metro Station and then
went back along Nathan Road to Argyle Street. Some streets in the area of Mong Kok and Wanchai
have a mix of open-sky and harsh environment. The two test fields are typically the busiest and most
crowded areas of Hong Kong with many people and tall buildings. In the experiments, the tester also
held a Huawei P20 and the walking direction and the smart phone heading were kept approximately
similar. In the test process of walking, oscillation was inevitable; thus, the tester needed to avoid
other pedestrians and attempted to avoid excessive vibrations to reduce attitude computation and
step detection errors. Hence, in the two experiments, the tester also kept the phone approximately in
horizontal when moving.

In Figure 13, the left and right pictures show Mong Kok and Wanchai test field environments,
respectively. Both have many tall buildings and most streets are extremely narrow. The test fields (cyan
markers) are typical harsh urban environments. PDR positioning accuracy depends on moving distance.
Thus, we performed long-distance tests to verify our application positioning capability.
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Figure 13. Test surrounding environment in Mong Kok (left) and Waichai (right).

Figure 14 presents the smart phone internal GNSS observation information obtained from recorded
NMEA messages. SNR is a direct indicator that describes signal strength. As shown in the figure,
most satellites’ SNRs are below 40 dBHZ, which indicate weak signals. The tracked satellites usually
exceed 18, which is sufficient for positioning. The statistics show stability; however, the actual
positioning accuracy fluctuates. Most PDOPs of the epochs are below 1.8, which indicates remarkability.

Figure 14. Smart phone internal GNSS observation information obtained from NMEA messages.
The first graph shows the SNR values of satellites, the second graph shows the tracked satellite number
of the smart phone and the third graph shows the HDOP series.

The test routes in Wanchai and Mong Kok exceed 1600 m and the tester walked smoothly along
the main streets. Figure 15 presents the test results.

As shown in Figure 15, the fusion position (blue line) combined the PDR results (red line) and
GNSS results (green line). The PDR positions have smaller fluctuations but have larger bias along the
test route compared with the actual walking route (black line). Although some jumps exist in the GNSS
positions, it still fluctuates along the actual walking route. Our fusion position used absolute positions
obtained from GNSS and high-precision PDR movement. Thus, it reduced the absolute positioning
bias and integrated PDR and GNSS positions together.
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Figure 15. Field navigation test results in (a) Waichai and (b) Mong Kok. The black, blue, red and green
lines represent the actual pedestrian walking route, the fused navigation position, pure PDR positions
and the trajectory obtained from the smart phone internal GNSS positions, respectively. The blue
marker denotes the real-time navigation location of the tester using the fused navigation algorithm.

4. Discussion

4.1. Discussion of Heading Test

Heading is the key element of pedestrian navigation, in previous section, we present part of the
results of two heading tests Figures 7 and 8. In the two figures, there are only 300 epochs’ results,
actually, there are more than 20,000 results collected in 10 min. In this section, we will present some
statistics and deep analysis using the 10 min test data. Each of the two heading test cases contains static
and kinematic test, we summarize the static and kinematic test results in Tables 4 and 5 separately.

Table 4. Heading statistical results of smart phone static test (Unit: deg).

Test_Phone Algorithm 3–2 (−11.5) 1–2 (87.97)

Mean Bias RMSE STD Mean Bias RMSE STD

AL10

Improved 6.11 6.14 0.59 3.16 3.19 0.46
MagAccOrientation 5.69 5.75 0.81 2.77 2.90 0.86

First-Order CF 5.70 5.75 0.72 2.81 3.02 1.12
Kalman filter 5.69 5.73 0.70 2.73 3.24 1.74

Mate20

Improved 3.26 3.34 0.73 −2.27 2.28 0.25
MagAccOrientation 3.26 3.39 0.91 −2.27 2.32 0.50

First-Order CF 3.26 3.36 0.80 −2.29 2.44 0.85
Kalman filter 3.27 3.36 0.79 −2.31 2.77 1.52

Table 5. Heading statistical results of smart phone kinematic test (Unit: deg).

Test_Phone Algorithm 3–2 (−11.5) 1–2 (87.97)

Mean Bias RMSE STD Mean Bias RMSE STD

AL10

Improved 5.97 6.82 3.48 4.72 5.65 3.11
MagAccOrientation 5.98 7 3.81 4.23 6.71 5.21

First-Order CF 5.99 6.57 2.93 4.24 5.53 3.56
Kalman filter 6 6.49 2.73 4.19 5.4 3.41

Mate20

Improved 1.18 3.56 3.41 −1.5 3.11 2.72
MagAccOrientation 1.17 4.77 4.67 −1.44 3.96 3.68

First-Order CF 1.18 3.39 3.24 −1.46 3.2 2.85
Kalman filter 1.18 3.16 3 −1.48 3.22 2.86

Table 4, it contains two groups of static test results, “3–2” is the south-north direction test, “1–2”
is in east-west direction. From “3–2” statistical results, we can find the mean bias of Mate20 is in the
about 3.26◦, actually no matter "Kalman filter", "First-order CF" or "Improved" algorithm, there is
no obvious change, that means, these algorithms do not reduce the system error; the mean bias of
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AL10 smart phone is in the range 5.69◦∼6.11◦, there is no markedly improvement. In comparison
with Mate20, the mean biases are larger; actually, AL10, the smart phone its sensors are worse than
Mate20. Except mean bias, the RMSE statistical values, Mate20 are approximately 60% of AL10. “1–2”
test, the situation is nearly same as “3–2”. STD, in some extent, it denotes the fluctuation of heading.
In Figures 7 and 8, from the graph (a) (c) (e) (g) of we can see blue is stable, red line and green line
both reduce the fluctuation compared with cyan line. In addition, in Table 4, fusion algorithm has the
minimum STD value, no matter “3–2” test or “1–2”. The STD values of “First-order CF” algorithm and
“Kalman filter” are also reduced compared with the heading got from accelorometer and magnetometer.

Table 5 gives the statistical information of the two kinematic heading tests, mean bias is
not reduced. While RMSEs are extensively reduced no matter “3–2” test or “1–2” test. We can
see the RMES values of raw heading (got from accelorometer and magnetometer) are 7◦, 4.77◦, 6.71◦

and 3.96◦, easy to find the RMSE values of the “Improved” algorithm, “Kalman filter” and “First-order
CF” are all smaller. As for STD values, the situation of kinematic test is nearly same as static test, the
three solutions reduce approximately 25∼35%. In general, the kinematic test results, whether STD or
RMES, are larger than the static test results, which is reasonable, because there is usually large jitter
during walking, which is more likely to produce much more errors.

We find no matter “First-order CF” “Kalman Filter” or “Improved” algorithm, their heading
estimation precision are all improved in some extent. In whole, compared with “First-order CF”
and “Kalman filte”, the result of “Improved” is stable and has smaller fluctuation. As for heading
estimation accuracy and system error, from our tests, we find they depend on several factors,
such as the effect of cumulative gyroscope error, instability of accelerometer and magnetometer,
test environment temperature fluctuation; so, from the algorithmic point of view, the improvement
is limited. In this study, firstly, we use the proposed improved fusion algorithm to estimate smart
phone heading in real time. While although heading precision is improved in a certain extent by
the fusion model; when pedestrian walking, smart phone keeps swinging continuously, in addition,
external environment interference, all of these will make smart phone produce big heading error. Thus,
in our strategy, we also attempt to use beacon signal in recognizing pedestrian orientation to calibrate
heading bias and compensate smart phone systematic heading error.

4.2. Discussion of Navigation Test

In validation section, we present two navigation experiments, one use GNSS + PDR + beacon
scheme to verify the positioning capability and stability of our algorithm, the other one only
use GNSS + PDR, in Figures 12 and 15 we present the real-time navigation results and some
comparison strategies, from these figures, we can see blue line shows better navigation capability;
in following section, we will present some statistics about the two tests.

The CDF statistical graphs in Figure 16 show that in Portland and Shanghai Streets, our fused
scheme obtains 80% positioning error below 15 m, whereas the internal GNSS positioning error is no
more than 20% below 15 m. Meanwhile, in Argyle and Shandong Streets, our fused scheme improves
to 80% below 10 m, whereas the internal GNSS positioning error is only 30% below 10 m. In addition,
for further validation, a test without any beacon assistance was performed, Figure 17 presents the
precision comparison graph.

We also calculated the positioning errors of different strategies and presented the
statistical information. Figure 17 shows the CDF graph of the positioning error. From the figure,
the fused solution improves the 10 m positioning error from 38% to nearly 60% and the 20 m positioning
error from 55% to 80%.

From the above figures, Figures 16 and 17, we can find that if GNSS + PDR + beacon scheme is
used, the positioning precision of 20 m can reach 80%, the other one solution is without beacon, 20 m’
positioning precision is reduced to 60%. In addition, the maximum positioning error even exceeds
40 m. Based on the above description, we can see that beacon is useful in our scheme, GNSS + PDR +
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beacon fusion solution is better than GNSS + PDR. Both schemes GNSS + PDR + beacon and GNSS +
PDR improve the capability and precision of pedestrian navigation to some extent.

Figure 16. Cumulative distribution function (CDF) graph of the positioning error in (a) Portland and
Shanghai Streets and (b) Argyle and Shandong Streets. The red and blue lines denote the smart phone
internal GNSS and fused position, respectively.
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Figure 17. CDF graph of the positioning error. The green, red and blue lines denote the PDR result,
the smart phone internal GNSS result and the fused strategy positioning result, respectively.

5. Conclusions

An improved pedestrian navigation scheme is proposed in this study. The proposed navigation
solution utilizes smart phone internal GNSS raw measurements (namely, pseudorange, carrier phase
and NMEA messages), internal MEMS sensor measurements (including gyroscope, accelerometer,
magnetometer and barometer) and external data sources (that is, beacons) to construct a comprehensive
positioning solution. On the basis of the particular advantages of these positioning techniques and
algorithms, we design an improved heading algorithm that uses gyroscope, accelerometer and
magnetometer measurements comprehensively to reduce sensor cumulative errors and improve
heading precision and stability. We classify the beacons into weak, middle and strong and design
related algorithms for positioning and heading calibration on the basis of the beacon characteristics.
Our fusion solution combines different heading types and reduces smart phone drift. In comparison
with INS mechanization, we used a better solution by combining the PDR algorithm with beacon and
GNSS/DGNSS positioning results, thereby obtaining a better fusion location. Moreover, on the basis
of the traditional step length estimation method, we use a weak beacon to correct the step length and
improve step length estimation accuracy. The entire system fully utilises PDR short-time stability and
the advantages of GNSS and beacons to fuse an improved solution for long-time navigation. In the
fusion procedure, we design algorithms to exclude large jumps in GNSS and adjust the weight when
combining beacon and PDR information. In our fusion model, we also add moved distance scale
factor as an estimation parameter, which should make our method more reasonable compared with
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those in previous studies. The improvements of the scheme make the pedestrian navigation system
generally stable. In sum, we developed our algorithms as a real application, validated the improved
heading solution, verified its positioning capability. Static and kinematic heading tests were executed
in the two reference directions, they showed the superiority of improved solution. Field navigation
tests were performed in Mong Kok and Waichai, which are typical urban canyon areas of Hong Kong.
The two cases showed the improvements of the fusion navigation scheme and the positioning accuracy
was improved. In the second test, although no beacons were used, our solution also reduced the
positioning error evidently in the test routes of more than 1600 m.
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EKF Extended Kalman Filter
PDOP Position Dilution of Precision
VDOP Vertical Dilution of Precision
HDOP Horizontal Dilution of Precision
FFT Fast Fourier Transform
RSSI Radio Signal Strength Indication
3D Three-dimensional
LOS Line-of-sight
NLOS Non-line-of-sight
IGRF International Geomagnetic Reference Field
NMEA National Marine Electronics Association
SNR Signal to Noise Ratio
UWB Ultra Wideband
UKF Unscented Kalman Filter
INS Inertial Navigation System
PF Particle Filter
API Application Programming Interface
WGS84 World Geodetic System 1984
STD Standard Deviation
RMSE Root Mean Squared Error
RTK Real-time Kinematic
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